

MTH793P Coursework 5

Advanced Machine Learning, Semester B, 2023/24

1 Evaluating clustering algorithms

In this problem we assume that we have a data set $\{x_1, \ldots, x_6\} \subset \mathbb{R}^2$ that looks as follows:

The Euclidean distances along all the edges segments is equal to 1. We will consider to alternative clusterings on these data:

- $C = \{C_1, C_2\}$, with $C_1 = \{x_1, x_2, x_3\}$ and $C_2 = \{x_4, x_5, x_6\}$.
- $C' = \{C'_1, C'_2, C'_3\}$, with $C'_1 = \{x_1, x_2\}$, $C'_2 = \{x_3, x_4\}$, and $C'_3 = \{x_5, x_6\}$.
- 1. Compute the Dunn-Index (DI) for C and C', using the single-linkage inter-cluster distance, and the diameter intra-cluster distance. Which clustering is better?
- 2. Compute the mean Silhouette Coefficient (SC) for C and C'. Which one is better?
- 3. Suppose that we know that C' is the ground-truth for this dataset. Compute the Rand Index (RI) for C.

2 Matrix Factorisation and SVD

1. Find vectors $u \in \mathbb{R}^2$ and $v \in \mathbb{R}^3$ such that the following identity is satisfied for all the given values:

$$uv^{\top} = \begin{pmatrix} 1 & 0 & ? \\ -2 & ? & 4 \end{pmatrix}$$
.

What value do you obtain at the missing entry denoted by a question mark? HINT: What should be the rank of the matrix?

2. Compute (by hand) the singular value decomposition of the matrix

$$X = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$

Hint: (1) Find the eigenvalues of XX^{\top} by computing the characteristic polynomial, and deduce the singular values of X. (2) Find the eigenvectors of both XX^{\top} and $X^{\top}X$, and conclude what the U and V matrices in the SVD should be.

3. Given the matrix

$$X:=\begin{pmatrix} -2 & 3 & 2\\ 2 & 2 & 3 \end{pmatrix},$$

we are interested in finding the best approximation \hat{X} , with rank(\hat{X}) = 1. By 'best' we mean with respect to the Frobenius norm. Use SVD to find \hat{X} (by hand).