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Problems fitting multiple regression models

Revision
Multicollinearity: Becomes more likely to occur when we have a large number of
explanatory variables

1 To get a solutions to normal equations: we need XTX to be non-singular. As if
XTX is singular, then its determinant is zero, so it cannot be inverted and we cannot find
a unique solution to the Normal Equations, and therefore no unique least squares beta
estimates.

2 Mostly it happens when two or more variables are equal and of one variable is a linear
combination if the other variable.

3 Parameters with large variances is one of the problems of multicollinearity where some of
the columns of X are close to linear combination of other columns.

4 When variance is very high this can even lead to a parameter having the wrong sign.



Exams Style Question, (2019)

When the number of explanatory variables is relatively small, it may well be possible to
spot multicollinearity by scanning the data.

We can calculate the VIF of each of the explanatory variable xj against the other p − 2
explanatory variables, so xj is the response variables and other p− 2 variables have their
β′s parameters.

1 We calculate the co-efficients of determination of this regressor of xj and write as
a real number between 0 and 1 i.e. Rj .

2 Variance Inflation Factor VIFj =
1

1− R2
j

High Rj2 indicates a strong linear relationship between xj and the other x ′s which results
in a large VIF for xj .
We usually take VIF >10 as indication of a multicollinearity problem. We would need to
reduce the set of explanatory variables to remove linear combinations.

3 Another indication of Multicollinearity can be model where the overall model shows
significance with an F test but none of the parameters shows siginificance with t-test
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Residuals re-cap

We have already defined residuals in multiple linear regression matrix form and stated
some of their properties:

e = Y − Ŷ = (I− H)Y

E[e] = 0

var(e) = σ2(I − H)

where H is the hat matrix given by H = X (XTX )−1XT .



Hat matrix and individual residuals

We can use individual elements of H to tell us more about the residuals
let hij be the (i , j)th elements of H
so the diagonal elements of H are the hii

Then

var(ei ) = (1− hii )σ
2

cov(ei , ej) = −hijσ2

Estimate the variance of a particular observation’s residual
The elements on the diagonal of H are the important ones in many cases, because you can take,
say, the 10’th observation, and you calculate the variance of the residual for that obervation:

var(e10) = σ2
e (1− h10,10)



Residuals and their plots

Notation
In the simple linear regression model we referred to hii as νi
For multiple linear regression, either notation is ok

var(ei ) = (1− hii )σ
2

gives us an additional reason to standardise the residuals
We can see that variance of the residuals was different to the σ2, assumed for the
random error terms in the original model specification.
Furthermore the variation of each of the residuals might be different depending on
the hat matrix.



Residuals and their plots



Standardised residuals

Standardised residuals are di where for multiple linear regression models

di =
ei√

S2(1− hii )
=

ei

ŝe(ei )

The denominator is the standard error of the estimated coefficient.

If the normal distribution assumption for the residuals is followed di ∼ tn−p

When n large, hij(i 6= j) tends to be small.
Then asymptotically the standardised residuals di are iid N(0, 1)
This is the property we rely on most heavily in residual plots



Standardised residuals

Our four most common checks using the standardised residuals are similar to those for
simple linear regression models:

Linear Relationship
Constant Variance
Normal Distribution
Outliers
Autocorrelation



Standardised residuals

We plot di against each of the explanatory variables xi



Standardised residuals

We plot di against the fitted values ŷi



Standardised residuals

The Q-Q plot is used to check the assumption of normally distributed residuals.



Further checks with residuals plots

Any of the three plots above can be checked for outliers
Large absolute value of di
If we record observations with a measure of time it can be useful to plot the
standardised residuals against time t
Even if time is not an explanatory variable
Used to check for " autocorrelation"



Influential observations and leverage

Influential observations and leverage

We previously discussed this with simple linear regression models

Previously we calculated leverage vi

Now we can relate leverage to the hat matrix

vi = hii is the i th diagonal elements of H



Viewed through the fitted model

Fitted models in Ŷ = µ̂ = X β̂ = HY .
So the i th fitted value is

ŷi = ûi =
n∑

i=1

hijyj = hiiyi +
∑
i 6=j

hijyj

So hii indicates the extent to which the observation with yi contributes to the fitted
value µ̂i . This is what leverage is



Viewed through the fitted model

If you look at this for a while, it becomes apparent that the element, hij gives the
influence of the j’th observation on the i’th predicted value, yˆi . If you compare across
row i in the hat matrix, and some values are huge, it means that some observations are
exercising a disproportionate influence on the prediction for the i’th observation. If you
concentrate on the diagonal elements, hii , you are focusing on the effects that
observations have on their own predicted values. If a model estimated without
observation i offers a grossly different predicted value for yi than a model that includes
i , then you know that observation i is having a pretty dramatic effect on the fitted
model.



Leverage as diagonal element of H

When we think of leverage as coming from the hat matrix rather than as an
independent calculations, a number of properties emerge

var(ei ) = σ2(1− hii )

Now hii < 1 but hii close to 1 will give var(ei ) close to zero
that is a fitted value close to the observed value
In general hii is small when xij is close to its mean xi and gets larger the further xij
is from its mean



Large leverage observations

1
n
< hii < 1 and

n∑
i=1

hii = p

So average leverage is p
n

This is the general case of average = 2
n in simple linear regression

We usually consider leverage
> 2p

n as "high leverage"
> 3p

n as " very high leverage"
Number of potential causes of high leverage
data collection, unique observations



Cook’s Statistic

We check leverage because we are concerned if a single observation exerts influence
over the regression result
Unusually large Cook’s Statistic is one indicator of this influence
We can generalise the formula for Cook’s Statistics in multiple linear regression

Di =
(β̂ − β̂i )T (XTX )(β̂ − β̂i )

ps2

β̂ is the vector of least squares parameters
β̂i is the estimates of parameters found when the i th observation is omitted

Once again, an unusually large value for Di can be taken as evidence of an influential
observation.

Cook’s distance can be calculated as:

Dj =
r2
j

p

hjj
(1− hjj)
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Exams Style Questions (2020)

Solution: (a) Stackloss = -39.9187+0.7156 Airflow + 1.2953
Water.temp-0.1521AcidConic

(b) An outlier is an observation with large standardised residual. This means the
observation lies well away from the fitted line. Leverage measures how unusual the
combinations of regressor values is. It can measure by hii where H = X (XTX )−1XT is
the hat matrix.
An influential observation has a large value of Cook’s Statistics, which measures the
fitted line without this observation has changed.

Detection: How large a stat residual has to be depend on n. High leverage is hii > 2p
n

very high >
3p
n

Cook’s Di > F p
n−p(0.50).

Outliers or high leverage values may be influential.
Outlier + High leverage very likely to be influential.



Exams Style Questions (2020)

(c) p = 4, n = 21, From table
|di | > 2.8, hii > 8

21 = 0.38 or hii > 12
21 = 0.57.

Cook’s Statistics Di > 0.874 from output
From graphs there are no outliers, also it has high leverage, also 21 is most influential
but not highly so.



What is a linear model?
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