
MTH6158 Ring Theory: Guide to Coursework 2

Note: This guide is meant to help you understand and carry out the problem
solutions on your own. It is not meant to provide complete solutions!

1. Consider the ring R = Z/12Z = {[0]12, [1]12, . . . , [11]12}, and let I be its ideal
I = {[0]12, [3]12, [6]12, [9]12}.

(a) List explicitly all the cosets of I in R.

The ring R has 12 elements and the ideal I has 4 elements, so the
partition of R into cosets should consist of 3 cosets of size 4 each. One
of them is always I, and all the others should have the form I + r for
some r in R. Following this reasoning, you should get that the three
cosets are

A := {[0]12, [3]12, [6]12, [9]12}
B := {[1]12, [4]12, [7]12, [10]12}
C := {[2]12, [5]12, [8]12, [11]12}

(b) Write down the addition and multiplication tables for R/I.

Addition and multiplication of cosets are defined via their representa-
tives. You should check that this leads to the following addition and
multiplication tables:

+ A B C
A A B C
B B C A
C C A B

· A B C
A A A A
B A B C
C A C B

(c) Prove that R/I ∼= Z/3Z, by giving an explicit isomorphism (there is no
need to prove formally that it is an isomorphism).

The ring Z/3Z has 3 elements [0]3, [1]3, [2]3, which we know how to
add and multiply together. Looking at the addition and multiplication
tables for R/I above, you should be able to see which coset plays the
role of [0]3, which one plays the role of [1]3, and which one plays the role
of [2]3. With this, you should be able to define a concrete isomorphism:

R/I −→ Z/3Z
A 7−→ ?

B 7−→ ?

C 7−→ ?



2. Suppose that R1 is a ring with addition +1 and multiplication ·1, and that R2

is a ring with addition +2 and multiplication ·2. Prove that the set R1 ×R2,
with addition given by (r1, r2)+(s1, s2) := (r1+1s1, r2+2s2) and multiplication
given by (r1, r2) · (s1, s2) := (r1 ·1 s1, r2 ·2 s2) is a ring. This ring is called the
product of rings R1 and R2.

You need to show that R1×R2 satisfies all the axioms of a ring. This follows
quite directly from the fact that both R1 and R2 satisfy these axioms – make
sure to say explicitly, for example, what the zero of R1 ×R2 is, or what the
negative of an element (r1, r2) is.

3. Denote by Zm = {[0]m, [1]m, . . . , [m − 1]m} the ring of integers modulo m.
Consider the rings R = Z24 and S = Z4 × Z6. Let θ : R → S be the map
defined by θ([x]24) = ([x]4, [4x]6).

(a) Prove that θ is well-defined, that is, does not depend on the choice of
coset representative.

Here you need to show that for any two integers x, y ∈ Z, if [x]24 = [y]24
then [x]4 = [y]4 and [4x]6 = [4y]6. For this, simply use the definition of
when two integers are in the same equivalence class of Zm.

(b) Is θ a homomorphism of rings? Explain.

After unpacking the definition, this question reduces to seeing if

( [x+ y]4 , [4(x+ y)]6 )
?
= ([x]4, [4x]6) + ([y]4, [4y]6)

and
( [x · y]4 , [4(x · y)]6 )

?
= ([x]4, [4x]6) · ([y]4, [4y]6) .

Both of these are true, so θ is indeed a ring homomorphism. Be careful
when proving the second of these equalities, as it involves a non-trivial
step.

(c) Is θ an isomorphism of rings? Explain.

Since θ is a homomorphism, the question is basically asking if θ is a
bijection. Despite R and S having the same number of elements, this
is not the case, as θ is neither injective nor surjective – make sure to
explain why.

(d) What are the image and the kernel of θ?

The kernel of θ is equal to {[0]24, [12]24}. The image of θ is equal to
{([x]4, [y]6) | y is even}. Can you see why?

(e) What does the First Isomorphism Theorem say in this case? Write
down the explicit isomorphism provided by this theorem.

It says that

Z24

/
{[0]24, [12]24} ∼= {([x]4, [y]6) | y is even}.

The isomorphism sends the coset of Ker(θ) containing an element [x]24
to the element ([x]4, [4x]6) of Im(θ).



4. Consider the ring R = 2Z and the ideal I = 24Z of R.

(a) Give a representative for each coset of I in R.

There are 12 cosets of I in R, with representatives

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 ∈ R.

(b) Does the ring R/I have an identity? Explain.

R/I does not have an identity. To argue why, it is not enough to say
that R does not have an identity, as it could still be the case that the
quotient ring R/I does. But in this particular case, you can check that
none of the 12 elements of R/I is a multiplicative identity – for instance,
no element x of R/I satisfies x · x = x, which a multiplicative identity
should.

(c) Use the Second Isomorphism Theorem to list all the subrings of R/I.

By the Second Isomorphism Theorem, subrings of R/I are in corre-
spondence with subrings of R containing I. These are subrings of the
form mZ with 2 | m | 24. There are six such subrings of R, which are
2Z, 4Z, 6Z, 8Z, 12Z, and 24Z. Make sure you can describe explicitly
the six corresponding subrings of R/I!

5. Let R = Z/4Z, and consider the ring R[x] of polynomials with coefficients in
R.

(a) Is R[x] a domain? Is R[x] an integral domain? Explain.

Since R is a domain, R[x] is also a domain (a commutative ring with
identity). For example, what is the identity of R[x]? However, the ring
R has zero-divisors, and this leads to many zero-divisors in R[x]. For
example, ([2]4 x) · ([2]4 + [2]4 x) = 0 (the zero polynomial), but none
of the factors is the zero polynomial. This means that R[x] is not an
integral domain.

(b) Is the element [2]4 + [0]4 x+ [2]4 x
2 ∈ R[x] a zero-divisor?

It is. Can you find another non-zero polynomial which multiplied by it
is equal to 0?

(c) Is the element [2]4 + [1]4 x ∈ R[x] a zero-divisor?

It is not. To see this, think about what the leading coefficient (the
coefficient with the highest power of x) is after multiplying by another
polynomial.

(d) Is the element [2]4 + [3]4 x+ [2]4 x
2 ∈ R[x] a unit?

It is not. Think about the constant coefficient after multiplying by
another polynomial.

(e) Is the element [3]4 + [2]4 x ∈ R[x] a unit?

It is! Can you find its inverse?


