Vectors \& Matrices

Problem Sheet 4

1. Let S be the sphere centred at the point $(3,-1,6)$ with radius $6 \sqrt{3}$.
(i) Determine the Cartesian equation of the sphere S. (That is, find an equation identifying S in terms of coordinates in x, y and $z)$.
(ii) The set $C=\{(2 \cos \theta+6 \sin \theta+7,8 \cos \theta-3,-2 \cos \theta+6 \sin \theta+2): \theta \in[0,2 \pi)\}$ defines a circle in \mathbb{R}^{3}. Show that this circle lies entirely on the sphere S.
(iii) Given that the centre of circle C is the point $(7,-3,2)$, find the radius of C.
(Hint: The radius of this circle is not equal to the radius of the sphere.)
(iv) Determine the Cartesian equation of the plane that is tangent to the sphere S at the point $P=(5,9,8)$. (Hint: If the plane is tangent to S at the point P, then every vector in the plane must be orthogonal to the radial vector pointing towards P.)
2. A city's underground rail network has a Red Line which visits station Portway at coordinates $(3,-5,-5)$ and leaves in the direction of the vector $\mathbf{i}+\mathbf{j}+6 \mathbf{k}$.
(i) Land surveyors are concerned with the proximity of this line to a new housing development at coordinates $(5,0,8)$. How closely does the Red Line approach this estate?
(ii) The city's Blue Line visits the station Queen's Road at coordinates $(2,-8,1)$ and leaves in the direction $2 \mathbf{i}-\mathbf{j}-3 \mathbf{k}$. The city wishes to build a tunnel connecting the Red Line and the Blue Line at their closest points. What length will this tunnel be?
(iii) If this tunnel were completed, what distance would be traversed in order to get from Portway to Queen's Road? (You may assume that travel is only possible via the tunnels.)
3. Consider the set of quadratic functions $f(x)=a x^{2}+b x+c$. For any such function, the coefficients $(a, b, c) \in \mathbb{R}^{3}$ can be thought of as the coordinates of a point in three-dimensional space.
(i) Show that the subset of quadratics f with the property $f(-2)=31$ is given by the equation $4 a-2 b+c=31$. How could this constraint be visualised in our three-dimensional space?
(ii) A quadratic f has remainder $r(x)=x+5$ after division by $q(x)=x^{2}-3 x+4$ if and only if it can be expressed as $f(x)=\lambda q(x)+r(x)$, for some $\lambda \in \mathbb{R}$. Express this property in terms of the coefficients a, b, c and give a geometric interpretation of this constraint.
(iii) Find a formulation for all quadratics f with remainder $x+5$ after division by $x^{2}-3 x+4$ such that $f(-2)=31$.
