Vectors \& Matrices

Problem Sheet 8

1. Consider the planes $\Pi_{1}, \Pi_{2}, \Pi_{3}$ defined by the Cartesian equations

$$
\begin{aligned}
3 x-y+7 z & =8, \\
-2 x-3 y+5 z & =3, \\
x+y-2 z & =-2 .
\end{aligned}
$$

(i) Express the linear system formed by these three equations as a single matrix equation, $A \mathbf{x}=\mathbf{b}$.
(ii) Let B be the 3×3 matrix given by

$$
\left(\begin{array}{ccc}
4 & 0 & 5 \\
0 & -1 & 1 \\
1 & 1 & -2
\end{array}\right)
$$

Show that there exists two Type III elementary matrices E_{1}, E_{2} such that $B=E_{1} E_{2} A$.
(iii) Find three values $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ such that the planes defined by the Cartesian equations

$$
\begin{aligned}
4 x+5 z & =c_{1}, \\
-y+z & =c_{2}, \\
x+y-2 z & =c_{3},
\end{aligned}
$$

have the exact same intersection as the planes $\Pi_{1}, \Pi_{2}, \Pi_{3}$.
2. A Type I elementary matrix E is a matrix such that the effect of left-multiplying A by E is to swap around a pair of rows inside A, i.e. $E A$ is the same matrix as A, but with two rows swapped.
(i) List all possible 4×4 Type I elementary matrices.
(ii) How many $n \times n$ Type I elementary matrices exist?
(iii) How many $n \times n$ matrices exist that can be expressed as the product of Type I elementary matrices? (Note: There can be any number of Type I factors, not necessarily just two.)
(iv) List all possible 3×3 matrices that can be expressed as the product of Type I elementary matrices.
3. Suppose we represent quadratic functions $q(x)=a x^{2}+b x+c$ by the column vector in 3 -space containing their coefficients,

$$
\mathbf{q}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \in \mathbb{R}^{3}
$$

(i) Find two elementary matrices E_{1} and E_{2} such that left-multiplying the vector \mathbf{q} by the product $E_{1} E_{2}$ gives a vector $E_{1} E_{2} \mathbf{q}$ representing the quadratic $q(-3 x)$.
(ii) Suppose linear functions are similarly represented by vectors in \mathbb{R}^{2}. Find a matrix M that maps a vector representing a linear function $f(x)$, to one representing the quadratic $(2 x-3) f(x)$.
(iii) Find a matrix D that maps a vector representing a quadratic $q(x)$ to the vector representing its derivative $q^{\prime}(x)$.
(iv) Let N be a map that takes a linear function $f(x)$ and gives the anti-derivative $F(x)$ satisfying the condition $F(-1)=0$. Express this map N as a matrix.
(v) Show that $D N=I_{2}$. Is the same true for $N D$?

