MTH6158 Ring Theory: Guide to Coursework 2

Note: This guide is meant to help you understand and carry out the problem solutions on your own. It is not meant to provide complete solutions!

1. Consider the ring $R=\mathbb{Z} / 12 \mathbb{Z}=\left\{[0]_{12},[1]_{12}, \ldots,[11]_{12}\right\}$, and let I be its ideal $I=\left\{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\right\}$.
(a) List explicitly all the cosets of I in R.

The ring R has 12 elements and the ideal I has 4 elements, so the partition of R into cosets should consist of 3 cosets of size 4 each. One of them is always I, and all the others should have the form $I+r$ for some r in R. Following this reasoning, you should get that the three cosets are

$$
\begin{aligned}
& A:=\left\{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\right\} \\
& B:=\left\{[1]_{12},[4]_{12},[7]_{12},[10]_{12}\right\} \\
& C:=\left\{[2]_{12},[5]_{12},[8]_{12},[11]_{12}\right\}
\end{aligned}
$$

(b) Write down the addition and multiplication tables for R / I.

Addition and multiplication of cosets are defined via their representatives. You should check that this leads to the following addition and multiplication tables:

+	A	B	C	\cdot	A	B	C
A	A	B	C	A	A	A	A
B	B	C	A	B	A	B	C
C	C	A	B		C	A	C
B							

(c) Prove that $R / I \cong \mathbb{Z} / 3 \mathbb{Z}$, by giving an explicit isomorphism (there is no need to prove formally that it is an isomorphism).
The ring $\mathbb{Z} / 3 \mathbb{Z}$ has 3 elements $[0]_{3},[1]_{3},[2]_{3}$, which we know how to add and multiply together. Looking at the addition and multiplication tables for R / I above, you should be able to see which coset plays the role of $[0]_{3}$, which one plays the role of $[1]_{3}$, and which one plays the role of $[2]_{3}$. With this, you should be able to define a concrete isomorphism:

$$
\begin{aligned}
R / I & \longrightarrow \mathbb{Z} / 3 \mathbb{Z} \\
A & \longmapsto \\
B & \longmapsto \\
C & \longmapsto
\end{aligned}
$$

2. Suppose that R_{1} is a ring with addition $+_{1}$ and multiplication \cdot_{1}, and that R_{2} is a ring with addition $+_{2}$ and multiplication \cdot_{2}. Prove that the set $R_{1} \times R_{2}$, with addition given by $\left(r_{1}, r_{2}\right)+\left(s_{1}, s_{2}\right):=\left(r_{1}+{ }_{1} s_{1}, r_{2}+{ }_{2} s_{2}\right)$ and multiplication given by $\left(r_{1}, r_{2}\right) \cdot\left(s_{1}, s_{2}\right):=\left(r_{1} \cdot{ }_{1} s_{1}, r_{2} \cdot 2 s_{2}\right)$ is a ring. This ring is called the product of rings R_{1} and R_{2}.
You need to show that $R_{1} \times R_{2}$ satisfies all the axioms of a ring. This follows quite directly from the fact that both R_{1} and R_{2} satisfy these axioms - make sure to say explicitly, for example, what the zero of $R_{1} \times R_{2}$ is, or what the negative of an element $\left(r_{1}, r_{2}\right)$ is.
3. Denote by $\mathbb{Z}_{m}=\left\{[0]_{m},[1]_{m}, \ldots,[m-1]_{m}\right\}$ the ring of integers modulo m. Consider the rings $R=\mathbb{Z}_{24}$ and $S=\mathbb{Z}_{4} \times \mathbb{Z}_{6}$. Let $\theta: R \rightarrow S$ be the map defined by $\theta\left([x]_{24}\right)=\left([x]_{4},[4 x]_{6}\right)$.
(a) Prove that θ is well-defined, that is, does not depend on the choice of coset representative.
Here you need to show that for any two integers $x, y \in \mathbb{Z}$, if $[x]_{24}=[y]_{24}$ then $[x]_{4}=[y]_{4}$ and $[4 x]_{6}=[4 y]_{6}$. For this, simply use the definition of when two integers are in the same equivalence class of \mathbb{Z}_{m}.
(b) Is θ a homomorphism of rings? Explain.

After unpacking the definition, this question reduces to seeing if

$$
\left([x+y]_{4},[4(x+y)]_{6}\right) \stackrel{?}{=}\left([x]_{4},[4 x]_{6}\right)+\left([y]_{4},[4 y]_{6}\right)
$$

and

$$
\left([x \cdot y]_{4},[4(x \cdot y)]_{6}\right) \stackrel{?}{=}\left([x]_{4},[4 x]_{6}\right) \cdot\left([y]_{4},[4 y]_{6}\right)
$$

Both of these are true, so θ is indeed a ring homomorphism. Be careful when proving the second of these equalities, as it involves a non-trivial step.
(c) Is θ an isomorphism of rings? Explain.

Since θ is a homomorphism, the question is basically asking if θ is a bijection. Despite R and S having the same number of elements, this is not the case, as θ is neither injective nor surjective - make sure to explain why.
(d) What are the image and the kernel of θ ?

The kernel of θ is equal to $\left\{[0]_{24},[12]_{24}\right\}$. The image of θ is equal to $\left\{\left([x]_{4},[y]_{6}\right) \mid y\right.$ is even $\}$. Can you see why?
(e) What does the First Isomorphism Theorem say in this case? Write down the explicit isomorphism provided by this theorem.
It says that

$$
\mathbb{Z}_{24} /\left\{[0]_{24},[12]_{24}\right\} \cong\left\{\left([x]_{4},[y]_{6}\right) \mid y \text { is even }\right\}
$$

The isomorphism sends the coset of $\operatorname{Ker}(\theta)$ containing an element $[x]_{24}$ to the element $\left([x]_{4},[4 x]_{6}\right)$ of $\operatorname{Im}(\theta)$.
4. Consider the ring $R=2 \mathbb{Z}$ and the ideal $I=24 \mathbb{Z}$ of R.
(a) Give a representative for each coset of I in R.

There are 12 cosets of I in R, with representatives

$$
0,2,4,6,8,10,12,14,16,18,20,22 \in R
$$

(b) Does the ring R / I have an identity? Explain.
R / I does not have an identity. To argue why, it is not enough to say that R does not have an identity, as it could still be the case that the quotient ring R / I does. But in this particular case, you can check that none of the 12 elements of R / I is a multiplicative identity - for instance, no element x of R / I satisfies $x \cdot x=x$, which a multiplicative identity should.
(c) Use the Second Isomorphism Theorem to list all the subrings of R / I.

By the Second Isomorphism Theorem, subrings of R / I are in correspondence with subrings of R containing I. These are subrings of the form $m \mathbb{Z}$ with $2|m| 24$. There are six such subrings of R, which are $2 \mathbb{Z}, 4 \mathbb{Z}, 6 \mathbb{Z}, 8 \mathbb{Z}, 12 \mathbb{Z}$, and $24 \mathbb{Z}$. Make sure you can describe explicitly the six corresponding subrings of R / I !
5. Let $R=\mathbb{Z} / 4 \mathbb{Z}$, and consider the ring $R[x]$ of polynomials with coefficients in R.
(a) Is $R[x]$ a domain? Is $R[x]$ an integral domain? Explain.

Since R is a domain, $R[x]$ is also a domain (a commutative ring with identity). For example, what is the identity of $R[x]$? However, the ring R has zero-divisors, and this leads to many zero-divisors in $R[x]$. For example, $\left([2]_{4} x\right) \cdot\left([2]_{4}+[2]_{4} x\right)=0$ (the zero polynomial), but none of the factors is the zero polynomial. This means that $R[x]$ is not an integral domain.
(b) Is the element $[2]_{4}+[0]_{4} x+[2]_{4} x^{2} \in R[x]$ a zero-divisor?

It is. Can you find another non-zero polynomial which multiplied by it is equal to 0 ?
(c) Is the element $[2]_{4}+[1]_{4} x \in R[x]$ a zero-divisor?

It is not. To see this, think about what the leading coefficient (the coefficient with the highest power of x) is after multiplying by another polynomial.
(d) Is the element $[2]_{4}+[3]_{4} x+[2]_{4} x^{2} \in R[x]$ a unit?

It is not. Think about the constant coefficient after multiplying by another polynomial.
(e) Is the element $[3]_{4}+[2]_{4} x \in R[x]$ a unit?

It is! Can you find its inverse?

