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Re-writing the simple linear regression 
model

Think of the previous model with n observations as n equations

𝑦1 = 𝛽0 + 𝛽1𝑥1 + 𝜀1

𝑦2 = 𝛽0 + 𝛽1𝑥2 + 𝜀2

…

𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛 + 𝜀𝑛
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We can write the n equations with 
matrices and vectors

• Y is a (nx1) vector of observations yi

• X is a (nx2) matrix called the design matrix where the first column is a 

series of 1’s and the second column is the set of observations xi

• 𝜷 is a (2x1) vector of the unknown parameters 𝛽0 and 𝛽1
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Matrix form

Y = X 𝛃 + 𝜀

▪ sometimes called the General Linear Model

▪ but be careful with terminology here

▪ this is not Generalised Linear Modelling or GLM which you will see in later 
Statistics modules

▪ note that Y and 𝜀 are random vectors that is vectors of random variables
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Why are we doing 
matrices in a stats 
module?



What variables would you like to know 
about if you were modelling ….

profitability of 
a new business 

venture

win % for a 
sports team 

next year

success rate of 
nests of a 

species of bird

streaming 
views of a new 
Netflix series

followers for a 
QM society’s 

Instagram



We soon need multiple explanatory 
variables

Very quickly model <- lm(y~x) will not do the job

Need to be able to consider

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝛽4𝑥4𝑖 + 𝜀𝑖

Remember how we found 𝛽0and መ𝛽1 in the simple linear model

Solving simultaneous equations in betas is not scaleable



Why are we doing matrices?

▪We don’t need matrices for the simple linear regression model

▪ However, we are about to move to models with more than one explanatory 
variable

▪ Matrices and vectors will give us an approach that is easier to expand with 
more 𝑥𝑖 type inputs

▪ It is easier to develop the matrix form with the simplest case of simple linear 
regression first
▪ Where we already know the results
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Three matrix results / properties we’ll 
need

1
•Random vectors

2
•Variance Covariance or Dispersion Matrix

3
•Multivariate Normal Distribution



Random vectors

We need to introduce some properties of random vectors before we continue

❑ The expected value of a random vector is the vector of expected values of its 
components 

if 𝑧 = (𝑧1, … , 𝑧𝑛)
𝑇 is a random vector 

𝐸 𝑧 = 𝐸

𝑧1
𝑧2
…
𝑧𝑛

=

𝐸[𝑧1]

𝐸[𝑧2]…
𝐸[𝑧𝑛]
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Linear transformation of random vectors

If a is a constant, b is a constant vector and A, B are matrices of constants 

Then

• 𝐸 𝑎𝑧 + 𝑏 = 𝑎𝐸 𝑧 + 𝑏

• 𝐸 𝑨𝑧 = 𝑨𝐸 𝑧

• 𝐸 𝑧𝑇𝑩 = 𝐸[𝑧]𝑇 𝑩
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Variances and covariances

With random vectors, variances and covariances of the random variables 𝑧𝑖
together form the dispersion matrix sometimes called the variance-covariance 

matrix.

𝑉𝑎𝑟 𝑧 =
𝑣𝑎𝑟(𝑧1) ⋯ 𝑐𝑜𝑣(𝑧1, 𝑧𝑛)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑧𝑛, 𝑧1) ⋯ 𝑣𝑎𝑟(𝑧𝑛)
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Dispersion matrix properties

• 𝑉𝑎𝑟 𝑧 can also be expressed as 𝐸[ 𝑧 − 𝐸 𝑧 𝑧 − 𝐸 𝑧 𝑇]

• the dispersion matrix is symmetric since 𝑐𝑜𝑣 𝑧𝑖 , 𝑧𝑗 = 𝑐𝑜𝑣 𝑧𝑗 , 𝑧𝑖

• if all of the 𝑧𝑖 are uncorrelated all 𝑐𝑜𝑣 𝑧𝑖 , 𝑧𝑗 = 0 and hence the dispersion 

matrix is diagonal with the variances

• if A is a matrix of constants then 𝑉𝑎𝑟 𝑨𝑧 = 𝑨 𝑉𝑎𝑟 𝑧 𝑨𝑇
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Multivariate Normal Distribution

• for Y and 𝜀 we will need normal distribution for multiple variables

• extension of the Bivariate Normal Distribution for 2 random variables 
introduced in MTH5129

• for > 2 random variables we use the Multivariate Normal Distribution which is 
the general case of the Bivariate Normal
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Multivariate Normal

A random vector z has a multivariate normal distribution if its probability density 

function (pdf) can be written in the form

𝑓 𝑧 =
1

(2𝜋)𝑛/2 det(𝑽)
exp{−

1

2
𝑧 − 𝜇 𝑇𝑽−1 𝑧 − 𝜇 }
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Multivariate Normal

where,

• vector 𝜇 is the mean of z

• 𝑽 is the dispersion matrix of z

• det(𝑽) is the determinant of V

We usually write this as 𝑧 ~ 𝑁𝑛(𝜇, 𝑽)
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Least Squares Estimation with matrices

Our goal is to find 𝜷 a (2x1) vector with the least squares estimates of the 
model parameters 𝛽0 and 𝛽1.

When we estimated parameters 𝛽0 and 𝛽1 in the simple linear regression 

model before:

o we solved the two simultaneous “normal equations” 

o found from taking the derivative of the equation for the sum of squares of 

errors with respect to each of the two parameters
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Least Squares Estimation with matrices

In matrix form the normal equations become

𝑿𝑻𝒚 = 𝑿𝑻𝑿 𝜷

as long as 𝑿𝑻𝑿 is invertible, that is its determinant is not zero, there is a unique 

solution to the matrix form normal equations 

𝜷 = (𝑿𝑻𝑿)−1𝑿𝑻𝒚
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𝑿𝑻𝑿 is invertible

𝑿𝑻𝑿 =
𝑛 σ𝑥𝑖
σ𝑥𝑖 σ𝑥𝑖

2

which means that the determinant of 𝑿𝑻𝑿 is

𝑿𝑻𝑿 = 𝑛σ𝑥𝑖
2 − σ𝑥𝑖

2 = 𝑛 𝑆𝑥𝑥 ≠ 0

so there is a solution to the normal equations in the simple linear regression 

model expressed in matrix form
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Solving the normal equations

(𝑿𝑻𝑿)−1=
1

𝑛 𝑆𝑥𝑥

σ𝑥𝑖
2 −σ𝑥𝑖

−σ𝑥𝑖 𝑛
=

1

𝑆𝑥𝑥

1

𝑛
σ𝑥𝑖

2 − ҧ𝑥

− ҧ𝑥 1

So we now have what we need to solve the normal equations

𝜷 = (𝑿𝑻𝑿)−1𝑿𝑻𝒚
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Solving the normal equations

𝜷 = (𝑿𝑻𝑿)−1𝑿𝑻𝒚

𝜷 =
1

𝑆𝑥𝑥

1

𝑛
σ𝑥𝑖

2 − ҧ𝑥

− ҧ𝑥 1

σ𝑦𝑖
σ𝑥𝑖 𝑦𝑖

𝜷 =
1

𝑆𝑥𝑥

1

𝑛
σ𝑥𝑖

2σ𝑦𝑖 − ҧ𝑥 σ𝑥𝑖 𝑦𝑖

σ𝑥𝑖 𝑦𝑖 − ҧ𝑥 σ 𝑦𝑖
=

1

𝑆𝑥𝑥

ത𝑦𝑆𝑥𝑥 − ҧ𝑥𝑆𝑥𝑦
𝑆𝑥𝑦

=
ത𝑦 − 𝛽1 ҧ𝑥

𝛽1

Which is exactly the same as 𝛽0 and 𝛽1 before we used matrix form 
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Fitted model

𝜷 =
ത𝑦 − 𝛽1 ҧ𝑥

𝛽1

Gives us the fitted values

ෝ𝝁𝑖 = 𝒙𝑖
𝑇𝜷 = መ𝛽0 + መ𝛽1𝑥𝑖
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Residual Sum of Squares

Residual Sum of Squares in matrix form is

𝑆𝑆𝐸 = observed − fitted 

𝑆𝑆𝐸 = 𝒚𝑻𝒚 − 𝜷𝑻𝑿𝑻𝒚

which if you complete all the matrix multiplication gives

𝑆𝑆𝐸 = 𝑆𝑦𝑦 − መ𝛽1𝑆𝑥𝑦 = 𝑆𝑦𝑦 −
(𝑆𝑥𝑦)

2

𝑆𝑥𝑥
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Properties of the model

We can now state a number of properties of the parameters and residuals in the 
simple linear regression model in matrix form

Again, these are not new results for the module, but they are a new way of 
stating them and this will help us when we move to multiple linear regression

(a) The least squares estimator 𝜷 is an unbiased estimator of 𝛃

𝐸 𝜷 = 𝜷
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Properties (continued)

(b) 𝑉𝑎𝑟 𝛃 = 𝜎2 (𝑿𝑻𝑿)−1

(c) If, 𝐘 = 𝐗 𝛃 + 𝜀 and 𝜀~ 𝑁𝑛(𝟎, 𝜎
2𝑰)

then 𝜷 ~ 𝑁𝑝(𝛃, 𝜎
2(𝑿𝑻𝑿)−1)
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Fitted values and the Hat matrix

(d) The vector of fitted values, ෝ𝝁 = 𝒀 = 𝑿𝜷

can be written ෝ𝝁 = 𝑯𝒀

𝑯 is called the hat matrix

𝑯 = 𝑿 (𝑿𝑻𝑿)−1 𝑿𝑻

𝑯 has the two properties:

𝑯 = 𝑯𝑻 and 𝑯𝑯 = 𝑯 (an indempotent matrix)
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Residual properties

The residual vector is 𝒆 = 𝒀 − 𝒀 = 𝒀 −𝑯𝒀 = 𝑰 − 𝑯 𝒀

(e) 𝐸 𝒆 = 𝟎

(f) 𝑣𝑎𝑟 𝒆 = 𝜎2(𝑰 − 𝑯)

(g) The sum of squares of the residuals is 𝒀𝑻 𝑰 − 𝑯 𝒀

(h) The elements of the residual vector 𝒆 sum to zero

(i) Because the residuals sum to zero, 1
𝑛
σ𝑌𝑖 = ഥ𝑌
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