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Distinction Between Outliers and High Leverage Observations

Outlier: An outlier is a data point whose response y does not follow the general trend of the
rest of the data.

Outlier is an unusual y value.

High Leverage observation: A data point has high leverage if it has ”extreme”
predictor x values. With a single predictor, an extreme x value is simply one that is particularly
high or low.

High Leverage Observations are unusual x values.

These observations are not ones we necessary want to remove from the model, but it
is good to know they are there and what effect they are having on the model output.
This will become an even greater issue when we consider Multiple Linear Regression
models later in the module.

For now we will look at how to detect so called influential observation.



Influential Observations

Definition: An influential observation is one which, when included in the dataset used to
fit a model, alters the regression coefficients by a meaningful amount.

Remark:

1 High leverage values– have the potential to influence the line greatly. If you were to
take a high leverage observation and change its y value by a certain amount, the
regression line would change more than if the same change were made to a low leverage
observation (one near the center of the distribution of x)

2 Not all high leverage data are truly influential- those that are significant distance
from the regression line during model fit will have a greater impact. Conversely, some less
high leverage observations can be influential if their residuals are unusually large. The
magnitude of influence is determined by the combination of leverage and magnitude of
residual.



Unusual xi value

To check if an observation is influential, you must fit the model with and without the
observation and see how the regression coefficients change

Dashed line –without the point, Solid line— include the point



How the Influential observations affect the linear regression line

Influential observations pull the regression line towards themselves.

1 With and without influential observations in the analysis, the outcome predictions,
parameter estimates, confidence intervals, and p-values can differ significantly.

2 While influential observations do not necessarily violate any regression
assumptions, they can cast doubt on the conclusions drawn from the sample.

3 If a regression model is being used to inform real-life decisions, one would hope
those decisions are not overly influenced by just one or a few observations.



Influential Observations, Diagnosis

What makes a point high leverage is how unusual it is when considering all the predictors
together. Fortunately, there are diagnostics that assess leverage and influence no matter how
many predictors are in the model.

1 The hat values: The hat value calculates the distance between an observation’s
predictors and those of other observations. Large hat values indicate that an observation
has significant leverage and may have some influence, but not always.

We will draw hat values table and use Leverage values formula as cutoff point to find
influential observations

2 Cook’s distance: Di , is used to find influential outliers in a set of predictor variables.
In other words, it’s a way to identify points that negatively affect your regression model.
The measurement is a combination of each observation’s leverage and residual values; the
higher the leverage and residuals, the higher the Cook’s distance.

A slightly technical way to interpret Di is to find the potential outlier’s percentile value
using the F-distribution. A percentile of over 50 indicates a highly influential point.



Influential Observations, Possible Solutions

Common transformation of predictor: A highly skewed x distribution can lead to high

leverage for points at the extreme. A transformation of predictor variable (e.g., logarithm,
square root, inverse) may solve this problem.

y = ln(x)

y =
√
x

y =
1

x



Influential Observations, Possible Solutions

Outcome transformation: If the y distribution is very skewed, that can lead to large
residuals. A transformation may solve this problem.



Influential Observations, Possible Solutions

Perform a sensitivity analysis

Fit the model with and without the influential observations and see what changes. If a point is
influential based on the diagnostics, that alone does not justify its removal. As with outliers,
never simply remove observations from the data just because they might be problematic.
Instead, do the analysis with and without them and state the differences in any discussion of
the results.



Example 1

Based on the definitions above, do you think the following data set contains any
outliers? Or, any high leverage data points?



Example 2

Based on the definitions above, do you think the following data set contains any
outliers? Or, any high leverage data points?



Example 2

The solid line represents the estimated regression equation with the red data point included,
while the dashed line represents the estimated regression equation with the red data point
taken excluded.



Example 2

By looking at the R out puts we have obtained when the red data point included or
excluded.

1 The R2 value has hardly changed at all, increasing only slightly from 97.3% to 97.7%

2 In either case, the relationship between y and x is strong.

3 The standard error of β1 is about the same in each case — 0.172 when the red data point
is included, and 0.200 when the red data point is excluded.

4 Therefore, the width of the confidence intervals for β1 would largely remain unaffected by
the existence of the red data point. You might take note that this is because the data
point is not an outlier heavily impacting MSE.

5 In each case, the p-value for testing H0 : β1 = 0 is less than 0.001. In either case, we can
conclude that there is sufficient evidence at the 0.05 level to conclude that, in the
population, x is related to y .



Example 3



Example 3



Example 3

By looking at the R out puts we have obtained when the red data point included or
excluded.

1 Here the R2 value has increased substantially from 55.19% to 97.32%. Therefore, if we
include the red data point, we conclude that the relationship between y and x is only
moderately strong, whereas if we exclude the red data point, we conclude that the
relationship between y and x is very strong.

2 The standard error also is almost 3.5 times larger when the red data point is included i.e.
increasing from 0.20 to 0.686. This increase would have a substantial effect on the width
of our confidence intervals too. Again, the increase is because the red data point is an
outlier in the y direction.

3 In each case, the p value for testing H0 : β1 = 0 is less than 0.001. In both the cases, we
can conclude that there is sufficient evidence present at the 0.05 level to conclude that, in
the population, x is related to y as largely the data points are in favor of it.



Standardised residuals and Leverage

The standardised residuals are given by

di =
ei

[s2(1− νi )]
1
2

where

νi =
1

n
+

(xi − x)2

Sxx
νi us known as the leverage of an observation

νi =
1

n
+

(xi − x)2

Sxx

Now
∑

i νi = 2.

Because each of the 2 terms in νi sum to 1 over the n observations. Which means that
the average leverage for an observation is 2

n .



Rule for identifying leverage points ?

Average leverage for an observation is 2
n .

Leverage > 4
n (twice average) is ”large leverage”

Leverage > 6
n (three times average) is ”very large leverage”

If we have more than two parameters

Large leverage values are above 2 ∗ k
n

Very high leverage > 3 ∗ k
n

(where k is the number of estimated parameters).



Strategies for dealing with ”leverage points”

(i) Remove invalid data points (Cook’s Distance)
(ii) Fit a different regression model (Transformations)

What does this mean for our model? Large (or very large) leverage observations

are called influential observations above. We discussed how they effect the linearity of
the model.

Are influential
whether they are included or not causes a large change in the β parameters
we can measure this influence using Cook’s Statistic
which is usually designated Di

this compares the linear regression results with and without the influential
observation



Cook’s Statistic

We discussed here the first (i) Remove invalid data points.

Cook’s Statistic: For observation i where i = 1, 2, · · · , n from our (xi , yi ) observations

first complete the linear regression as usual to obtain β̂0, β̂1 and hence the fitted
ŷ values

then take out the one i th observation

repeat the linear regression to get new β̂0, β̂1 and hence new fitted values which
we will call ŷ (i)



Cook’s Statistic

The Cook’s Statistics for this i th observation is

Di =
1

2S2

n∑
j=1

(ŷj
(i) − ŷj)

2

Where there will be a separate value for Di for each of our n observations.

Now it can be shown that this statistic is related to the leverage vi of the same
observation.



Cook and Leverage

Di =
1

2
d2
i

vi
1− vi

So Cook’s statistic depends on

the standardised residual for an observation
and its leverage



Using Cook’s Statistic



What to do with influential observations

We don’t need to remove influential observations in same way as outliers. But when we
present the results of a modelling study that includes influential observations we should

highlight the observation(s)
indicate how much they have affected the model output and conclusions



Remember the residual plots in weeks 2 & 3



Transforming the response variable

What should be do if one or more of these plots shows an
issue?

Transforming the response variable

If we doubt the x −→ y relationship is linear

Or we doubt the variance of y is constant

Or we doubt the data is from a Normal distribution

Then good first thing to try is a simple transformation of the yi

The most usual transformation (if no negative data) is ln(y)



Common transformations



Transformation Questions

Question 1

We will use the Janka dataset described during the Practical in R sessions of this week. In the
Practical, we have seen that the Shapiro-Wilk test had a small p-value, thus implying that the
assumption of normality is not supported by the data. Moreover, the variance may be
increasing suggests we should transform the dependent variable hardness. The first
transformation we usually try is to take the logarithm of y.We aim today to transform the data
to the following transformations.

(a) The first transformation we usually try is to take the logarithm of y.

modly<- lm(ly∼x). Look at the Summary and anova.

(b) It may happen that the plot of standardized residuals vs x suggested a quadratic model
may be needed. To fit a polynomial model of degree 2, i.e. a quadratic model we use the
command

modlyq <- lm(ly ∼ poly(x,2,raw=TRUE))

Have a look at the summary and anova. The summary shows the t tests for the intercept,
linear and quadratic terms. The anova table is testing whether at least one of the linear
and quadratic terms are needed.



Transformation Questions

(c) Save the standardised residuals and fitted values for this model and check the residuals
versus fitted values plot and the QQ-plot. Does this model seem to fit ok?

(d) Check the leverage values for this model.
hat <- hatvalues(modlyq)

cook<-cooks.distance(modlyq)

i<-1:36

plot(i,hat, main="Leverage values")

plot(i,cook, main="Cooks distance values")

Note that as there are now three parameters in the model the relevant figures for high
and very high leverage are 6

n = 2p
n and 9

n = 3p
n . Similarly the cut-off for Cook’s distance is

the 50% point of an F on 3 and 33 degrees of freedom.



Transformation Questions

Solution: The first transformation we usually try is to take the logarithm of y .
ly <- log(y)

Now fit a simple linear regression model with ly as the dependent variable.
modly<- lm(ly∼x)
In the previous Practical, we have seen that the Shapiro-Wilk test had a small p-value, thus
implying that the assumption of normality is not supported by the data.



Transformation Questions

The model with log(y) is an improvement. The fitted model is log(yi) = 5.166 + 0.00433xi
with an R2 equal to 95.39% thus explaining a bit more variation than the original model.



Transformation Questions

From the Shapiro-Wilk test there is no
evidence against the normality (p-value of
0.7159), which can be see also from the Q-Q
plot. However, looking at the plot of the
standardized residuals against x shows
curvature and suggests that fitting a quadratic
term in x might be of value.



Transformation Questions

We run a model with the logarithm of y and a quadratic model for the X . Thus the model is
of the form log(yi ) = α + β0xi + β1x

2
i + εi .

The fitted model is log(y) = 4.27 + 0.08x − 0.00044x2. All the parameters are highly
significant. Moreover looking at the R2 we have that the variation is explained mostly by this
model, since the R2 is equal to 96.99%.



Transformation Questions

Looking at the Shapiro-Wilk test, the
assumption of the normality is not rejected. In
fact the p-value is around 0.71 and this is
confirmed by the Q-Q plot. Looking at the
standardized residuals versus x and versus the
fitted values, it seems random and it looks
okay.



Transformation Questions

We have the largest leverage values are above
2 ∗ k/n but not 3 ∗ k/n, where k is the
number of estimated parameters. In our case,

we have k equal to 3, the total number of
observation n equal to 36, thus 6/n and 9/n.
In numbers, we have high leverage if it is
greater than 6/36 = 0.16 and very high
leverage if greater than 9/36 = 0.25. The
largest Cook’s distance is for observation 35
but at about 0.35 it is well below the value of
0.805 (which is the F value with 3 and 33
degrees of freedom), which would indicate a
highly influential observation.
In conclusion, we can see that the model with
quadratic term for x fits very well the data.



Pure Error and Lack of Fit

We have listed the scenarios where a simple linear regression model might not be
appropriate:

residuals not from Normal distribution
variance not constant

But so far we have relied on looking at residual plots to assess this

Is there some more formal way to show this lack of fit?
We will now look at one type of case of poorly fitting model



Replications

Replications are where we have more than one observation with the same x value but
they have different y values
We use yij to be the j th observation at xi

where i = 1, 2, · · ·m and j = 1, 2, · · · , ni

In our linear regression model, although each of the yij observations might be different
at a certain xi , the fitted value will be the same ŷi for all



Residuals



Two sources of Residual Error



Two sources of Residual Error



Residual Sum of Squares

We can split the residual sum of squares SSE (from our ANOVA table) into:

Pure Error sum of squares SSPE
—– measures overall random variation
Lack of Fit sum of squares SSLoF
—– measures overall model lack of fit



Residual Sum of Squares

With the i , j notation SSE becomes

SSE =
m∑
i=1

ni∑
j=1

(yij − ŷi )
2

And this can be split between:

SSPE =
m∑
i=1

ni∑
j=1

(yij − yi )
2

SSLOF =
m∑
i=1

ni∑
j=1

(yi − ŷi )
2 =

m∑
i=1

ni (yi − ŷi )
2



Residual Sum of Squares



Expanded ANOVA table with replications

Using Pure Error and Lack of Fit we can expand the ANOVA table

Where there are replications

Splitting the Residual Sum of Squares SSE

Note the Regression Sum of Squares entry is unchanged



Degrees of freedom

To calculate pure error we need m means for the yi (i = 1, 2, · · · ,m)

Each of these mean calculations takes a degree of freedom

Therefore degrees of freedom for Pure Error = n −m

Previously Residuals had n − 2 d.f.

Therefore degrees of freedom for Lack of Fit = (n − 2)− (n −m) = m − 2



Mean Squares

We will see later that

E [SSPE ] = (n −m)σ2 whether the model assumptions are true or not
E [SSLoF ] = (m − 2)σ2 if the model assumption are true

Which means that:

MSPE gives an unbiased estimator of σ2

MSLoF gives an unbiased estimator of σ2 if the model assumptions are true



Variance Ratio

Therefore in all cases

(n −m)MSPE
σ2

∼ X 2
n−m

and if the model assumptions are true

(m − 2)MSLoF
σ2

∼ X 2
m−2

We can now use the ratio of these two divided by their respective d.f. to calculate
another Variance Ratio



Variance Ratio for residuals

If the regression model assumption are true

MSLoF
MSPE

∼ Fm−2
n−m

We are now able to construct an expanded ANOVA table for the case where there are
replications



ANOVA



Example

A chemist studied the concentration of a solution (Y ) over time (x). Fifteen identical solutions
were prepared. The solutions were randomly divided into five sets of three, and the five sets
were measured, respectively after 1, 3, 5, 7, and 9 hours. Without making any plots the
chemist entered the data into R, fitted a simple linear regression model and then carried out a
goodness of fit test. The following is the Analysis of Variance table she produced but with
some figures missing.



ANOVA



ANOVA
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