
Vectors & Matrices

Solutions to Problem Sheet 4

1. (i) Let c = 3i− j+ 6k be the position vector of the centre of the sphere S. The set of points on

the sphere S is given by the endpoints of all position vectors p such that the length of the

vector p− c is given by

|p− c| = 6
√
3 .

Squaring both sides of this equation, we get |p−c|2 = (6
√
3)2 = 108. If we take the coordinates

of the position vectors p to be p = xi+ yj+ zk, we derive the Cartesian equation

|p− c|2 = (x− 3)2 + (y + 1)2 + (z − 6)2 = 108 . (1)

(ii) Any point on C is expressible as (2 cos θ + 6 sin θ + 7 , 8 cos θ − 3 , −2 cos θ + 6 sin θ + 2), for

some θ ∈ R. To show that any such point lies on S, it suffices to substitute each coordinate

of the point into our Cartesian equation (1):

(x− 3)2 + (y + 1)2 + (z − 6)2 = ((2 cos θ + 6 sin θ + 7)− 3)2 + ((8 cos θ − 3) + 1)2

+ ((−2 cos θ + 6 sin θ + 2)− 6)2

= (2 cos θ + 6 sin θ + 4)2 + (8 cos θ − 2)2 + (−2 cos θ + 6 sin θ − 4)2

= (2 cos θ + 6 sin θ)2 + (8 cos θ)2 + (−2 cos θ + 6 sin θ)2

+ 2[4(2 cos θ + 6 sin θ)− 2(8 cos θ)− 4(−2 cos θ + 6 sin θ)]

+ (42 + (−2)2 + (−4)2)

= (4 + 64 + 4) cos2 θ + (36 + 36) sin θ + (12− 12) cos θ sin θ

+ 2(8− 16 + 8) cos θ + 2(24− 24) sin θ + (16 + 4 + 16)

= 72(cos2 θ + sin2 θ) + 36

= 108 .

Since the left-hand expression of the Cartesian equation of S evaluates to 108 for each point

in C, C is entirely contained within the sphere S.
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(iii) If C is a circle centred at c = 7i − 3j + 2k, then every position vector p with endpoint in C

should satisfy the equation |p− c| = r, for some fixed value r ≥ 0. This r would then be the

radius of the circle. Take some value θ ∈ [0, 2π),

p =


2 cos θ + 6 sin θ + 7

8 cos θ − 3

−2 cos θ + 6 sin θ + 2


is a position vector satisfying |p− c| = r. We therefore compute

|p− c|2 =

∣∣∣∣∣∣∣∣∣∣


(2 cos θ + 6 sin θ + 7)− 7

(8 cos θ − 3)− 3

(−2 cos θ + 6 sin θ + 2)− 2


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣


2 cos θ + 6 sin θ

8 cos θ

−2 cos θ + 6 sin θ


∣∣∣∣∣∣∣∣∣∣

= (2 cos θ + 6 sin θ)2 + (8 cos θ)2 + (−2 cos θ + 6 sin θ)2

= (4 + 64 + 4) cos θ + (36 + 36) sin θ + (12− 12) cos θ sin θ

= 72(cos2 θ + sin2 θ)

= 72 .

Hence, r = |p− c| =
√
72 = 6

√
2.

(iv) We know that the centre of the sphere S is the point R = (3,−1, 6). By Proposition 3.1.6, we

have

−→
RP =


5− 3

9− (−1)

8− 6

 =


2

10

2

 .
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The vector
−→
RP is pointing radially outward from the centre towards the surface point P . By

a geometric argument, this radial vector is orthogonal to every vector along the tangent plane

at P . Therefore, using the results from Section 5.3, the tangent plane is given by the equation

r ·
−→
RP = d, where

d =
−−→
OP ·

−→
RP =


5

9

8

 ·


2

10

2

 = 10 + 90 + 16 = 116 .

If we take r = xi+ yj+ zk, then we can derive the Cartesian form of this equation:

2x+ 10y + 2z = 116 ,

or cancelling out the common factor of two:

x+ 5y + z = 58 .

2. (i) It’s clear that every point on the Red Line can be identified as the endpoint of position vectors

r = p+ λu, for any λ ∈ R, where p = 3i− 5j− 5k is the position vector of Portway station

and u = i + j + 6k is the direction of travel. If we take x = 5i + 8k as being the position

vector of the housing development, then the vector u× (x− p) is given by


1

1

6

×


2

5

13

 =


1 · 13− 6 · 5

6 · 2− 1 · 13

1 · 5− 1 · 2

 =


−17

−1

3


Thus, from the formula in Section 5.8, the distance of the closest approach of the Red Line

to (5, 0, 8) is equal to

|u× (x− p)|
|u|

=

√
(−17)2 + (−1)2 + 32√

12 + 12 + 62
=

√
299

38
≈ 2.81 .
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(ii) The Blue Line can be identified as the endpoints of position vectors b = q+µv, for any µ ∈ R,

where q = 2i − 8j + k is the position vector of Queen’s Road station, and v = 2i − j − 3k is

the direction of travel. We have

u× v =


1

1

6

×


2

−1

−3

 =


1 · (−3)− 6 · (−1)

6 · 2− 1 · (−3)

1 · (−1)− 1 · 2

 =


3

15

−3

 and q− p =


−1

−3

6

 ,

hence, by the formulation of the distance between two lines given in Section 5.9, the minimal

distance between the Red and Blue Lines is

|(q− p) · (u× v)|
|u× v|

=
|(−1) · 3 + (−3) · 15 + 6 · (−3)|√

32 + 152 + (−3)2
=

| − 66|√
243

=
22
√
3

9
≈ 4.23 .

(iii) Let R be the point on the Red Line that is the site of the new tunnel opening. Similarly, let

B be the point at which the new tunnel opens onto the Blue Line. Since we can only move

through the tunnels, the distance travelled between Portway and Queen’s Road is given by

the sum of the distance between Portway and point R, the length of the new tunnel itself,

and the distance between point B and Queen’s Road station.

Labelling P as the point at which Portway station lies, and Q as the site of Queen’s Road

station, we are aiming to evaluate the sum |
−→
PR|+ |

−−→
RB|+ |

−−→
BQ|. The value |

−−→
RB| is the length

of the tunnel, known to us from part (ii). To compute the values of the other two terms, we

will need the value

α =
(q− p) · (u× v)

|u× v|2
=

−66

243
=

−22

81
.

Per Section 5.9 in the lecture notes, α(u × v) = q + µv − p − λu, where λu represents the

vector connecting the point P and the point on the Red Line closest to the Blue Line (and

similarly for vector µv and Q along the Blue Line). By our definition of R and B, this means

that |λu| = |
−→
PR| and |µv| = |

−−→
BQ|.

All that remains is to find the values of λ and µ. Given that the equation α(u × v) =

q+µv−p−λu holds in all three dimensions (and that we have the coordinates of vectors p,

q, u, v and u× v, plus a value for α), we can derive the following system of equations
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3α = 2 + 2µ− 3− λ

15α = −8− µ− (−5)− λ

−3α = 1− 3µ− (−5)− 6λ ,

or equivalently


2µ− λ = 3α+ 1 = 5

27

−µ− λ = 15α+ 3 = −29
27

−3µ− 6λ = −3α− 6 = −140
27 .

These are three equations in two unknown variables, λ and µ. We can multiply the second

equation by 2 and add it to the first to get −3λ = −53
27 , giving us λ = 53

81 . Similarly, substi-

tuting this value back into second equation gives us µ = 29
27 −λ = 34

81 . We can substitute both

values into the last equation to show that it is also satisfied.

Combining these values with the analysis form earlier, we have that the total distance that

needs to be travelled is given by

|
−→
PR|+ |

−−→
RB|+ |

−−→
BQ| = |λu|+ |

−−→
RB|+ |µv|

= |λ||u|+ |
−−→
RB|+ |µ||v|

=
53

81

√
38 +

22
√
3

9
+

34

81

√
14

≈ 7.02 .

3. (i) Let f(x) = ax2 + bx+ c represent any quadratic in our set. The value of such an expression

at x = −2 is given by

f(−2) = a(−2)2 + b(−2) + c = 4a− 2b+ c .

The property given in the question requires that f(−2) = 31, and so we can use the above

formulation to express this property in terms of the following constraint on the coefficients of

the quadratic

4a− 2b+ c = 31 .
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This equation is in the same form as the Cartesian equation of a plane in three dimensional

space. Therefore, if we treat the coefficients of quadratic functions as a three dimensional

space, the condition that f(−2) = 31 can be viewed geometrically as a plane.

(ii) Again, we represent any quadratic in our set as f(x) = ax2 + bx + c. The condition that f

has remainder x+ 5 after division by x2 − 3x+ 4 can be written as

f(x) = λ(x2 − 3x+ 4) + (x+ 5) ,

for some λ ∈ R. Equation the coefficients of the x2, x and constant terms, we derive the

system 
a = λ

b = 1− 3λ

c = 5 + 4λ

.

This system is equivalent to the parametrisation of a line in three dimensional space, and so

we can view the condition that a quadratic have remainder x+5 after division by x2 − 3x+4

as being a line in the space of coefficients.

(iii) We have shown in part (i) that the constraint f(−2) = 31 gives a plane in the space of coeffi-

cients, and that the function f having a remainder of x+5 after division by x2 − 3x+4 gives

a line. The set of coefficients (a, b, c) that result in a quadratic satisfying both constraints is

therefore given by the intersection of this plane and line.

To evaluate all points within the intersection, it suffices to find all values (a, b, c) that satisfy

both equations. The parameterisation of the line gives formulations for values a, b and c in

terms of some parameter λ ∈ R. We can substitute these expressions into the equation of the

plane, and get

4a− 2b+ c = 4(λ)− 2(1− 3λ) + (5 + 4λ)

= 14λ+ 3

= 31 .
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Solving for λ, we get λ = 2. Since this is the only value of λ resulting in coefficients (a, b, c)

that solve both equations, there is only a single point on the intersection between the plane

and the line, and thus only a single quadratic that satisfies both constraints.

To identify this quadratic, substitute this value of λ into the parameterisation for a, b and c

and construct the quadratic with these coefficients.


a = λ = 2

b = 1− 3λ = 1− 3 · 2 = −5

c = 5 + 4λ = 5 + 4 · 2 = 13 .

Hence, the only quadratic solving both constraints is f(x) = 2x2 − 5x+ 13. Indeed,

f(−2) = 2(−2)2 − 5(−2) + 13 = 31 ,

f(x) = 2(x2 − 3x+ 4) + (x+ 5) .
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