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Model building

Outline

@ What is Backwards Elimination Method
© What is Forward Elimination Method

© Akaike’s Information Criteria
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Automatic Methods of model selection

Remark
If we have small number of explanatory variables: then calculating the
O MSE
Q R?
© Adjusted R?
Q@ Mallow's CP

for each of the candidate of models and then making a selection is feasible.

v

However as the number of potential variables grows, these all calculations for all models
becomes more challenging. In response to this a number of Automatic regression
model selection procedures have been introduced.

Each of these have their advantages and disadvantages. \.@
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Automatic Methods of model selection

@ Backwards Elimination Method
@ Forwards Elimination Method

© Akaike’s Information Criteria (AIC)
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Backwards Elimination Method

What Is Backward Elimination Technique in Multiple Linear Regression?

The backward elimination technique is used to find the best subset of features from a given set
of features. It works by iteratively removing features that are not predictive of the target
variable or have the least predictive power.

Backward elimination process iteratively remove the least important variables until only the
most important ones remain.

The backward elimination process begins by fitting a multiple linear regression model with all
the independent variables. The variable with the highest p-value (or small F value) is removed
from the model, and a new model fits. This process is repeated until all variables in the model
have a p-value below some threshold, typically 0.05.
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Process of Backwards Elimination

Summary

@ Step 1: Fit the multiple linear regression model that uses all the explanatory
variables

@ Step 2: As the number of variables increases and we risk including variables that
are essentially themselves linear combinations of other variables in the model, we
run into the problem of multicollinearity which we will look at in the section below

© Step 3: Calculate the F statistic (or the t statistic) for the exclusion of each
variable

@ Step 4: Find the variable with the lowest F statistic and eliminate this if the
statistic is smaller than some predetermined value

© Step 5: This leaves a model with one fewer variable. Now fit this model and
re-run the process above \.@

(G
@ Step 6: Stop when a variable is not omitted (because the smallest F statistic is Q,een Mery
longer smaller than the predetermined value).




Determine the least significant variable to remove at each step

How backward elimination works, we need to know
@ The least significant variable at each step
@ The stopping rule.

The least significant variable is a variable that:

@ Has the highest p-value in the model, or

@ lts elimination from the model causes the lowest drop in R?, or

@ Its elimination from the model causes the lowest increase in RSS (Residuals Sum
of Squares) compared to other predictors

Choose a stopping rule

The stopping rule is satisfied when all remaining variables in the model have a p-value
smaller than some pre-specified threshold.




Example of Backwards Elimination

* Backward selection of variable;
Stopping rule: if no variable is greater than 0.05(p>0.05)
Start with full model

Full_model=Im(y~x1+x2+x3+x4)

summary(full_model

X1 0.0000447613
X2 0.0010443454
X3 0.18160235

X4 0.8763012799

# Eliminate x4 as it has highest p value
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Example of Backwards Elimination

* Now to eliminate another variable, run the model again
M1=Im(y~x1+x2+x3)

summary(M1)

X1 0.00002536951
X2 0.0005643223
X3 0.149285

»# Eliminate x3 as only it has highest p value and p value>0.05

Model = Y=b0+b1x1+h2x2+ei
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Example of Backwards Elimination

+ Run model with remaing variables
M2=Im(y~x1+x2)
Summary(M2)

X1 0.000016

X2 0.000519705

» We will not eliminate any variable as no variable has p value>0.05 (stopping
rules implies.

Final backward Model = Y = bO+b1x1+b2x2+ei




Advantages and Disadvantages of Backward Elimination

Advantages Disadvantages

Where backward stepwise is better Where backward stepwise is NOT better

(1) Starting with the full model has the
advantage of considering the effects of all
variables simultaneously.

This is especially important in case of
collinearity because backward stepwise may
be forced to keep them all in the model unlike
forward selection where none of them might (3) It produces an unstable selection of
be entered. variables

(1) It does not consider all possible
combination of potential predictors

(2) It outputs biased regression coefficients,
confidence intervals, p-values, and R?

(2) Easy to conduct

(4) It does not consider the causal relationship
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Forward Elimination Method

What Is Forward Elimination Technique in Multiple Linear Regression?

Forward variable selection is a statistical method used in regression analysis to select the best
subset of predictors from a larger set of potential predictors

Forward selection method begins with a model that contains no variables called the Null Model.
Then starts adding the most significant variables one after the other until a pre-specified
stopping rule is reached or until all the variables under consideration are included in the model.
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Process of Forwards Elimination

Summary
Forward Regression Elimination works in the opposite direction to Backward Elimination. This
process can be summarised as
© Step 1: Start with the null model 5y + €;
@ Step 2: Fit simple linear regression models for each of the explanatory variables under
consideration
© Step 3: Select the explanatory variable whose simple linear regression model has the
largest F statistic (or t statistic)
© Step 4: Now add the explanatory variable with the next highest F statistic

© Step 5: Test (via subset deletion) whether either of the two variables can be omitted
according to some predetermined F value. [Sometimes the process may have a higher

value needed for omission of an existing variable than for the newest variable just addé ‘.@
():

© Step 6: Continue until no more variables are added or omitted. Queen Mary
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Determine the most significant variable to remove at each step

How backward elimination works, we need to know

@ The most significant variable at each step
@ The stopping rule.

The most significant variable is a variable that:

@ It has the smallest p-value
@ It provides the highest increase in R?
@ It provides the highest drop in model RSS (Residuals Sum of Squares) compared to
other predictors under consideration.
Choose a stopping rule
The stopping rule is satisfied when all remaining variables to consider have a p-value larger than

some specified threshold, if added to the model. When we reach this state, forward selection

will terminate and return a model that only contains variables with p-values < threshold. \.@
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Example of Forward Elimination Criteria

+Stopping rule: If no variables have p value less than 0.05
*First start with intercept model
*Y=botei

*Now add variables one by one

*Now fit model with one predictor variable at one time and check their P value
independently

summary(M3)
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Example of Forward Elimination Criteria

M3=Im(y~x3)

summary(M3)
Y=bO+blx1+ei 0.000779
Y=b0+b2x2+ei 0.009272
Y=bo-+b3x3+ei 0.683
Y=b0+bax4-+ei 0.184

» Choose x1 variable as minimum p value

P
WO
Model=Y=bo+b1x1+ei c,Q)

Queen Mary

Universiy of London




Example of Forward Elimination Criteria

+ Now to choose 2nd variable to be added in model
M1= Im(y~x1+x2)

summary(M1)

M2=Im(y~x1+x3)

summary(M2)

M3= Im(y~x1+x4)

summary(M3
T

M1=Y=bo+b1x1+h2x2+ei 0.000520
M2=Y=bo+b1x1+b3x3+ei 0.177711
M3=Y=bo+b1x1+bdx4+ei 0.181487

» Choose M1 model

Model=Y=b0+b1x1+b2x2+ei




Example of Forward Elimination Criteria
* Now to choose third variable;
M1=Im(y~x1+x2+x3)

summary(M1)
M2=Im(y~x1+x2+x4)

Summary(M2)
N

M1=Y =b0+b1x1+h2x2+b3x3+ei 0.149285

M2=Y =b0+b1x1+b2x2+bax4+ei 0.6235

» We choose no model as both variables have P value>0.05 (stopping
rules implies)
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Advantages and Disadvantages of Forward Elimination

@ Unlike backward elimination, forward stepwise selection can used when the number
of variables under consideration is very large, even larger than the sample size!

@ This is because forward selection starts with a null model (with no predictors) and
proceeds to add variables one at a time, and so unlike backward selection, it DOES
NOT have to consider the full model (which includes all the predictors).
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Advantages and Disadvantages of Forward Elimination

Remark: One problem with this approach is the estimation of 2 in the F tests.

@ At start the MSE model estimate of o2 is likely to be higher in the early rounds of this
process and then fall over time as more variables are added.

@ A potential solutions would be use the full model MSE as the estimator of sigma® in all
the F tests beginning with the first explanatory variable to be added to the null model.

@ Another variation of the stepwise process is one that only has addition and not omission
of existing variables, that is once an explanatory variable is added it cannot then be
omitted later in the process.
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Advantages of Backwards(Forwards) Elimination
@ The ability to manage large amounts of potential predictor variables, fine tuning
the model to choose the best predictor variables from the available options.
@ It's faster than other model-selection methods.

© Watching the order in which variables are removed or added can provide valuable
information about the quality of the predictor variables.
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Disadvantages of Backwards(Forwards) Elimination

o

©0

© 0060

If two predictor variables in the model are highly correlated, only one may make it
into the model.

R? values are usually too high.

Adjusted R? values might be high, and then dip sharply as the model progresses. If
this happens, identify the variables that were added or removed when this happens
and adjust the model.

Predicted values and confidence intervals are too narrow.

Regression coefficients are bias and coefficients for other variables are too high.
Collinearity is usually a major issue. Excessive collinearity may cause the program
to dump predictor variables into the model.

Some variables (especially dummy variables) may be removed from the model,
when they are deemed important to be included. These can be manually added
back in.
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Model building

False positives in F tests

One of the main issues with automatic methods that rely on F (or t) tests
Risk that we fail to reject Hy: §; = 0 for some j when we should have rejected it

Means we would include (or fail to eliminate) an explanatory variable whose
parameter value was really zero (and therefore a variable with no statistically

significant explanatory power)
Akaike’s Information Criterion (AIC) can help with this

AIC uses some of the Maximum Likelihood methods of week 6




Model building

Akaike’s Information Criteria (AIC)

AIC =2(p + 1) — 2logL
Where:

e p =the number of regression parameters (so p — 1 explanatory variables)

e [isthe Likelihood function evaluated at the maximum likelihood estimates of
each of the parameters




Model building

Using AIC in model selection

We seek the regression model that minimises AIC

o because of the —2logL this is equivalent to the model that maximises
likelihood balanced against the number of parameters

= We can look to do this through backward or forward type processes




Model building

Backwards Elimination using AIC

¢ Construct the full model and calculate its AIC

e Construct all possible models that omit one variable

¢ If the full model has lowest AIC use that and stop

¢ |f another has lowest AIC move on to that model and repeat

)
)
¢ Calculate the AIC for each of these models ]
)
)
)

e Stop once AIC cannot be lowered by removing a variable
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Model building

Backwards using AIC in R

This process can be automated in R programming using the step () function
If the full model is constructed with 1m () and stored as full_model (say)

A backwards route to the reduced model with lowest AIC is given by

reduced model <- step(full model, direction = “backward”)




Model building

Forward regression alterative using AIC

We start with the null model

In R this is found by null model <- lm(y ~ 1)

say we have six explanatory variables to consider x1 x2 x3 x4 x5 x6
This is done in R with

forward model <- step(null _model, scope =
x1+x2+x3+x4+x5+x6, direction = “forward”)




Model building

Different results

Backwards and Forwards methods using AIC may lead to different
recommended models
A third alternative isto set direction = “both” inside step ()

o This has the effect of adding additional variables from the null model and
then later allowing deletion of one or more of those variables once others

are added




Example

- Hald’s real data

Y X, X, X, X,
78.5 7 26 6 60
74.3 1 29 15 52
104.3 11 56 8 20
87.6 11 31 8 47
95.9 7 52 6 33
109.2 11 55 9 22
102.7 3 71 17 6

72.5 1 31 22 44
93.1 2 54 18 22
115.9 21 47 4 20
83.8 1 40 23 34
113.3 11 66 9 12
109.4 10 68 8 12

The real data set in this question first
appeared in Hald (1952). The data are given
in Table and can be found on the book web
site in the file Haldcement.txt. Throughout
this question we shall assume that the full
model below is a valid model for the data

Y = Bo + f1X1 + B2 Xo + B3 X3 + B4 Xy + €
Identify the optimal model based on R?, AIC
from the approach based on all possible

subsets.

Subset

size Predictors o AIC

| X4 0.6450 588516

2 X1, X2 0.9744  25.4200 \‘@
3 X1, X2, X4 09764 249739 PRESS
4 X1,X2, X3, X4 09736 269443 |rcahiasl




Example

Backward elimination based on AIC

Start: AIC= 26.94

Y o~ x1 + x2 + x3 + x4

DF Sum of Sg RSS ATC
- x3 1 0.109 47.973 24.974
- x4 1 0.247 48.111 25.011
- x2 1 2.972 50.836 25.728
<rnone:> 47 .864 26.944
- xl 1 25.951 73.815 30.576
Step: AIC= 24.97
Y o~ x1 + x2 + x4

Df Sum of Sqg RSS ATC
<none:> 47.97 24 .97
- x4 1 9.93 57.90 25.42
- x2 1 26.79 74.76 28.74
- xl 1 820.91 868.88 60.63
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Example

Start: AIC= 29.77
Y ~ x1 + x2 + x3 + x4

Df Sum of Sg RSS AIC
- x3 1 0.109 47.973 27.234
- x4 1 0.247 48.111 27.271
- x2 1 2.972 50.836 27.987
<none> 47.864 29.769
- x1 1 25.951 73.815 32.836

Step: AIC= 27.23
Y ~ x1 + x2 + x4

Df Sum of Sg RSS AIC
- x4 1 9.93 57.90 27.11
<none> 47.97 27.23
- x2 1 26.79 74.76 30.44
- x1 1 820.91 868.88 62.32

Step: AIC= 27.11
Y ~ xl + x2
Df Sum of Sg RSS AIC

N
<none> 57.90 27.11
- x1 1 848.43 906.34 60.31 \“;_Q_"l
- x2 1 1207.78 1265.69 64 .65 Queen Mary
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Example

Forward selection based on AIC

Start: AIC= 71.44

Y ~ 1

Df Sum of Sqg RSS AIC
+ x4 1 1831.90 883.87 58.85
+ %2 1 1809.43 906.34 59.18
+ x1 1 1450.08 1265.69 63.52
+ x3 1 776.36 1939.40 69.07
<none: 2715.76 71.44
Step: AIC= 58.85
Y ~ x4

Df Sum of Sg RSS AIC
+ x1 1 809.10 74.76 28.74
+ x3 1 708.13 175.74 39.85
<none>> 883.87 58.85
+ x2 1 14.99 868.88 60.63
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Example

Step: AIC= 28.74
Y ~ x4 + x1

Df Sum of Sg RSS AIC
+ x2 1 26.789 47.973 24.974
+ x3 1 23.926 50.836 25.728
<none> 74.762 28.742

Step: AIC= 24.97
Y ~ x4 + x1 + %2

Df Sum of Sg RSS ATC
<none:> 47.973 24.974
+ X3 1 0.109 47 .864 26.944
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Exams Style Questions

We use the Bridge.txt dataset available on QMPlus, where information from 45 bridge
projects are compiled. The response and predictor variables are as follows:

* Y: Time is the design time in person-days;

* X;: DArea is the deck area of bridge (000 sq ft);

* X,: CCost is the construction cost ($000);

* X3: Dwgs is the number of structural drawings;

* X,: Length is the length of bridge (ft);

* Xj5: Spans is the number of spans.

Take the logarithm transformation of all the variables.

(a) Use RStudio to find the best reduced model using the AIC procedure and state
which is the best reduced model;




Exams Style Questions

> ml <— Im(Y ~ X1 + X2 + X3 + X4 + X5)
> summary (ml)

Call:
Im(formula = Y ~ X1 + X2 + X3 + X4 + Xb)

Residuals:
Min 1Q Median 30 Max
-0.68394 -0.17167 -0.02604 0.23157 0.67307

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.28590 0.61926 3.691 0.000681 %=
X1 -0.04564 0.12675 -0.360 0.720705

Queen Mary
ity o Lovdon




Exams Style Questions

Xz 0.19609 0.14445 1.358 0.182426
X3 0.85879 0.22362 3.840 0.000440 %=
X4 -0.03844 0.15487 -0.248 0.805296
X5 0.23119 0.14068 1.643 0.108349

Signif. codes: 0 ‘sxxx’ 0.001 ‘%" 0.01 *»" 0.05 " 0.1 " 1

Residual standard error: 0.3139 on 39 degrees of freedom
Multiple R-sguared: 0.7762,Adjusted R-squared: 0.7475
F-statistic: 27.05 on 5 and 39 DF, p-value: 1.043e-11

LY
W

Queen Mary

Universiy of London




Exams Style Questions

> reduced.model <- step(ml, direction="backward")
Start: AIC=-98.71
Y ~ X1 + X2 + X3 + X4 + X5

Df Sum of Sg RSS AIC
- X4 1 0.00607 3.84987 -100.640
- X1 1 0.01278 3.8564 -100.562
<none> 3.8436 -98.711
- X2 1 0.18162 4.0252 -98.634
- X5 1 0.26616 4.1098 -97.698
- X3 1 1.45358 5.2972 -86.277

Step: AIC=-100.64
Y ~ X1 + X2 + X3 + X5

Df Sum of Sg RSS AIC
- X1 1 0.01958 3.8683 -102.412
— L
% 1 0.10064 40303 -100.577 WO
- X5 1 0.31501 4.1647 -99.101 Qﬁﬁ&Mﬂy
- X3 1 1.44946 5.2991 -88.260




Exams Style Questions

Step: AIC=-102.41
Y ~ X2 + X3 + X5

Df Sum of Sqg RSS ATC
<none> 3.8693 -102.412
- X2 1 0.17960 4.0488 -102.370
- X5 1 0.29656 4.1658 -101.08¢9
- X3 1 1.44544 5.3147 -90.128

Thus, backward elimination based on AIC chooses the model with the three pre-
dictors X5, X3 and X5, which are the logarithm of the construction cost; of the
number of structural drawings and of the number of spans.

Based on the forward selection based on the AIC, arrives at the same model as
backward elimination based on AIC.
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Exams Style Questions

> modyn <— Im(Y ~ 1)

> aic.forward.model <- step(modyn, scope=~X1 + X2 + X3 + X4 + X5,
direction="forward")

Start: AIC=-41.35

Y ~ 1

Df Sum of Sqg RSS AIC
+ X3 1 12.1765 4.9975 -94.898
+ X2 1 11.6147 5.5593 -90.104
+ X1 1 10.2943 6.8797 -80.514
+ X4 1 10.0120 7.1620 -78.704
+ X5 1 8.7262 8.4478 -71.274
<none> 17.1740 -41.347

Step: AIC=-94.9
Y ~ X3
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Exams Style Questions

Df Sum of Sg

+ X5 1 0.94866
+ X2 1 0.83170
+ X4 1 0.66914
+ X1 1 0.47568
<none>

Step: AIC=-102.37
Y ~ X3 + X5

Df Sum of Sqg

+ XZ 1 0.179598
<none>

+ X1 1 0.018535
+ X4 1 0.016924

RSS AIC
4.0488 -102.370
4,1658 -101.08¢9
4.3284 -99.366
4.,5218 -97.399
4.9975 -94.898

RSS ATIC
3.8693 -102.41
4.0488 -102.37
4.0303 -100.58
4.0319 -100.56
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Exams Style Questions

Step: AIC=-102.41
Y ~ X3 + X5 + X2

Df Sum of Sg RSS ATC
<none> 3.8693 -102.41
+ X1 1 0.019578 3.8497 -100.64
+ X4 1 0.012868 3.8564 -100.56

Thus in conclusion the best model is
Y =08+ 60Xs+ X5+ 85Xa+ ¢

where the variables are taken in logarithm.
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