Vectors \& Matrices

Solutions to Problem Sheet 2

1. (i) We proceed by deriving the Cartesian equations for the line ℓ.

We have $\mathbf{p}=\overrightarrow{O P}=\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$ and $\mathbf{u}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$, giving us the equations:

$$
\frac{x-3}{1}=\frac{y-(-1)}{-2}=\frac{z-2}{3},
$$

or equivalently

$$
\begin{equation*}
x-3=\frac{-y-1}{2}=\frac{z-2}{3} . \tag{1}
\end{equation*}
$$

From the lecture notes, we can determine that any point (x, y, z) that satisfies the equations (1) lies on the line ℓ. For the point $Q=(24,-43,65)$, we have:

$$
24-3=\frac{-(-43)-1}{2}=\frac{65-2}{3}=21 .
$$

The point Q therefore satisfies the Cartesian equations of the line ℓ, and so does indeed lie on this line.
(ii) Substituting the coordinates of $R=(1,3,-7)$ into the first equation in (1), we get:

$$
1-3=-2=\frac{-3-1}{2}
$$

All is fine. However, if we substitute the z-component -7 into the second equation, we get:

$$
\frac{-3-1}{2}=-2 \neq-3=\frac{-7-2}{3}
$$

Thus, the latter equation is not satisfied, and so the point R does not lie on the line ℓ.
(iii) In order that the point $S=(14,-23, z)$ lie on ℓ, we would need the equations

$$
14-3=\frac{-(-23)-1}{2}=\frac{z-2}{3}
$$

be satisfied. We can see that the first equation definitely holds, so the only remaining task is to find a value $z \in \mathbb{R}$ such that:

$$
\frac{z-2}{3}=11 .
$$

Through simple algebraic rearrangement, we find that if we take $z=35$, the equations (1) are satisfied, and so S lies on ℓ.
2. By the formulation given in the lecture notes, we know that the set $S=\{\mathbf{p}+\lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}$ defines the line that goes through points P and Q.

Consider the set $S_{1}=\{\mathbf{p}+2 \lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}$. For any value $\lambda \in \mathbb{R}$, we can define the parameter $\mu=\frac{\lambda}{2}$. We get:

$$
\mathbf{p}+\lambda(\mathbf{q}-\mathbf{p})=\mathbf{p}+2 \mu(\mathbf{q}-\mathbf{p})
$$

Since the parameter λ in the set S_{1} is a dummy variable, we can see that:

$$
S=\{\mathbf{p}+\lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}=\{\mathbf{p}+2 \mu(\mathbf{q}-\mathbf{p}): \mu \in \mathbb{R}\}=\{\mathbf{p}+2 \lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}=S_{1}
$$

Hence, S_{1} is an equivalent formulation of the points in the line connecting P and Q.
Similarly, take $S_{2}=\{\mathbf{q}+\lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}$. For any value $\lambda \in \mathbb{R}$, we can define $\mu=\lambda-1$ and get:

$$
\begin{aligned}
\mathbf{p}+\lambda(\mathbf{q}-\mathbf{p}) & =\mathbf{p}+(\mu+1)(\mathbf{q}-\mathbf{p}) \\
& =\mathbf{p}+\mu(\mathbf{q}-\mathbf{p})+\mathbf{q}-\mathbf{p} \\
& =\mathbf{q}+\mu(\mathbf{q}-\mathbf{p})
\end{aligned}
$$

Therefore, $S_{2}=\{\mathbf{q}+\lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}=S$.
Finally, take $S_{3}=\{\mathbf{p}+\lambda(\mathbf{p}-\mathbf{q}): \lambda \in \mathbb{R}\}$. Again, for any $\lambda \in \mathbb{R}$, we can take $\mu=-\lambda$ to get:

$$
\mathbf{p}+\lambda(\mathbf{q}-\mathbf{p})=\mathbf{p}+(-\mu)(\mathbf{q}-\mathbf{p})=\mathbf{p}+\mu(-1(\mathbf{q}-\mathbf{p}))=\mathbf{p}+\mu(\mathbf{p}-\mathbf{q})
$$

showing that $S_{3}=\{\mathbf{p}+\lambda(\mathbf{p}-\mathbf{q}): \lambda \in \mathbb{R}\}=S$.
The only remaining set is $S_{4}=\{2 \mathbf{p}+\lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}$. This set is not equivalent to the other formulations of the line connecting P to Q.

To see this, we note that for the original formulation in S, if we take $\lambda=0$, we get \mathbf{p}, the position vector of the point P. In this new formulation, $\lambda=0$ gives us the vector $2 \mathbf{p}$. This is the position vector of a point twice as far from the origin as P , and so, in general, the point P would no longer lie on this new line.

There is however, a condition on the vector \mathbf{p} that would permit P to remain on the line. Suppose \mathbf{p} and \mathbf{q} faced the same direction. That is, suppose $\mathbf{p}=\lambda \mathbf{q}$ for some $\lambda \in \mathbb{R}$. In this case, the vectors \mathbf{p}, \mathbf{q} and $\mathbf{q}-\mathbf{p}$ all face the same direction, and so multiplying \mathbf{p} by a factor of 2 simply moves it further along the line connecting P and Q.
3. Let $V=\{\lambda \mathbf{u}+\mu \mathbf{v}: \lambda, \mu \in \mathbb{R}\}$. We define vectors $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$ to be elements of the set V.

By the definition of V, we can express $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$ as:

$$
\begin{aligned}
& \mathbf{w}_{\mathbf{1}}=\lambda_{1} \mathbf{u}+\mu_{1} \mathbf{v} \\
& \mathbf{w}_{\mathbf{2}}=\lambda_{2} \mathbf{u}+\mu_{2} \mathbf{v},
\end{aligned}
$$

for some values $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in \mathbb{R}$.
We start by demonstrating the closure of V under vector addition. Consider the sum $\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}$. We have:

$$
\begin{aligned}
\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}} & =\lambda_{1} \mathbf{u}+\mu_{1} \mathbf{v}+\lambda_{2} \mathbf{u}+\mu_{2} \mathbf{v} \\
& =\left(\lambda_{1} \mathbf{u}+\lambda_{2} \mathbf{u}\right)+\left(\mu_{1} \mathbf{v}+\mu_{2} \mathbf{v}\right) \\
& =\left(\lambda_{1}+\lambda_{2}\right) \mathbf{u}+\left(\mu_{1}+\mu_{2}\right) \mathbf{v} \\
& =\lambda_{3} \mathbf{u}+\mu_{3} \mathbf{v},
\end{aligned}
$$

where $\lambda_{3}=\lambda_{1}+\lambda_{2}$ and $\mu_{3}=\mu_{1}+\mu_{2}$. Therefore, $\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}} \in V$.
We use a similar argument to prove closure under scalar multiplication. Let $\alpha \in \mathbb{R}$ be some scalar value, we have:

$$
\begin{aligned}
\alpha \mathbf{w}_{\mathbf{1}} & =\alpha\left(\lambda_{1} \mathbf{u}+\mu_{1} \mathbf{v}\right) \\
& =\alpha \lambda_{1} \mathbf{u}+\alpha \mu_{1} \mathbf{v} \\
& =\lambda_{4} \mathbf{u}+\mu_{4} \mathbf{v},
\end{aligned}
$$

where $\lambda_{4}=\alpha \lambda_{1}$. Therefore, $\alpha \mathbf{w}_{\mathbf{1}} \in V$.

Note that none of these arguments actually required us to use the coordinates of the vectors $\mathbf{w}_{\mathbf{1}}$ and $\mathbf{w}_{\mathbf{2}}$. The statement in the question holds for any pair of vectors in \mathbb{R}^{3}.
4. (i) By Theorem 5.1.3 in the lecture notes, we have:

$$
\mathbf{u} \cdot \mathbf{v}=4 \cdot 1+(-1) \cdot(-9)+4 \cdot 2=4+9+8=21
$$

(ii) Since we are able to express \mathbf{v} and \mathbf{w} in terms of their coordinates, we can take their sum by simply summing their individual components:

$$
\mathbf{v}+\mathbf{w}=\left(\begin{array}{c}
1 \\
-9 \\
2
\end{array}\right)+\left(\begin{array}{l}
2 \\
1 \\
z
\end{array}\right)=\left(\begin{array}{c}
3 \\
-8 \\
2+z
\end{array}\right)
$$

Again, by Theorem 5.1.3, we have:

$$
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=4 \cdot 3+(-1) \cdot(-8)+4 \cdot(2+z)=12+8+8+4 z=28+4 z
$$

In order for \mathbf{u} to be orthogonal to $\mathbf{v}+\mathbf{w}$, we must have $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=0$. Therefore, our condition on z becomes $28+4 z=0$, giving us $z=-7$.

