Poorly fitting model diagnostics

CHRIS SUTTON, FEBRUARY 2024

Can you list?

3 TYPES OF RESIDUAL PLOTS

Plot 1

- What we plot
- R code

Plot 2

- What we plot
- R code

Plot 3

- What we plot
- R code

4 THINGS WE ARE LOOKING FOR FROM THEM

Check 1

Check 2

Check 3

Check 4

Pure Error and Lack of Fit

We have listed the scenarios where a simple linear regression model might not be appropriate:

- residuals not from Normal distribution
- variance not constant

But so far, we have relied on looking at residual plots to assess this

- ☐ Is there some more formal way to show this lack of fit?
- we will now look at one type of case of poorly fitting model

Replications

Replications are where we have more than one observation with the same x value but they have different y values

we use y_{ij} to be the jth observation at x_i

• where i = 1, 2, ... m and $j = 1, 2, ... \text{ n}_i$

In our linear regression model, although each of the y_{ij} observations might be different at a certain x_i , the fitted value will be the same \hat{y}_i for all

Residuals

The residuals are now

$$e_{ij} = y_{ij} - \hat{y}_i$$

Example of Replications

Two sources of Residual Error

1

• random variation in y_{ij} where observations at the same x_i can produce different y values

7

 lack of fit in the model which does not capture all that is found in the observed data

Two sources of Residual Error

1 Pure Error

- the amount of random variation at x_i
- the difference between an observation y_{ij} and the mean of observations taken at the same x_i

2 Lack of Fit

 the difference between the mean observed value and the model fitted value at x_i

Two sources of Residual Error

Pure Error = $y_{ij} - \bar{y}_i$

Lack of Fit = $\bar{y}_i - \hat{y}_i$

Residual Sum of Squares

We can split the residual sum of squares SS_E (from our ANOVA table) into:

- \square Pure Error sum of squares SS_{PE}
 - measures overall random variation
- \square Lack of Fit sum of squares SS_{LoF}
 - o measures overall model lack of fit

Residual Sum of Squares

With the i, j notation SS_E becomes

$$SS_E = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_i)^2$$

And this can be split between:

$$SS_{PE} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

$$SS_{LoF} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (\bar{y}_i - \hat{y}_i)^2 = \sum_{i=1}^{m} n_i (\bar{y}_i - \hat{y}_i)^2$$

Residual Sum of Squares

In the simple linear regression model with replications

Expanded ANOVA table with replications

Using Pure Error and Lack of Fit we can expand the ANOVA table

Where there are replications

Splitting the Residual Sum of Squares SS_E

Note the Regression Sum of Squares entry is unchanged

Degrees of freedom

To calculate pure error we need m means for the \overline{y}_i (i = 1, 2, ..., m)

Each of these mean calculations takes a degree of freedom

Therefore degrees of freedom for Pure Error = n - m

Previously Residuals had n-2 d.f.

Therefore degrees of freedom for Lack of Fit = (n-2) - (n-m) = m-2

Mean Squares

We will see later that

 $E[SS_{PE}] = (n - m)\sigma^2$ whether the model assumptions are true or not

 $E[SS_{LoF}] = (m-2)\sigma^2$ if the model assumptions are true

Which means that:

- MS_{PE} gives an unbiased estimator of σ^2
- MS_{LOF} gives an unbiased estimator of σ^2 if the model assumptions are true

Variance Ratio

Therefore in all cases

$$\frac{(n-m)MS_{PE}}{\sigma^2} \sim \chi_{n-m}^2$$

and if the model assumptions are true

$$\frac{(m-2)MS_{LoF}}{\sigma^2} \sim \chi_{m-2}^2$$

We can now use the ratio of these two divided by their respective d.f. to calculate another Variance Ratio

Variance Ratio for residuals

If the regression model assumptions are true

$$\frac{MS_{LoF}}{MS_{PE}} \sim F_{n-m}^{m-2}$$

We are now able to construct an expanded ANOVA table for the case where there are replications

Source of variation	d.f.	SS	MS	VR
Regression	1	SS_R	MS_R	$\frac{MS_R}{MS_E}$
Residual	n – 2	SS_E	$MS_E = \frac{SS_E}{n-2}$	
Lack of Fit	m-2	SS_{LoF}	$MS_{LoF} = \frac{SS_{LoF}}{m-2}$	$rac{MS_{LoF}}{MS_{PE}}$
Pure Error	n-m	SS_{PE}	$MS_E = \frac{SS_{PE}}{n - m}$	
Total	n – 1	SS_T		

Expanded ANOVA table