
Vectors & Matrices

Solutions to Problem Sheet 7

1. (i) To evaluate B2, we directly apply the definition of matrix multiplication,

B2 = BB =

0 1

0 0


0 1

0 0

 =

(0)(0) + (1)(0) (0)(1) + (1)(0)

(0)(0) + (0)(0) (0)(1) + (0)(0)

 =

0 0

0 0

 = O2×2 .

(ii) By the definition of matrix addition, it is clear that

A =

1 1

0 1

 =

1 + 0 0 + 1

0 + 0 1 + 0

 =

1 0

0 1

+

0 1

0 0

 = I2 +B .

We can therefore combine this fact with Theorem 7.1.14 a) in the notes to obtain

A2 = AA

= (I2 +B)(I2 +B)

= I2I2 + I2B +BI2 +BB

= I22 +B +B +B2

= I2 + 2B +O2×2

= I2 + 2B ,

where we have used the fact that I22 = I2 (a result of Theorem 7.1.14 c)) and B2 = O2×2

(from part (i)). We can now use the given definition of B to evaluate

A2 = I2 + 2B =

1 0

0 1

+ 2

0 1

0 0

 =

1 + 2(0) 0 + 2(1)

0 + 2(0) 1 + 2(0)

 =

1 2

0 1

 .
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(iii) Extending the result demonstrated in part (ii), we get

A3 = A2A

= (I2 + 2B)(I2 +B)

= I2I2 + I2B + 2BI2 + 2BB

= I22 +B + 2B + 2B2

= I2 + 3B +O2×2

= I2 + 3B .

We have shown that A = I2 + B, A2 = I2 + 2B and A3 = I2 + 3B. It therefore makes sense

to suggest the formulation An = I2 + nB. We now prove this formula using induction. Let

P (n) be the claim that An = I2 + nB. Our base case is n = 1, proven in part (ii). Next, we

assume that the statement holds for some n = k, that is, Ak = I2 + kB. Finally,

Ak+1 = AkA

= (I2 + kB)(I2 +B)

= I2I2 + I2B + kBI2 + kBB

= I22 +B + kB + kB2

= I2 + (k + 1)B +O2×2

= I2 + (k + 1)B .

Hence, if Ak = I2 + kB, then Ak+1 = I2 + (k + 1)B, demonstrating the inductive step.

Combined with the base case, this proves the result. For any n ∈ N, we have

An = I2 + nB =

1 n

0 1

 .

(iv) To begin, we note that for any n,m ∈ N,

1 n

0 1


1 m

0 1

 = AnAm = An+m =

1 n+m

0 1

 .
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Even though this property has only been proved for natural values n and m, we can speculate

that it extends to the case n = 1 and m = −1. This will, however, require a separate proof

1 1

0 1


1 −1

0 1

 =

(1)(1) + (1)(0) (1)(−1) + (1)(1)

(0)(1) + (1)(0) (0)(−1) + (1)(1)

 =

1 0

0 1

 .

Similarly, for n = −1 and m = 1,1 −1

0 1


1 1

0 1

 =

(1)(1) + (−1)(0) (1)(1) + (1)(−1)

(0)(1) + (1)(0) (0)(1) + (1)(1)

 =

1 0

0 1

 .

Hence, taking A−1 =

1 −1

0 1

, we have just shown that AA−1 = A−1A = I2, and so this

A−1 is indeed the inverse of A.

2. Suppose A = (aij)m×n and B = (bij)m×n. By the definition of matrix addition, A+B = (cij)m×n,

where for each i, j, cij = aij + bij . We now apply the definition of the transpose of a matrix to

obtain

(A+B)T = (cji)n×m = (aji + bji)n×m .

The definition of the transposition operation also gives us AT = (aji)n×m and BT = (bji)n×m. We

can sum these matrices to get

AT +BT = (aji)n×m + (bji)n×m = (aji + bji)n×m .

The right-hand side of this identity is equal to the right-hand side of the identity above, we can

therefore equate the two left-hand sides to obtain

(A+B)T = AT +BT .

3. The property that AT = 48A−1 is equivalent to the statement that

ATA = 48A−1A = 48I3 .
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So to prove this equality, it suffices to show the above. The transpose of A can easily be computed

as

AT =


2
√
3 0 −6

3 6
√
3

3
√
3 −2

√
3 3

 ,

leaving us with

ATA =


2
√
3 0 −6

3 6
√
3

3
√
3 −2

√
3 3



2
√
3 3 3

√
3

0 6 −2
√
3

−6
√
3 3



=


(2
√
3)2 + 0 + (−6)2 (2

√
3)(3) + 0 + (−6)(

√
3) (2

√
3)(3

√
3) + 0 + (−6)(3)

(3)(2
√
3) + 0 + (

√
3)(−6) 32 + 62 +

√
3
2

(3)(3
√
3) + (6)(−2

√
3) + (

√
3)(3)

(3
√
3)(2

√
3) + 0 + (3)(−6) (3

√
3)(3) + (−2

√
3)(6) + (3)(

√
3) (3

√
3)2 + (−2

√
3)2 + 32



=


48 0 0

0 48 0

0 0 48


= 48I3 ,

giving us the result. The inverse of A is therefore given by

A−1 =
1

48
AT =

1

48


2
√
3 0 −6

3 6
√
3

3
√
3 −2

√
3 3

 =


√
3

24 0 −1
8

1
16

1
8

√
3

48
√
3

16
−
√
3

24
1
16

 .

4. Firstly, note that as A is a m × n matrix, AT is a n × m matrix, and hence the product ATA

is well-defined with size n × n. We can now use the formula given in Theorem 7.2.3 d) for the

transpose of a matrix product to obtain

(ATA)T = AT (AT )T .
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Theorem 7.2.3 a) tells us that the transpose of a transpose of a matrix is equal to the original

matrix, i.e. (AT )T = A, and so

(ATA)T = ATA ,

meaning that the matrix ATA is equal to its own transpose. Hence, by the definition of matrix

symmetry, ATA is symmetric.

5. To quantify the effect of the matrix

A =


x 1 2

0 y −1

0 0 z


on a linear system, we apply it to a general 3× 3 matrix


a11 a12 a13

a21 a22 a23

a31 a32 a33


to get


x 1 2

0 y −1

0 0 z



a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


xa11 + a21 + 2a31 a12 + a22 + 2a32 a13 + a23 + 2a33

ya21 − a31 ya22 − a32 ya23 − a33

za31 za32 za33

 .

It’s clear that the effect of left-multiplication by A is that the third row is multiplied by a factor

of z, the second row is multiplied by a factor of y and then has the third row subtracted from it,

and the first row is multiplied by a factor of x and then has the second row added it to it followed

by two times the third row.

The salient point here is that the effect of an upper diagonal matrix is that each row is unaffected

by the values in the rows above it, e.g. the second row is modified according to its own values, and

the values in the third, but is not affected by the values in the first. We now focus on the equation

in the question, evaluating the left-hand side of this equation gives
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
x 1 2

0 y −1

0 0 z



−1 8 −5

2 −3 2

3 0 −4

 =


−x+ 2 + 2(3) 8x− 3 + 2(0) −5x+ 2 + 2(−4)

2y − 3 −3y − 0 2y − (−4)

3z 0z −4z



=


−x+ 8 8x− 3 −5x− 6

2y − 3 −3y 2y + 4

3z 0 −4z

 .

Equating this resulting matrix with the right-hand side of the equation in the question, we have


−x+ 8 8x− 3 −5x− 6

2y − 3 −3y 2y + 4

3z 0 −4z

 =


11 −27 9

1 −6 8

9 0 −12

 .

To find the values of x, y, z, we equate the entries between both of these matrices. For instance,

since the (1, 1) entries must be equal, we have −x + 8 = 11, giving x = −3. We can check that

this value satisfies the equalities given through the remaining entries in the first rows: 8x − 3 =

8(−3) − 3 = −27 and −5x − 6 = −5(−3) − 6 = 9. Similarly, the second and third rows give us

y = 2 and z = 3. Hence,

A =


−3 1 2

0 2 −1

0 0 3

 .

Applying this matrix to the column vector x is straightforward, since the dependence of each row

on the others is directed “downwards” (the resulting vector will have a first element dependent on

all elements of this vector, whereas the second element will depend only on the second and third,

and the third only on itself). More explicitly,

Ax =


−3 1 2

0 2 −1

0 0 3



5

2

4

 =


(−3)(5) + (1)(2) + (2)(4)

(2)(2) + (−1)(4)

(3)(4)

 =


−5

0

12

 .
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6. Again, in order to determine whether or not A is invertible, it would be helpful to observe the effect

A has on a matrix. All we require for left-multiplication by A is that the right-hand matrix have

n rows. For simplicity, we choose this matrix to have a single column, i.e. the right-hand matrix

is a column vector.



a11 0 . . . 0

0 a22 . . . 0

...
...

. . .
...

0 0 . . . ann





b1

b2
...

bn


=



a11b1 + 0b2 + . . .+ 0bn

0b1 + a22b2 + . . .+ 0bn
...

0b1 + 0b2 + . . .+ annbn


=



a11b1

a22b2
...

annbn


.

It is clear that the effect of left-multiplying the column vector by A is that the ith row is rescaled

by a factor of aii (where aii is the ith element along the diagonal of A). It can be shown that this

property also holds when A is applied to matrices with more than a single column.

Since we now see that the ith row of the resulting column vector is dependent only on the data in

the ith column of the input vector, the question of invertibility can be reduced to the invertibility

of the mapping across each individual row. It is a trivial result that, as long as the factor α ∈ R is

non-zero, the process of multiplying by α can be inverted by multiplying by 1
α .

Hence, we can assert that the inverse map of A is the map that multiplies the ith row of the input

vector by 1
aii

(assuming none of the values aii is equal to zero). We have seen that this type of

linear map is uniquely identified with diagonal matrices. We can therefore take

A−1 =



1
a11

0 . . . 0

0 1
a22

. . . 0

...
...

. . .
...

0 0 . . . 1
ann


,

and demonstrate that it satisfies the properties to be the inverse of A. Indeed,

7



AA1 =



a11 0 . . . 0

0 a22 . . . 0

...
...

. . .
...

0 0 . . . ann





1
a11

0 . . . 0

0 1
a22

. . . 0

...
...

. . .
...

0 0 . . . 1
ann



=



(a11)(
1

a11
) + 0 (a11)(0) + 0 . . . (a11)(0) + 0

0 + (a22)(0) + 0 0 + (a22)(
1

a22
) + 0 . . . 0 + (a22)(0) + 0

...
...

. . .
...

0 + (ann)(0) 0 + (ann)(0) . . . 0 + (ann)(
1

ann
)



=



1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


= In ,

with A−1A = In demonstrated in a similar way.

Therefore, if this matrix A−1 exists, it is indeed the inverse of A. We finally discuss conditions for

existence. As mentioned earlier, all we need is that the values 1
aii

are defined for each i. This is

equivalent to the condition that each diagonal entry aii is non-zero. Hence, diagonal matrices are

invertible if and only if there is no zero entry along the diagonal.
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