Vectors & Matrices

Problem Sheet 5

- 1. Let P = (1, 1, 6) and Q = (4, 1, 5) be points in \mathbb{R}^3 . We choose a point $S \in \mathbb{R}^3$ such that the vector \overrightarrow{PS} is orthogonal $2\mathbf{i} 5\mathbf{j} + \mathbf{k}$, and the vector \overrightarrow{QS} is orthogonal to $6\mathbf{i} 10\mathbf{j} 2\mathbf{k}$.
 - (i) Let S=(x,y,z). Derive a linear system equivalent to these two conditions on S in terms of the coordinates $x,y,z\in\mathbb{R}$.
 - (ii) Write this linear system in reduced row echelon form, and give a geometric interpretation of its solutions.
 - (iii) Let R = (2,5,2) be a point in \mathbb{R}^3 . Suppose \overrightarrow{RS} is orthogonal to $8\mathbf{i} + 2\mathbf{j} 5\mathbf{k}$. Find the coordinates of the point S that satisfies this additional constraint, and show that it is unique in doing so.
 - (iv) Show that if we changed the third condition so that \overrightarrow{RS} were instead orthogonal to $8\mathbf{i} 15\mathbf{j} \mathbf{k}$, there would not exist any points $S \in \mathbb{R}^3$ satisfying all three constraints.
- 2. Show that it is impossible for the intersection of two planes in three dimensional space to consist of *exactly* two points.
- 3. Consider the space of all quadratic functions $f(x) = ax^2 + bx + c$. By treating the coefficients of these quadratics as points $(a, b, c) \in \mathbb{R}^3$, it is sometimes possible to rewrite a condition on f as a linear equation in \mathbb{R}^3 .
 - (i) Identify the condition below that *cannot* be expressed as a linear equation:
 - f(-3) = f(1) + 20
 - f(x) has a remainder of 2 after division by (x+1).
 - f'(2) = 7.
 - The minimum value of f(x) is 5.
 - (ii) Discard the nonlinear condition from (i), and find the unique quadratic f that satisfies all three of the remaining constraints.
- 4. Prove that performing a Type III elementary row operation on a linear system does not affect its solution set. That is, prove that modifying an equation in a linear system by adding to it a scalar multiple of another equation does not affect the solutions of the system.