
Statistical Modeling I
Practical in R – Output

Practical in R – Output

In this practical, we will work with the Janka dataset of last week. We will look at transfor-
mation of the variables.

Janka hardness is an important structural property of Australian timbers which is difficult to
measure directly. However, it is related to the density of the timber which is comparatively
easy to measure. Therefore it is desirable to fit a model enabling the Janka hardness to be
predicted from the density. The Janka hardness and density of 36 Australian eucalyptus hard-
woods are given in the table.

Density Hardness Density Hardness Density Hardness
24.7 484 39.4 1210 53.4 1880
24.8 427 39.9 989 56.0 1980
27.3 413 40.3 1160 56.5 1820
28.4 517 40.6 1010 57.3 2020
28.4 549 40.7 1100 57.6 1980
29.0 648 40.7 1130 59.2 2310
30.3 587 42.9 1270 59.8 1940
32.7 704 45.8 1180 66.0 3260
35.6 979 46.9 1400 67.4 2700
38.5 914 48.2 1760 68.8 2890
38.8 1070 51.5 1710 69.1 3740
39.3 1020 51.5 2010 69.1 3140

The data is in a .csv file jankaNEW.csv on the QMplus page. Copy it to your home directory.
In particular, the density values are in Column 1 and the hardness values in Column 2. In
our scenario, the dependent variable (i.e. y) is the hardness, while the density is the regressor
variable (x).

1. Load the data in R as follows: To begin you have to tell R where you have saved the
data, which is known as your working directory. You set it by telling R where it is, by
using the command:

setwd("name_directory")

(Keep attention at / if you are using a Mac/Linus computer or a Windows)

You will have to put the drive and directory where you have put the jankaNEW.csv file.

If you copy and paste the direction location in Windows you will get a single backslah
and you need to change that.
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2. In the previous Practical, we have seen that the Shapiro-Wilk test had a small p-value,
thus implying that the assumption of normality is not supported by the data. Moreover,
the variance may be increasing suggests we should transform the dependent variable
hardness. The first transformation we usually try is to take the logarithm of y.

> ly <- log(y)
> plot(x,ly)

We have plotted the x versus the logarithm transformation of the y. In Figure 1.1, we
show the original plot between x and y and the corresponding with the log(y). We can
see the difference scale of the y axis moving from thousand to small values.
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Figure 1.1: Plot of the original data (left) and of the transformed y (right).

3. Now fit a simple linear regression model with ly as the dependent variable.

> modly <- lm(ly ~ x)
> summary(modly)

Call:
lm(formula = ly ~ x)

Residuals:
Min 1Q Median 3Q Max

-0.32366 -0.09044 0.00305 0.07216 0.22764

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.165716 0.077762 66.43 <2e-16 ***
x 0.043274 0.001632 26.52 <2e-16 ***
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---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1311 on 34 degrees of freedom
Multiple R-squared: 0.9539,Adjusted R-squared: 0.9525
F-statistic: 703.3 on 1 and 34 DF, p-value: < 2.2e-16

The model with log(y) is an improvement. The fitted model is log(yi) = 5.166 +
0.00433xi with an R2 equal to 95.39% thus explaining a bit more variation than the
original model with x and y. This is also confirmed by the Anova table here below:

> anova(modly)
Analysis of Variance Table

Response: ly
Df Sum Sq Mean Sq F value Pr(>F)

x 1 12.0875 12.0875 703.26 < 2.2e-16 ***
Residuals 34 0.5844 0.0172
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

4. Save the fitted values and standardised residuals (you should probably call them some-
thing different). Look at the normal plot and the plot of residuals versus fitted values.

We run the different plots and the Shapiro-Wilk test in order to see if there are problems
with the normality assumption.

> stdres2 <-rstandard(modly)
> fits2<-fitted(modly)
> plot(x,stdres2, main="Std res vs x, Janka2")
> plot(fits2,stdres2, main="Std res vs fits, Janka2")
> qqnorm(stdres2, main="Q-Q Plot Janka 2")
> qqline(stdres2)
> shapiro.test(stdres2)

Shapiro-Wilk normality test

data: stdres2
W = 0.97913, p-value = 0.7159

From the Shapiro-Wilk test there is no evidence against the normality (p-value of
0.7159), which can be see also from the Q-Q plot (see Figure 1.3). However, looking
at the plot of the standardized residuals against x (see left panel of Figure 1.2) shows
curvature and suggests that fitting a quadratic term in x might be of value. This is con-
firmed by the plot of residuals versus fitted values (see right panel of Figure 1.2), which
shows a distinct pattern. Small and large values of fitted values have mainly negative
residuals and moderate values positive residuals.
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Figure 1.2: Plot of the residuals versus x (left) and versus fitted values (right).
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Figure 1.3: Plot of Q-Q plot.

5. It may happen that the plot of standardized residuals vs x suggested a quadratic model
may be needed. To fit a polynomial model of degree 2, i.e. a quadratic model we use
the command
modlyq <- lm(ly ∼ poly(x,2,raw=TRUE))

We run a model with the logarithm of y and a quadratic model for the X . Thus the
model is of the form log(yi) = α + β0xi + β1x

2
i + εi. In R the output for generating a

quadratic component is shown above and here we report the summary

> modlyq <- lm(ly ~ poly(x,2,raw=TRUE))
> summary(modlyq)

Call:
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lm(formula = ly ~ poly(x, 2, raw = TRUE))

Residuals:
Min 1Q Median 3Q Max

-0.22989 -0.06121 -0.01134 0.08386 0.20051

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.2730665 0.2228136 19.178 < 2e-16 ***
poly(x, 2, raw = TRUE)1 0.0844374 0.0099349 8.499 8.04e-10 ***
poly(x, 2, raw = TRUE)2 -0.0004359 0.0001042 -4.181 2e-04 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1076 on 33 degrees of freedom
Multiple R-squared: 0.9699,Adjusted R-squared: 0.968
F-statistic: 530.9 on 2 and 33 DF, p-value: < 2.2e-16

The fitted model is log(y) = 4.27 + 0.08x− 0.00044x2. All the parameters are highly
significant. Moreover looking at the R2 we have that the variation is explained mostly
by this model, since the R2 is equal to 96.99%. This is also confirmed by the anova
table reported below

> anova(modlyq)
Analysis of Variance Table

Response: ly
Df Sum Sq Mean Sq F value Pr(>F)

poly(x, 2, raw = TRUE) 2 12.290 6.1450 530.86 < 2.2e-16 ***
Residuals 33 0.382 0.0116
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

6. Save the standardised residuals and fitted values for this model and check the residuals
versus fitted values plot and the QQ-plot. Does this model seem to fit ok?

We run the standardized residuals and we look at the different plots. Here are the
command list:

> stdres3 <-rstandard(modlyq)
> fits3<-fitted(modlyq)
> plot(x,stdres3, main="Std res vs x, Janka3")
> plot(fits3,stdres3, main="Std res vs fits, Janka3")
> qqnorm(stdres3, main="Q-Q Plot Janka 3")
> qqline(stdres3)
> shapiro.test(stdres3)
Shapiro-Wilk normality test
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data: stdres3
W = 0.97904, p-value = 0.7129

Looking at the Shapiro-Wilk test, the assumption of the normality is not rejected. In
fact the p-value is around 0.71 and this is confirmed by the Q-Q plot (see Figure 1.5).
Looking at the standardized residuals versus x and versus the fitted values, it seems
random and it looks okay (see Figure 1.4).
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Figure 1.4: Plot of the residuals versus x (left) and versus fitted values (right).
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Figure 1.5: Plot of Q-Q plot.

7. Check the leverage values for this model.

> hat <- hatvalues(modlyq)
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> cook<-cooks.distance(modlyq)
> i<-1:36
> plot(i,hat, main="Leverage values")
> plot(i,cook, main="Cooks distance values")
> qf(0.5, 3, 33)
[1] 0.8052067

Looking at the previous command, we have the largest leverage values are above 2∗k/n
but not 3 ∗ k/n, where k is the number of estimated parameters. In our case, we have k
equal to 3, the total number of observation n equal to 36, thus 6/n and 9/n. In numbers,
we have high leverage if it is greater than 6/36 = 0.16 and very high leverage if greater
than 9/36 = 0.25. The largest Cook’s distance is for observation 35 but at about 0.35 it
is well below the value of 0.805 (which is the F value with 3 and 33 degrees of freedom),
which would indicate a highly influential observation.

We can see these results in Figure 1.6, which shows the leverage values and Cook’s
distance. In conclusion, we can see that the model with quadratic term for x fits very
well the data.
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Figure 1.6: Plot of the Leverage values (left) and of the Cook’s distance (right).
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