
QUEEN MARY UNIVERSITY OF LONDON
MTH5120 Statistical Modelling I
Solution to Exercise Sheet 6

1. Based on the liver.csv dataset we have seen in the Practical session,

(a) We fit the model with three explanatory variables defined as log10 Yi = β0 +
β1x1i + β2x2i + β3x3i + εi, where εi ∼

iid
N (0, σ2). We use the following R com-

mands:

> data <- read.csv(’liver.csv’)
> x1 <- data$x1
> x2 <- data$x2
> x3 <- data$x3
> ly <- data$log10y
>
> modly3 <- lm(ly ~ x1 + x2 + x3)
> summary(modly3)
Call:
lm(formula = ly ~ x1 + x2 + x3)
Residuals:

Min 1Q Median 3Q Max
-0.102004 -0.016222 -0.002609 0.011884 0.138314
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4836209 0.0426287 11.35 1.95e-15 ***
x1 0.0095236 0.0003064 31.08 < 2e-16 ***
x2 0.0092945 0.0003825 24.30 < 2e-16 ***
x3 0.0692251 0.0040779 16.98 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.04687 on 50 degrees of freedom
Multiple R-squared: 0.9723,Adjusted R-squared: 0.9707
F-statistic: 586 on 3 and 50 DF, p-value: < 2.2e-16

The coefficients of the three explanatory variables jointly with the intercept are
statistically significant with positive value. Moreover, looking at the R2 there is
an improvement with respect to the other models, since in this case it explains the
97% of the variation. Moreover, we define the standardized residuals and the fitted
values

> stdres3 <-rstandard(modly3)
> fits3 <-fitted(modly3)

(b) In order to assess the assumptions of normality and constant variance of the ran-
dom errors, we run two different plots



> plot(fits3,stdres3, main="Std res vs fits, liver3")
> qqnorm(stdres3, main="Q-Q Plot, liver3")
> qqline(stdres3)

Figure 1.1 shows the standardized residuals versus the fitted values (left panel)
and the QQ plot (right panel). The first figure show if there is any problem with
the constant variance assumption, while the second one refers to the Normality
assumption.
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Figure 1.1: Plot of standardized residuals versus fitted values (left) and of the QQ plot for the
model with three explanatory variables (right).

Regarding the constant variance it seems not be too many problems, while for the
normality assumption, Figure 1.1 shows heavy tails in both part and thus we are
ready to reject the normality assumption. Moreover, we run also the Shapiro-Wilk
test for the normality assumption

> shapiro.test(stdres3)
Shapiro-Wilk normality test
data: stdres3
W = 0.92082, p-value = 0.001605

From the test, we see a really small p-value (0.0016), thus we have strong evidence
against the normality assumption.

(c) We compare the model 3 with the two models find in the Practical session. In par-
ticular, the model that fits the best is the second model for the following reasons:

• The model assumptions are approximately met for Model 1 (with 1 explana-
tory variable) and for Model 2 (with two explanatory variables), but not for
Model 3. Thus Model 3, in the current form, should not be considered for
inference.



• Model 2 gives considerably larger R2 and in particular adjusted R2 and a
smaller values of s, the estimate of the square root of the error variance σ2

than does Model 1
• All the parameters in Model 2 are significantly different from zero.

(d) We use Model 2 since it is the best model and we run the leverage values and the
Cook’s distance

> hat <- hatvalues(modly2)
> cook<-cooks.distance(modly2)
> i<-1:54
> plot(i,hat, main="Leverage values")
> plot(i,cook, main="Cooks distance values")
> qf(0.5, 3, 51)
[1] 0.7993137

Figure 1.2 shows the Leverage values and the Cook’s distance. In both cases there
are a couple of points higher than normal, but for the Cook’s distance the higher
values is 0.25, which is below the threshold point of 0.799. Thus the following
results confirm that Model 2 fits well the data.
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Figure 1.2: Plot of leverage values (left) and of the Cook’s distance for the model with two
explanatory variables (right).

2. Coursework component
Consider a set of equity returns from four different markets across 12 different periods.
The data are available in the marketdata.txt. Define the forth variable as your response
variable (Y ). Define the following three models:

• Model 1 – Yi = β0 + β1x1i + εi;



• Model 2 – Yi = β0 + β2x2i + εi

• Model 3 – Yi = β0 + β1x1i + β2x2i + εi

(a) We run the three different models in R through the following commands for the
first model (Model 1)

> modl1 <- lm(Y ~ X1)
> summary(modl1)
Call:
lm(formula = Y ~ X1)
Residuals:

Min 1Q Median 3Q Max
-0.011009 -0.007319 0.001411 0.005846 0.009434

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0001395 0.0022835 -0.061 0.952
X1 0.8733093 0.0657648 13.279 1.12e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.007866 on 10 degrees of freedom
Multiple R-squared: 0.9463,Adjusted R-squared: 0.941
F-statistic: 176.3 on 1 and 10 DF, p-value: 1.121e-07

In this case, the parameter of X1 is statistically significant, while the intercept is
not statistically significant. Moreover, the intercept has a small value, while the
estimation of β1 is strongly positive. The R2 in this model is huge, around 94%,
thus explaining a big amount of variation.
Moving to Model 2, we have:

> modl2 <- lm(Y ~ X2)
> summary(modl2)
Call:
lm(formula = Y ~ X2)
Residuals:

Min 1Q Median 3Q Max
-0.03334 -0.01801 -0.00547 0.01595 0.04198
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0004339 0.0071658 -0.061 0.9529
X2 0.4400105 0.1462066 3.010 0.0131 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.0246 on 10 degrees of freedom
Multiple R-squared: 0.4753,Adjusted R-squared: 0.4228



F-statistic: 9.057 on 1 and 10 DF, p-value: 0.01313

The coefficient ofX2 is statistically significant but only at 0.05, while the intercept
is not statistically significant. The R2 is smaller than the previous model. Thus
this model seems not to be the correct model. Moving to Model 3, we have

> modl3 <- lm(Y ~ X1 + X2)
> summary(modl3)
Call:
lm(formula = Y ~ X1 + X2)
Residuals:

Min 1Q Median 3Q Max
-0.013399 -0.005104 0.000514 0.005249 0.008964
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.311e-05 2.289e-03 0.028 0.979
X1 8.163e-01 8.650e-02 9.436 5.79e-06 ***
X2 6.232e-02 6.150e-02 1.013 0.337
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.007855 on 9 degrees of freedom
Multiple R-squared: 0.9518,Adjusted R-squared: 0.9411
F-statistic: 88.92 on 2 and 9 DF, p-value: 1.182e-06

In this case the estimated parameter of X1 is statistically significant, while the
other two parameters are not significant at all. Looking at the R2 and it’s adjusted
form it seems that the model is not beating Model 1.

(b) Looking at the normality assumption, based on the QQ plot or at the Shapiro-Wilk
test, we have:

> # Model 1
> shapiro.test(stdres1)

Shapiro-Wilk normality test

data: stdres1
W = 0.89265, p-value = 0.1275

> # Model 2
> shapiro.test(stdres2)

Shapiro-Wilk normality test

data: stdres2
W = 0.94658, p-value = 0.5876

> # Model 3



> shapiro.test(stdres3)

Shapiro-Wilk normality test

data: stdres3
W = 0.93659, p-value = 0.4552

In all the models, the Shapiro-Wilk does not reject the null hypothesis, thus we
are not rejecting the normality assumption in all the models.

(c) The best model across the three is Model 1 due to the parsimony principles. Look-
ing at theR2 or adjustedR2, the best model is divided between Model 1 and Model
3. However, Model 3 does not have significant parameters except the β1.
If the student argues correctly, we can consider also Model 3, the best model. It is
a choice of the researcher in this case.


