RELATIVITY - MTH6132

PROBLEM SET 8

1. The metric for a particular 2-dimensional spacetime is given by

$$
d s^{2}=-e^{2 A r} d t^{2}+d r^{2}
$$

where A is an arbitrary constant. Calculate all the components of the connection $\Gamma^{a}{ }_{b c}$ for this metric using the Euler-Lagrange equations.
2. Find the geodesic equations for cylindrical coordinates, $d s^{2}=d r^{2}+r^{2} d \theta^{2}+d z^{2}$. Without explicitly solving the differential equations, explain why you already know what the solutions should be. Hint: There are only three nonzero Christoffel symbols.
3. In Lecture, we introduced $\Gamma_{b c}^{a}$, known as Christoffel symbols of the second kind. In this problem we will study Christoffel symbols of the first kind, defined by

$$
\Gamma_{a b c}=\frac{1}{2}\left(\partial_{b} g_{c a}+\partial_{c} g_{b a}-\partial_{a} g_{b c}\right) .
$$

- Write down the relationship between the two Christoffel symbols by raising (or lowering) the appropriate index.
- Show that the Christoffel symbols of the first kind are symmetric in the last two indices, i.e., $\Gamma_{a b c}=\Gamma_{a c b}$
- Show that if the metric g is diagonal, then

$$
\Gamma_{a b}^{a}=\frac{\partial}{\partial x^{b}}\left(\frac{1}{2} \ln g_{a a}\right) .
$$

- The Kahn-Penrose metric, used to study colliding gravitational waves in local coordinates (u, v, x, y) has line element

$$
d s^{2}=2 d u d v-(1-u)^{2} d x^{2}-(1+u)^{2} d y^{2},
$$

where it is assumed that $u \geq 0$ and $v<0$. Find the Christoffel symbols for this metric.
4. Consider the two-dimensional space given in local coordinates $\left(x^{1}, x^{2}\right)=(x, y)$ by

$$
d s^{2}=e^{y} d x^{2}+e^{x} d y^{2} .
$$

(a) Write down the Lagrangian L for this metric.
(b) Employ the Euler-Lagrange equations to determine the following Christoffel symbols: $\Gamma^{1}{ }_{11}, \Gamma^{1}{ }_{12}$ and $\Gamma^{2}{ }_{11}$ and $\Gamma^{1}{ }_{22}$.
(c) Calculate the R_{212}^{1} component of the Riemann tensor. Compute also R_{1212}.
5. The Riemann curvature tensor of a certain manifold is of the form

$$
R_{a b c d}=K\left(g_{a c} g_{b d}-g_{a d} g_{c b}\right),
$$

with K a constant. Show that:
(a) The tensor $R_{a b c d}$ defined above has the symmetries of the Riemann tensor discussed in the lecture;
(b) Observing that $\nabla_{a} g_{b c}=0$, show that $\nabla_{e} R_{a b c d}=0$. What sort of surface could have a constant curvature?
(c) Show that the corresponding Ricci tensor is proportional to the metric, and that the Ricci scalar is a constant.
6. Suppose that the curvature of a spacetime satisfies the equation

$$
R_{a b}-\frac{1}{2} R g_{a b}+\lambda g_{a b}=0
$$

where λ is a constant. Show that the Ricci scalar satisfies $R=4 \lambda$. Using this result show then that $R_{a b}=\lambda g_{a b}$.
7. Show that the Christoffel connection satisfies

$$
\Gamma_{a b}^{a}=\frac{1}{\sqrt{|g|}} \partial_{b} \sqrt{|g|}
$$

where $|g|=\left|\operatorname{det} g_{a b}\right|$.
8. Consider the metric

$$
d s^{2}=-d t^{2}+\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where k is a constant.
(a) Calculate the Christoffel symbols.
(b) Calculate the Ricci tensor and the Ricci scalar. Hint: use Problem 7 to simplify the calculation.
(c) Assuming that the Einstein tensor satisfies the equation:

$$
G_{a b}=8 \pi T_{a b}
$$

find $T_{a b}$.
9. Considering two arbitrary vectors X^{a} and Y^{a}, apply the Leibniz rule to $T_{a b} X^{a} Y^{b}$ to show that

$$
\left[\nabla_{c}, \nabla_{d}\right] T_{a b}=-R_{a c d}^{e} T_{e b}-R_{b c d}^{e} T_{a e}
$$

10. Consider two arbitrary vectors X^{a} and Y^{a}. Given another vector Z^{a}, show that

$$
\nabla_{X}\left(\nabla_{Y} Z^{a}\right)-\nabla_{Y}\left(\nabla_{X} Z^{a}\right)-\nabla_{[X, Y]} Z^{a}=R^{a}{ }_{b c d} Z^{b} X^{c} Y^{d}
$$

where $\nabla_{X}=X^{a} \nabla_{a}, \nabla_{Y}=Y^{a} \nabla_{a}$ and $\nabla_{[X, Y]}=[X, Y]^{a} \nabla_{a}$.
11. Consider the general static spherically symmetric spacetime in four dimensions:

$$
d s^{2}=-e^{2 A(r)} d t^{2}+e^{2 B(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

(a) Compute the Christoffel symbols.
(b) The components of the Riemann tensor.
(c) The components of the Ricci tensor.
12. Consider the following spacetime:

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d v^{2}+2 d v d r+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

where $M>0$ is a constant.
(a) Compute the Christoffel symbols.
(b) The components of the Riemann tensor.
(c) The components of the Ricci tensor.

