Vectors \& Matrices

Problem Sheet 9

1. We represent any value of the form $a+b \sqrt[3]{2}+c \sqrt[3]{4}$ (where $a, b, c \in \mathbb{Q}$) as a column vector

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{Q}^{3} .
$$

(i) Find a matrix A that takes the vector representing $a+b \sqrt[3]{2}+c \sqrt[3]{4}$ and maps it to the vector representing this value after multiplication by a factor of $1-\sqrt[3]{2}+2 \sqrt[3]{4}$.
(ii) Use Gauss-Jordan Inversion to find the inverse of A.
(iii) Express the value

$$
\frac{3+6 \sqrt[3]{2}+7 \sqrt[3]{4}}{1-\sqrt[3]{2}+2 \sqrt[3]{4}}
$$

in the form $a+b \sqrt[3]{2}+c \sqrt[3]{4}$, for some $a, b, c \in \mathbb{Q}$.
2. Consider the linear system $A \mathbf{x}=\mathbf{0}$, where A is a 3×3 matrix with at least one non-zero entry in its first column.
(i) Show that if the solution set of this system can be expressed as a line $\mathbf{x}=\mathbf{p}+\lambda \mathbf{u}$ (for some fixed \mathbf{p} and non-zero $\mathbf{u} \in \mathbb{R}^{3}$), then A is row equivalent to a matrix of the form

$$
\left(\begin{array}{lll}
1 & 0 & \alpha \\
0 & 1 & \beta \\
0 & 0 & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{lll}
1 & \alpha & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

for some $\alpha, \beta \in \mathbb{R}$.
(ii) Show that if the solution set of this system can be expressed as a plane $\mathbf{x} \cdot \mathbf{n}=d$ (for some fixed non-zero $\mathbf{n} \in \mathbb{R}^{3}$ and scalar $d \in \mathbb{R}$), then A is row equivalent to a matrix of the form

$$
\left(\begin{array}{lll}
1 & \alpha & \beta \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

for some $\alpha, \beta \in \mathbb{R}$.
3. Prove that if a matrix A is equal to its own inverse, then there exists a non-zero vector \mathbf{v} such that $A \mathbf{v}=\mathbf{v}$ or $A \mathbf{v}=-\mathbf{v}$.

