Vectors \& Matrices

Problem Sheet 7

1. Define

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

(i) Evaluate B^{2}.
(ii) By writing A as $I_{2}+B$, evaluate A^{2}.
(iii) Find a formulation for the matrix A^{n}, for any $n \in \mathbb{N}$.
(iv) Show that A is invertible and find its inverse.
2. Let A and B be $m \times n$ matrices. Prove $(A+B)^{T}=A^{T}+B^{T}$.
3. Show that the matrix

$$
A=\left(\begin{array}{ccc}
2 \sqrt{3} & 3 & 3 \sqrt{3} \\
0 & 6 & -2 \sqrt{3} \\
-6 & \sqrt{3} & 3
\end{array}\right)
$$

has the property that $A^{T}=48 A^{-1}$.
4. Let A be an $m \times n$ matrix. Prove that $A^{T} A$ is symmetric.
5. Find the values $x, y, z \in \mathbb{R}$ that satisfy

$$
\left(\begin{array}{ccc}
x & 1 & 2 \\
0 & y & -1 \\
0 & 0 & z
\end{array}\right)\left(\begin{array}{ccc}
-1 & 8 & -5 \\
2 & -3 & 2 \\
3 & 0 & -4
\end{array}\right)=\left(\begin{array}{ccc}
11 & -27 & 9 \\
1 & -6 & 8 \\
9 & 0 & -12
\end{array}\right)
$$

Once you have found these values, apply this left matrix to the column vector $\mathbf{x}=\left(\begin{array}{l}5 \\ 2 \\ 4\end{array}\right)$.
Let A be the $n \times n$ diagonal matrix
6 . Let A be the $n \times n$ diagonal matrix

$$
\left(\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right)
$$

Find a condition for A to be invertible and, assuming this condition is satisfied, find its inverse.

