Vectors \& Matrices

Problem Sheet 5

1. Let $P=(1,1,6)$ and $Q=(4,1,5)$ be points in \mathbb{R}^{3}. We choose a point $S \in \mathbb{R}^{3}$ such that the vector $\overrightarrow{P S}$ is orthogonal $2 \mathbf{i}-5 \mathbf{j}+\mathbf{k}$, and the vector $\overrightarrow{Q S}$ is orthogonal to $6 \mathbf{i}-10 \mathbf{j}-2 \mathbf{k}$.
(i) Let $S=(x, y, z)$. Derive a linear system equivalent to these two conditions on S in terms of the coordinates $x, y, z \in \mathbb{R}$.
(ii) Write this linear system in reduced row echelon form, and give a geometric interpretation of its solutions.
(iii) Let $R=(2,5,2)$ be a point in \mathbb{R}^{3}. Suppose $\overrightarrow{R S}$ is orthogonal to $8 \mathbf{i}+2 \mathbf{j}-5 \mathbf{k}$. Find the coordinates of the point S that satisfies this additional constraint, and show that it is unique in doing so.
(iv) Show that if we changed the third condition so that $\overrightarrow{R S}$ were instead orthogonal to $8 \mathbf{i}-15 \mathbf{j}-\mathbf{k}$, there would not exist any points $S \in \mathbb{R}^{3}$ satisfying all three constraints.
2. Show that it is impossible for the intersection of two planes in three dimensional space to consist of exactly two points.
3. Consider the space of all quadratic functions $f(x)=a x^{2}+b x+c$. By treating the coefficients of these quadratics as points $(a, b, c) \in \mathbb{R}^{3}$, it is sometimes possible to rewrite a condition on f as a linear equation in \mathbb{R}^{3}.
(i) Identify the condition below that cannot be expressed as a linear equation:

- $f(-3)=f(1)+20$
- $f(x)$ has a remainder of 2 after division by $(x+1)$.
- $f^{\prime}(2)=7$.
- The minimum value of $f(x)$ is 5 .
(ii) Discard the nonlinear condition from (i), and find the unique quadratic f that satisfies all three of the remaining constraints.

4. Prove that performing a Type III elementary row operation on a linear system does not affect its solution set. That is, prove that modifying an equation in a linear system by adding to it a scalar multiple of another equation does not affect the solutions of the system.
