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Re-writing the simple linear regression
model

Think of the previous model with n observations as n equations

y1 = Po+ P1x1+ &

Y2 = Po+ Pix2 + &

Yn = Bo+ P1xn + &,

T




We can write the n equations with
matrices and vectors

e Yisa (nx1) vector of observations y;

e Xis a (nx2) matrix called the design matrix where the first column is a
series of 1’s and the second column is the set of observations x;

e fisa(2x1) vector of the unknown parameters 5, and 5,




Matrix form

Y=XB+ ¢

= sometimes called the General Linear Model
" but be careful with terminology here

= this is not Generalised Linear Modelling or GLM which you will see in later
Statistics modules

= note that Y and € are random vectors that is vectors of random variables




Why are we doing
matrices In a stats
module?




What variables would you like to know
about if you were modelling ....

profitability of win % for a success rate of
a new business sports team nests of a
venture next year species of bird

streaming followers for a
views of a new QM society’s
Netflix series Instagram




We soon need multiple explanatory
variables

Very quickly model <- Im(y~x) will notdo thejob

Need to be able to consider
Vi = Po + B1x1; + BoXo; + P3x3; + Paxy; + &

Remember how we found B,and f; in the simple linear model

Solving simultaneous equations in betas is not scaleable




Why are we doing matrices?

= We don’t need matrices for the simple linear regression model

" However, we are about to move to models with more than one explanatory
variable

= Matrices and vectors will give us an approach that is easier to expand with
more x; type inputs

" |t is easier to develop the matrix form with the simplest case of simple linear
regression first

= Where we already know the results




Three matrix results / properties we’ll
need

e Random vectors }

e \/ariance Covariance or Dispersion I\/Iatrix}

e Multivariate Normal Distribution J




Random vectors

We need to introduce some properties of random vectors before we continue

J The expected value of a random vector is the vector of expected values of its
components

if z= (2, ...,2z,)" is arandom vector




Linear transformation of random vectors

If a is a constant, b is a constant vector and A, B are matrices of constants

Then

e Elaz+ b]l =aE|z]+b
o E|Az]| = AE|Z]

e E[z'B]= E[z]" B

T




Variances and covariances

With random vectors, variances and covariances of the random variables z;
together form the dispersion matrix sometimes called the variance-covariance
matrix.

var(zy) - cov(zq,zy)
Var(z) = : . :
cov(z,,z1) - var(z,)




Dispersion matrix properties

e Var(z) can also be expressed as E[(z — E[z])(z — E[z])]
e the dispersion matrix is symmetric since cov(zi, Zj) = cov(z-,zi)

e if all of the z; are uncorrelated all cov(zi,zj) = 0 and hence the dispersion
matrix is diagonal with the variances

e if Ais a matrix of constants then Var(4z) = AVar(z) AT

T




Multivariate Normal Distribution

* for Y and € we will need normal distribution for multiple variables

* extension of the Bivariate Normal Distribution for 2 random variables
introduced in MTH5129

* for > 2 random variables we use the Multivariate Normal Distribution which is
the general case of the Bivariate Normal




Multivariate Normal

A random vector z has a multivariate normal distribution if its probability density
function (pdf) can be written in the form

1

@) = G s exP(=5 (2 = TV z = )

T




Multivariate Normal

where,

e vector u is the mean of z
e Visthe dispersion matrix of z

o det(V) is the determinant of V

We usually write thisas z ~ N, (u, V)

T




Least Squares Estimation with matrices

Our goal is to find B a (2x1) vector with the least squares estimates of the
model parameters [y and f;.

When we estimated parameters 5, and [ in the simple linear regression
model before:

o we solved the two simultaneous “normal equations”

o found from taking the derivative of the equation for the sum of squares of
errors with respect to each of the two parameters




Least Squares Estimation with matrices

In matrix form the normal equations become
X'y=X'xp

as long as XT X is invertible, that is its determinant is not zero, there is a unique
solution to the matrix form normal equations

B=XX)"'X"y

T




X'X is invertible

n ) x;
XX = (in in2>

which means that the determinant of X7 X is

|XTX| =nYx?— Cx)?=nS,, #0

so there is a solution to the normal equations in the simple linear regression
model expressed in matrix form




Solving the normal equations

XTX)"'=— <2xi2 _le):L(%inz ‘f>

N Sxx —in n Sxx —x 1

So we now have what we need to solve the normal equations

B= (X"X)"'XTy




Solving the normal equations

B=(X"X)"'XTy

EZ L(%lez —f)( 2 Yi )
Sxx \ i 1 )\ XXy

BZLGZX?Z%—??ZXWL' )zL(J_’Sxx_foy)z(}_’—Ef)
S LXiYi— XN Y o Sxy B

Which is exactly the same as B, and B, before we used matrix form

T




Fitted model

5 7—31»?)
g ( B

Gives us the fitted values

= x{B= Po+ Pix




Residual Sum of Squares

Residual Sum of Squares in matrix form is

SSr = observed — fitted

SSg = y'y— B"X"y

which if you complete all the matrix multiplication gives

(Sxy)?

Sxx

T

SSg = Syy — P1Sxy = Syy —




Properties of the model

We can now state a number of properties of the parameters and residuals in the
simple linear regression model in matrix form

Again, these are not new results for the module, but they are a new way of
stating them and this will help us when we move to multiple linear regression

(a) The least squares estimator f8 is an unbiased estimator of 8




Properties (continued)

(b) Var[B] = ¢? (XTX)?!

(c)IfY = XB+ gand e~ N,(0,0°I)

then B ~ N,,(B,0%(XTX)™1)

T




Fitted values and the Hat matrix

(d) The vector of fitted values, i =Y = Xﬁ
can be written i = HY

H is called the hat matrix
H=XX'x)"txT

H has the two properties:

H = HT and HH = H (an indempotent matrix)




Residual properties

The residual vectorise=Y —-Y =Y —-HY = U — HY
(e) Ele] =0
(f) var[e] = o?(I — H)

(g) The sum of squares of the residuals is Y (I — H)Y

(h) The elements of the residual vector e sum to zero

(i) Because the residuals sum to zero, 12 Y,=Y
n

T
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