
Vectors & Matrices

Solutions to Problem Sheet 6

1. Matrix A has size 2 × 3, and B has size 3 × 2. By the definition of matrix multiplication, the

product AB will be a matrix of size 2 × 2. To compute the elements of this matrix, we use the

formula given in the notes,

AB =

 5 −2 1

−1 3 −3




1 8

−4 2

−7 2


=

 5 · 1 + (−2) · (−4) + 1 · (−7) 5 · 8 + (−2) · 2 + 1 · 2

(−1) · 1 + 3 · (−4) + (−3) · (−7) (−1) · 8 + 3 · 2 + (−3) · 2


=

6 38

8 −8

 .

Similarly, the product AC will also give a 2× 2 matrix, with entries computed by

AC =

 5 −2 1

−1 3 −3



−3 −2

7 1

1 −5


=

 5 · (−3) + (−2) · 7 + 1 · 1 5 · (−2) + (−2) · 1 + 1 · (−5)

(−1) · (−3) + 3 · 7 + (−3) · 1 (−1) · (−2) + 3 · 1 + (−3) · (−5)


=

−28 −17

21 20

 .

In order for the sum B + C to be defined, we require matrices B and C to have matching size. In

fact, both B and C have dimensions 3× 2, and so this sum exists. Using the formulation given in

the lecture notes, the elements of the resulting matrix are given by

B + C =


1 8

−4 2

−7 2

+


−3 −2

7 1

1 −5

 =


1 + (−3) 8 + (−2)

−4 + 7 2 + 1

−7 + 1 2 + (−5)

 =


−2 6

3 3

−6 −3

 .

To compute the matrix A(B+C), we can use the distributivity property of matrix multiplication,
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A(B + C) = AB +AC ,

shown in Theorem 7.1.14. We have already evaluated matrices AB and AC, and so

A(B+C) = AB+AC =

6 38

8 −8

+

−28 −17

21 20

 =

6 + (−28) 38 + (−17)

8 + 21 (−8) + 20

 =

−22 21

29 12

 .

A similar property can be used to evaluate 2A(C + B). Firstly, note that by the property of

the commutativity of matrix addition (seen in Theorem 7.1.8), we have C + B = B + C, and so

2A(C +B) = 2A(B + C). We now note that we have computed the matrix A(B + C) above, and

so the only operation that we need to use is scalar multiplication. We obtain

2A(C +B) = 2A(B + C) = 2

−22 21

29 12

 =

−44 42

58 24

 .

2. Let A = (aij)m×n and B = (bij)m×n (in other words, the element of A at the ith row and jth

column is equal to aij , and the corresponding element of B is bij). We begin by showing that the

matrices on both sides of the equation have matching sizes. As A and B both have size m × n,

so does the sum A+B. Scalar multiplication does not change the dimensions of a matrix, and so

α(A+B) also has size m× n.

The fact that scalar multiplication does not change the dimensions of a matrix also tells us that

αA and αB both have size m × n, and their sum, αA + αB therefore also has size m × n. This

shows that the matrices on both sides of the equation have matching size. All that remains is to

show that they have matching elements.

By the definition of matrix addition, the elements of matrix A+B are given by

A+B = (aij)m×n + (bij)m×n = (aij + bij)m×n .

By the definition of the scalar multiple of a matrix, the elements of α(A+B) are given by

α(A+B) = α(aij + bij)m×n = (α(aij + bij))m×n .
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Given that, for each i and j, the values aij and bij are real numbers, we can use the property of

distributivity over the real numbers to see that

α(A+B) = (α(aij + bij))m×n = (α · aij + α · bij))m×n .

We can once again invoke the definition of scalar multiplication over matrices to get

αA = α(aij)m×n = (α · aij)m×n ,

αB = α(bij)m×n = (α · bij)m×n .

Using these formulations, we compute the sum αA+ αB as

αA+ αB = (α · aij)m×n + (α · bij)m×n = (α · aij + α · bij)m×n .

Matrices α(A+B) and αA+αB have the same sizes and same elements, and are therefore (by the

definition of matrix equality) equal.

3. To evaluate A2024, we compute small powers of A and aim to identify a pattern.

A2 =

0 −1

1 0


0 −1

1 0

 =

0 · 0 + (−1) · 1 0 · (−1) + (−1) · 0

1 · 0 + 0 · 1 1 · (−1) + 0 · 0

 =

−1 0

0 −1

 = (−1)I2 .

The effect of multiplying a 2× 2 matrix by I2 is for the matrix to remain the same. Since A2 has

been shown to equal (−1)I2, the effect of multiplying a 2× 2 matrix by A2 is for each element to

be multiplied by the scalar factor of −1. Hence,

A3 = A2A

= ((−1)I2)A (from above)

= (−1)(I2A) (by Theorem 7.1.14 b))

= (−1)A (by Theorem 7.1.14 c))

=

 0 1

−1 0

 .
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Similarly, we can use the fact that A2 = (−1)I2 to evaluate the matrix A4,

A4 = A2A2

= ((−1)I2)((−1)I2) (from above)

= (−1)(−1)(I2I2) (by Theorem 7.1.14 b))

= I2 (by Theorem 7.1.14 c))

=

1 0

0 1

 .

This tells us that A4 = A0, and that all further powers of A will cycle through the values A, −I2,

−A and I2. Indeed,

A5 = A4A = I2A = A .

Therefore, we can evaluate any power An (for any n ∈ N) by identifying the remainder of n after

division by 4. If 4 divides n, then An = I2. If n has remainder of 1 after division by 4, then An = A.

If the remainder is 2, then An = −I2, and a remainder of 3 gives An = −A. Since 2024 = 4× 506,

4 divides 2024, and so A2024 = I2.

4. Suppose, for the sake of contradiction, that there is a second (and distinct) matrix Jn with the

property that

JnA = AJn = A

for any n× n matrix A. If we let this A be the (original) n× n identity matrix In, we would have

JnIn = InJn = In .

However, since In is also an identity matrix, then

JnIn = InJn = Jn ,

and so, combining these equalities, we find that In = Jn. Since we assumed that In and Jn were

distinct, and so could not be equal, we have derived a contradiction. Hence, identity matrices for

n× n systems are unique.
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5. (i) By the definition of matrix multiplication, we have

AB =

2 1

6 z


 z −1

−6 2

 =

2z + 1 · (−6) 2 · (−1) + 1 · 2

6z − 6z 6 · (−1) + 2z

 =

2z − 6 0

0 2z − 6

 .

Similarly,

BA =

 z −1

−6 2


2 1

6 z

 =

 2z + (−1) · 6 z − z

(−6) · 2 + 2 · 6 (−6) · 1 + 2z

 =

2z − 6 0

0 2z − 6

 .

Hence, AB = BA = (2z − 6)I2.

(ii) By definition, for a matrix C to be an inverse of A we need AC = CA = I2. We have seen in

part (i) that the matrix B has the property that AB = BA = (2z − 6)I2. If we define

C =

(
1

2z − 6

)
B =

1

2z − 6

 z −1

−6 2

 ,

then we have

AC = A

((
1

2z − 6

)
B

)
=

(
1

2z − 6

)
(AB) (by Theorem 7.1.14 b))

=

(
1

2z − 6

)
(2z − 6)I2 (from above)

= I2 ,

and

CA =

((
1

2z − 6

)
B

)
A

=

(
1

2z − 6

)
(BA) (by Theorem 7.1.14 b))

=

(
1

2z − 6

)
(2z − 6)I2 (from above)

= I2 .

Therefore, C is the inverse of A.
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(iii) From part (ii), the inverse of A, if it exists, is given by

C =
1

2z − 6

 z −1

−6 2

 .

However, if 2z − 6 were equal to zero, then this expression would be undetermined, and so A

would have no inverse. This happens when z = 3, for which

A =

2 1

6 3

 .

Notice that the second row of this matrix is equal to the first row multiplied by a factor of 3.

This gives us a clue as to why the system would not be invertible. Indeed, if we apply this

matrix to a vector

x =

x

y

 ,

we would get

Ax =

2 1

6 3


x

y

 =

 2x+ y

6x+ 3y

 .

It is clear that the resulting vector must be of the form

Ax =

 k

3k

 ,

for some k ∈ R. Therefore, any vector not in this form could not exist in the image of the

matrix A, and thus, A is not invertible.

6. Suppose we define a matrix B = (bij)n×n. We see that

AB =



1 1 . . . 1

1 1 . . . 1

...
...

. . .
...

1 1 . . . 1





b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...

bn1 bn2 . . . bnn


=



∑n
k=0 bk1

∑n
k=0 bk2 . . .

∑n
k=0 bkn∑n

k=0 bk1
∑n

k=0 bk2 . . .
∑n

k=0 bkn
...

...
. . .

...∑n
k=0 bk1

∑n
k=0 bk2 . . .

∑n
k=0 bkn


.
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Hence, the product AB is given by

AB =

(
n∑

k=0

bkj

)
n×n

.

Note that this formulation does not vary according to the index i, and hence, does not change as

we go down the rows of matrix AB. Therefore, all rows of the matrix AB are identical. In order

for B to be the inverse of A, we would need AB = In, and so

n∑
k=0

bk1 = 1 ,

since the (1, 1) entry of AB = In should be 1. However, moving down to the second row, we see

that the (2, 1) entry of AB = In should be 0, but this would give

n∑
k=0

bk1 = 0 ,

contradicting the equality above. Hence, there is no B such that AB = In, and so A is not

invertible.
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