Matrices

Claudia Garetto

Queen Mary University of London
c.garetto@qmul.ac.uk

March 2024

Theorem

Let A, B and C be matrices of the same size, and let α and β be scalars. Then:
(a) $A+B=B+A$;
(b) $A+(B+C)=(A+B)+C$;
(c) $A+O=A$;
(d) $A+(-A)=O$, where $-A=(-1) A$;
(e) $\alpha(A+B)=\alpha A+\alpha B$;
(f) $(\alpha+\beta) A=\alpha A+\beta A$;
(g) $(\alpha \beta) A=\alpha(\beta A)$;
(h) $1 A=A$.

Proof

Examples and conclusion

Matrix multiplication

Definition

If $A=\left(a_{i j}\right)$ is an $m \times n$ matrix and $B=\left(b_{i j}\right)$ is an $n \times p$ matrix then the product $A B$ of A and B is the $m \times p$ matrix $C=\left(c_{i j}\right)$ with

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Definition

An identity matrix $/$ is a square matrix with 1 's on the diagonal and zeros elsewhere. If we want to emphasise its size we write I_{n} for the $n \times n$ identity matrix.

Theorem

Let $A=\left(a_{i j}\right)_{m \times n}, B=\left(b_{i j}\right)_{m \times n}, C=\left(c_{i j}\right)_{n \times p}$ and $D=\left(d_{i j}\right)_{n \times p}$ be matrices and $\alpha \in \mathbb{R}$. Then,
(a) $(A+B) C=A C+B C$ and $A(C+D)=A C+A D$;
(b) $\alpha(A C)=(\alpha A) C=A(\alpha C)$;
(c) $I_{m} A=A I_{n}=A$;

Let $X=\left(x_{i j}\right)_{m \times n}, Y=\left(y_{i j}\right)_{n \times p}$ and $Z=\left(z_{i j}\right)_{p \times q}$. Then, (d) $(X Y) Z=X(Y Z)$.

Proof

Proof

In general $A B \neq B A$

Inverse matrix

