Problems fitting multiple regression models
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Problems fitting multiple regression models

Revision
Multicollinearity: Becomes more likely to occur when we have a large number of
explanatory variables

© To get a solutions to normal equations: we need X7 X to be non-singular. As if

XT X is singular, then its determinant is zero, so it cannot be inverted and we cannot find
a unique solution to the Normal Equations, and therefore no unique least squares beta
estimates.

@ Mostly it happens when two or more variables are equal and of one variable is a linear
combination if the other variable.

© Parameters with large variances is one of the problems of multicollinearity where some of
the columns of X are close to linear combination of other columns.

© When variance is very high this can even lead to a parameter having the wrong sign.
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Exams Style Question, (2019)

When the number of explanatory variables is relatively small, it may well be possible to
spot multicollinearity by scanning the data.

We can calculate the VIF of each of the explanatory variable x; against the other p — 2
explanatory variables, so x; is the response variables and other p — 2 variables have their
B's parameters.
@ We calculate the co-efficients of determination of this regressor of x; and write as
a real number between 0 and 1 i.e. R;.
@ Variance Inflation Factor VIF; = 1_711?2
High Rj= indicates a strong linear relationsjhip between x; and the other x’s which results
in a large VIF for x;.
We usually take VIF >10 as indication of a multicollinearity problem. We would need to
reduce the set of explanatory variables to remove linear combinations. WO
© Another indication of Multicollinearity can be model where the overall model shows B0

significance with an F test but none of the parameters shows siginificance with t-test CLEETIER)




Exams Style Question, (2019)

Question 3. [32 marks] A researcher wished to study the relationship between the annual
salaries (Y in thousands of dollars) of 24 Mathematics Professors in a large American
University and an index of publication quality (z;), number of years of experience (x2), an
index of success in obtaining grants (z3) and an index based on teaching evaluations (xr4).
The data were read into R and the following commands and output were initially found.

salary<-lm(y x1+x2+x3+x4)
summary (salary)

Call:
In(formula = y ~ x1 + x2 + x3 + x4)

Residuals:
Min 1Q Median 3Q Max
-6.5891 -1.6925 -0.6017 2.5454 4.7078

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 41.54908 6.66329 6.236 5.4T7e-06 *x¥x

x1 2.09307 0.65199  3.210 0.004607 *x*

x2 0.64761 0.07387  8.767 4.19e-08 *xx

x3 2.78690 0.59594  4.676 0.000164 *%*
1

x4 -2.18893

.82959 -1.196 0.246255
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Exams Style Question, (2019)

Residual standard error: 3.455 on 19 degrees of freedom
Multiple R-squared: 0.917,Adjusted R-squared: 0.8995
F-statistic: 52.47 on 4 and 19 DF, p-value: 5.234e-10

(a) (i) Write down the fitted model. [2]
(ii) What null hypothesis and alternative does the output

F-statistic: 52.47 on 4 and 19 DF, p-value: 5.234e-10
test? What is the conclusion? (4]

(b) The following commands were then entered.

stdres <- rstandard(salary)
hat<-hatvalues(salary)

i<- 1:24

plot(i,hat, main="Hat values versus i, Salary")
shapiro.test(stdres)

Explain briefly the meaning of each command and what output it gives. [9]
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Exams Style Question, (2019)

(c¢) Look at the following output

> library(car)
> vif (salary)

x1 x2 x3 x4
1.365795 1.324020 1.162684 1.052740

The researcher finds the vif values to investigate multicollinearity.

(i) What does vif stand for? 1]

(i1) What is multicollinearity and what are its effects? [5]

iii) Is there any problem with multicollinearity here? Explain your answer. 2
Y !
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Exams Style Question, (2019)

(d) Look at the following output

> library(leaps)
> best.subset <- regsubsets(y x1+x2+x3+x4, salary, nvmax=4)
> best.subset.summary <- summary(best.subset)
> best.subset.summary$outmat
x1l x2 x3 x4

1 ( 1 ) "o ongn o onowonon
2 ( 1 ) o My Mg won
3 ( 1 ) Mgl Myt Mgt w0
4 ( 1 ) II*II II*II II*YI YI*YI
> best.subset.summary$adjr2

[1] 0.7182713 0.8494270 0.8973512 0.8995185

(i) Define adjusted R2. 1]
(ii) Explain briefly what this output shows. (4]

Discuss, based on all the output above, whether the variable x4 should be dropped from
the model. 4]
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Residuals re-cap

We have already defined residuals in multiple linear regression matrix form and stated
some of their properties:

e=Y—-Y=(I-HY

Ele]=0
var(e) = o?( — H)

where H is the hat matrix given by H = X(XTX)~1XxT.
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Hat matrix and individual residuals

@ We can use individual elements of H to tell us more about the residuals
o let h; be the (i,/)™ elements of H
@ so the diagonal elements of H are the hj;

Then

var(e,-) = (1 — h,',')U2

cov(ej, g) = —h,-ja2

Estimate the variance of a particular observation’s residual

The elements on the diagonal of H are the important ones in many cases, because you can take,

say, the 10'th observation, and you calculate the variance of the residual for that obervation; +
wQf

var(eio) = 03(1 — h1o,10) Queen Mary

Universiy of London




Residuals and their plots

Notation

@ In the simple linear regression model we referred to hj; as v;
@ For multiple linear regression, either notation is ok

var(e;) = (1 — hjj)o?

@ gives us an additional reason to standardise the residuals
o We can see that variance of the residuals was different to the 02, assumed for the
random error terms in the original model specification.
e Furthermore the variation of each of the residuals might be different depending on
the hat matrix.
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Residuals and their plots

Why standardise the residuals?

1 » Variance of residuals different
SI mple from oZassumed for the
| inear random error terms

1 * Variance of each residual might
M u Itl ple be different depending on H

II near * Makes detection outliers tricky




Standardised residuals

Standardised residuals are d; where for multiple linear regression models

€ €

"S- ki) se(er)

The denominator is the standard error of the estimated coefficient.

If the normal distribution assumption for the residuals is followed d; ~ t,_,

When n large, hj;(i # j) tends to be small.
Then asymptotically the standardised residuals d; are iid N(0,1)
This is the property we rely on most heavily in residual plots
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Standardised residuals

Our four most common checks using the standardised residuals are similar to those for
simple linear regression models:

Linear Relationship
Constant Variance

Normal Distribution
Outliers

Autocorrelation
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Standardised residuals

We plot d; against each of the explanatory variables x;

Standardised residuals vs each x;

Standard Residuals vs X Standard Residuals vs X
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Standardised residuals

We plot d; against the fitted values y;

Standardised residuals vs fitted Y

Standard Residuals vs Fitted Y Standard Residuals vs Fitted Y
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Standardised residuals

The Q-Q plot is used to check the assumption of normally distributed residuals.

Q-Q Plot

Normal Q-Q Plot Normal Q-Q Plot
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Further checks with residuals plots

Any of the three plots above can be checked for outliers
o Large absolute value of d;
o If we record observations with a measure of time it can be useful to plot the
standardised residuals against time ¢t
@ Even if time is not an explanatory variable
@ Used to check for " autocorrelation"
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Influential observations and leverage

Influential observations and leverage
We previously discussed this with simple linear regression models
Previously we calculated leverage v;

Now we can relate leverage to the hat matrix

vi = hij is the i*" diagonal elements of H

[T [ hi hig By hiw 77 Y1
2 hay han Ya
ha, :
Un . Yn I
Yn-1 hj\.' 1IN YN-1 \-Qﬂ!
L Unv A h‘_-\"l JIE-N_.\-' 1 h;’\"_"\" Jt Yn - -
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Viewed through the fitted model

Fitted models in Y = = XB: HY.
So the ith fitted value is

n
Vi=0r=Y_ hjyi=hiyi + > _ hyy
i=1 i£j
So h;; indicates the extent to which the observation with y; contributes to the fitted
value ;. This is what leverage is

[ yhy A Hyshs + - +ynhiy
y1ha + +ynhan
yrha + :
ay
+ynhy_1n (-,Q)
L b + +yn—1thyn-1  +ynhyny | Guzenl ey




Viewed through the fitted model

If you look at this for a while, it becomes apparent that the element, hij gives the
influence of the j'th observation on the i'th predicted value, y"i. If you compare across
row i in the hat matrix, and some values are huge, it means that some observations are
exercising a disproportionate influence on the prediction for the i'th observation. If you
concentrate on the diagonal elements, h;;, you are focusing on the effects that
observations have on their own predicted values. If a model estimated without
observation i offers a grossly different predicted value for y; than a model that includes
i, then you know that observation i is having a pretty dramatic effect on the fitted
model.
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Leverage as diagonal element of H

When we think of leverage as coming from the hat matrix rather than as an
independent calculations, a number of properties emerge

var(e,-) = 0'2(1 — h,',')
@ Now hj; < 1 but hj; close to 1 will give var(e;) close to zero
@ that is a fitted value close to the observed value

o In general hj; is small when Xxj; is close to its mean X; and gets larger the further x;;
is from its mean
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Large leverage observations

1 n
E<h,-,~<1and Zh,-,-:p
i=1
o P
So average leverage is £
@ This is the general case of average = % in simple linear regression
We usually consider leverage
2p Wk 1]
° > 37 as "high leverage
P ] H ]
@ > =P as ! very high leverage
Number of potential causes of high leverage
data collection, unique observations
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Cook’s Statistic

We check leverage because we are concerned if a single observation exerts influence
over the regression result

Unusually large Cook’s Statistic is one indicator of this influence

We can generalise the formula for Cook's Statistics in multiple linear regression

o B BTXTG )

ps?

B is the vector of least squares parameters
(3 is the estimates of parameters found when the it observation is omitted

Once again, an unusually large value for D; can be taken as evidence of an influential
observation.

Cook’s distance can be calculated as:

VO
2 O

D: — Ji hij Queen Mary
= T )
p jj




Exams Style Questions (2020)

Question 6 [15 marks].

In a study of the efficiency of a plant which oxidises ammonia to nitric acid the dependent
variable is stack loss and the independent variables are Airflow (flow of cooling air),
Water. Temp (cooling water inlet temperature) and Acid.Conc (concentration of acid).

The data were read into R and the commands and output are shown below.

> stack <- lm(stack.loss ~ Airflow + Water.Temp + Acid.Conc)
> summary(stack)

Call:
Im(formula = stack.loss ~ Airflow + Water.Temp + Acid.Conc)

Residuals:
Min 1Q Median 3Q Max
-7.2377 -1.7117 -0.4551 2.3614 5.6978

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -39.9197 11.8960 -3.356 0.00375 *x Y
Airflow 0.7156 0.1349 5.307 5.8e-05 *x* \‘Q‘!
Water.Temp 1.2953 0.3680 3.520 0.00263 *x* (=t

Universiy of London

Acid.Conc -0.1521 0.1563 -0.973 0.34405 Queen Mary




Exams Style Questions (2020)

Residual standard error: 3.243 on 17 degrees of freedom
Multiple R-squared: 0.9136,Adjusted R-squared: 0.8983
F-statistic: 59.9 on 3 and 17 DF, p-value: 3.016e-09

stdres<-rstandard(stack)

hat<- hatvalues(stack)

cook<-cooks.distance(stack)

i<- 1:21

plot(i,stdres, main="Standardised residual values")
plot(i,hat, main="Leverage values")

plot(i,cook, main="Cooks distance values")

qf (0.5, 4, 17)

1] 0.8735735

— vV VvV VvV VvV V V VYV

(a) Write down the fitted model. 2]

(b) Explain what is meant by an outlier, leverage and an influential observation.
Include the relationship between these concepts and how they can be detected. (8]

(¢) Comment on what the three plots on page 7 tell us about possible outliers, high leverage
values and influential observations in these data. [5]
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Exams Style Questions (2020)

Standardised residual values
Cooks distance values
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Exams Style Questions (2020)

Solution: (a) Stackloss = -39.9187+0.7156 Airflow + 1.2953
Water.temp-0.1521AcidConic

(b) An outlier is an observation with large standardised residual. This means the
observation lies well away from the fitted line. Leverage measures how unusual the
combinations of regressor values is. It can measure by h; where H = X(XT X)X T is
the hat matrix.

An influential observation has a large value of Cook's Statistics, which measures the
fitted line without this observation has changed.

Detection: How large a stat residual has to be depend on n. High leverage is h;; > 27”

3
very high > °P
n
Cook's D; > FJ_,(0.50).
Outliers or high leverage values may be influential. \5@
Outlier 4+ High leverage very likely to be influential. Q
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Exams Style Questions (2020)

(c) p=4, n=21, From table

|d;| > 2.8, hj > % =0.38 or h;; > % = 0.57.

Cook’s Statistics D; > 0.874 from output

From graphs there are no outliers, also it has high leverage, also 21 is most influential
but not highly so.
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What is a linear model?

We’ve covered a lot of modelling ground

. Int tati .
Least squares Properties of gL onan Analysis of
of model

estimation estimators Variance
results

Tests of = OnIEEnEE Matrix Maximum

Prediction .
Intervals approaches Likelihood

Significance

Model Outliers & Automated
Building Leverage Methods




What is a linear model?)

An unanswered question

Simple Linear e P T
RegreSSion Model { What makes a A
Q model linear ? \J
Multiple L . ) 4
ultiple Linear - L
Regression Model \Q\/
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What is a linear model?)

Definition

B A linear model is one
that is linear in the
parameters

y not necessarily one
/ linear in the

= explanatory variables




What is a linear model?)

Examples of linear models

Vi = Bo + Bix1; + Poxy; + &
Vi = Bo + B1x1i + Po/Xzi &

Vi = Bo + Bysin(xy;) + Boxy; + &
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What is a linear model?)

Linearising a model

Sometimes (not always) a non-linear model can be converted into a linear one
through a transformation of the response

For example
v; = & exp(By + Bix1; + Box5i) is not linear

But taking natural logarithms

In(y;) = Bo + P1x1i + Poxyi + In(g;) is now linear




What is a linear model?)

However we need to be careful

Care needed on the assumption we make about the residuals

To use the technigues we have developed in this module we need
In(e;) ~ N (0, 6?) for some constant variance ¢
not the usual, g ~ N(0,52)

Other variations of this model can be linearised by a log transformation

yi = i exp(Bo + Buxsi +£2)




What is a linear model?)

Further examples

1 . . .
Vi = is not linear in its parameters

Bo+B1x1i+PB2x2i+E]

accept the condition that y; # 0

1
i Bo + B1x1i + Paxz; + &

i
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