Vectors & Matrices

Problem Sheet 8

1. Consider the planes Π_1, Π_2, Π_3 defined by the Cartesian equations

$$3x - y + 7z = 8$$
,
 $-2x - 3y + 5z = 3$,

$$x + y - 2z = -2.$$

- (i) Express the linear system formed by these three equations as a single matrix equation, $A\mathbf{x} = \mathbf{b}$.
- (ii) Let B be the 3×3 matrix given by

$$\begin{pmatrix} 4 & 0 & 5 \\ 0 & -1 & 1 \\ 1 & 1 & -2 \end{pmatrix}.$$

Show that there exists two Type III elementary matrices E_1 , E_2 such that $B = E_1 E_2 A$.

(iii) Find three values $c_1, c_2, c_3 \in \mathbb{R}$ such that the planes defined by the Cartesian equations

$$4x + 5z = c_1 ,$$

$$-y+z=c_2\;,$$

$$x + y - 2z = c_3 ,$$

have the exact same intersection as the planes Π_1, Π_2, Π_3 .

- 2. A Type I elementary matrix E is a matrix such that the effect of left-multiplying A by E is to swap around a pair of rows inside A, i.e. EA is the same matrix as A, but with two rows swapped.
 - (i) List all possible 4×4 Type I elementary matrices.
 - (ii) How many $n \times n$ Type I elementary matrices exist?
 - (iii) How many $n \times n$ matrices exist that can be expressed as the product of Type I elementary matrices? (**Note:** There can be any number of Type I factors, not necessarily just two.)
 - (iv) List all possible 3×3 matrices that can be expressed as the product of Type I elementary matrices.

1

3. Suppose we represent quadratic functions $q(x) = ax^2 + bx + c$ by the column vector in 3-space containing their coefficients,

$$\mathbf{q} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 .$$

- (i) Find two elementary matrices E_1 and E_2 such that left-multiplying the vector \mathbf{q} by the product E_1E_2 gives a vector $E_1E_2\mathbf{q}$ representing the quadratic q(-3x).
- (ii) Suppose linear functions are similarly represented by vectors in \mathbb{R}^2 . Find a matrix M that maps a vector representing a linear function f(x), to one representing the quadratic (2x-3)f(x).
- (iii) Find a matrix D that maps a vector representing a quadratic q(x) to the vector representing its derivative q'(x).
- (iv) Let N be a map that takes a linear function f(x) and gives the anti-derivative F(x) satisfying the condition F(-1) = 0. Express this map N as a matrix.
- (v) Show that $DN = I_2$. Is the same true for ND?