
Vectors & Matrices

Solutions to Problem Sheet 2

1. (i) We proceed by deriving the Cartesian equations for the line ℓ.

We have p =
−−→
OP =


3

−1

2

 and u =


1

−2

3

, giving us the equations:

x− 3

1
=

y − (−1)

−2
=

z − 2

3
,

or equivalently

x− 3 =
−y − 1

2
=

z − 2

3
. (1)

From the lecture notes, we can determine that any point (x, y, z) that satisfies the equations

(1) lies on the line ℓ. For the point Q = (24,−43, 65), we have:

24− 3 =
−(−43)− 1

2
=

65− 2

3
= 21 .

The point Q therefore satisfies the Cartesian equations of the line ℓ, and so does indeed lie on

this line.

(ii) Substituting the coordinates of R = (1, 3,−7) into the first equation in (1), we get:

1− 3 = −2 =
−3− 1

2
.

All is fine. However, if we substitute the z-component −7 into the second equation, we get:

−3− 1

2
= −2 ̸= −3 =

−7− 2

3
.

Thus, the latter equation is not satisfied, and so the point R does not lie on the line ℓ.

(iii) In order that the point S = (14,−23, z) lie on ℓ, we would need the equations

14− 3 =
−(−23)− 1

2
=

z − 2

3

1



be satisfied. We can see that the first equation definitely holds, so the only remaining task is

to find a value z ∈ R such that:

z − 2

3
= 11 .

Through simple algebraic rearrangement, we find that if we take z = 35, the equations (1) are

satisfied, and so S lies on ℓ.

2. By the formulation given in the lecture notes, we know that the set S = {p + λ(q − p) : λ ∈ R}

defines the line that goes through points P and Q.

Consider the set S1 = {p+ 2λ(q− p) : λ ∈ R}. For any value λ ∈ R, we can define the parameter

µ = λ
2 . We get:

p+ λ(q− p) = p+ 2µ(q− p) .

Since the parameter λ in the set S1 is a dummy variable, we can see that:

S = {p+ λ(q− p) : λ ∈ R} = {p+ 2µ(q− p) : µ ∈ R} = {p+ 2λ(q− p) : λ ∈ R} = S1 .

Hence, S1 is an equivalent formulation of the points in the line connecting P and Q.

Similarly, take S2 = {q+λ(q−p) : λ ∈ R}. For any value λ ∈ R, we can define µ = λ− 1 and get:

p+ λ(q− p) = p+ (µ+ 1)(q− p)

= p+ µ(q− p) + q− p

= q+ µ(q− p)

Therefore, S2 = {q+ λ(q− p) : λ ∈ R} = S.

Finally, take S3 = {p+ λ(p− q) : λ ∈ R}. Again, for any λ ∈ R, we can take µ = −λ to get:

p+ λ(q− p) = p+ (−µ)(q− p) = p+ µ(−1(q− p)) = p+ µ(p− q) ,

showing that S3 = {p+ λ(p− q) : λ ∈ R} = S.

The only remaining set is S4 = {2p + λ(q − p) : λ ∈ R}. This set is not equivalent to the other

formulations of the line connecting P to Q.
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To see this, we note that for the original formulation in S, if we take λ = 0, we get p, the position

vector of the point P . In this new formulation, λ = 0 gives us the vector 2p. This is the position

vector of a point twice as far from the origin as P, and so, in general, the point P would no longer

lie on this new line.

There is however, a condition on the vector p that would permit P to remain on the line. Suppose

p and q faced the same direction. That is, suppose p = λq for some λ ∈ R. In this case, the

vectors p, q and q− p all face the same direction, and so multiplying p by a factor of 2 simply

moves it further along the line connecting P and Q.

3. Let V = {λu+ µv : λ, µ ∈ R}. We define vectors w1 and w2 to be elements of the set V .

By the definition of V , we can express w1 and w2 as:

w1 = λ1u+ µ1v

w2 = λ2u+ µ2v ,

for some values λ1, λ2, µ1, µ2 ∈ R.

We start by demonstrating the closure of V under vector addition. Consider the sum w1 + w2.

We have:

w1 +w2 = λ1u+ µ1v + λ2u+ µ2v

= (λ1u+ λ2u) + (µ1v + µ2v)

= (λ1 + λ2)u+ (µ1 + µ2)v

= λ3u+ µ3v ,

where λ3 = λ1 + λ2 and µ3 = µ1 + µ2. Therefore, w1 +w2 ∈ V .

We use a similar argument to prove closure under scalar multiplication. Let α ∈ R be some scalar

value, we have:

αw1 = α(λ1u+ µ1v)

= αλ1u+ αµ1v

= λ4u+ µ4v ,

where λ4 = αλ1. Therefore, αw1 ∈ V .
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Note that none of these arguments actually required us to use the coordinates of the vectors w1

and w2. The statement in the question holds for any pair of vectors in R3.

4. (i) By Theorem 5.1.3 in the lecture notes, we have:

u · v = 4 · 1 + (−1) · (−9) + 4 · 2 = 4 + 9 + 8 = 21 .

(ii) Since we are able to express v and w in terms of their coordinates, we can take their sum by

simply summing their individual components:

v +w =


1

−9

2

+


2

1

z

 =


3

−8

2 + z

 .

Again, by Theorem 5.1.3, we have:

u · (v +w) = 4 · 3 + (−1) · (−8) + 4 · (2 + z) = 12 + 8 + 8 + 4z = 28 + 4z .

In order for u to be orthogonal to v + w, we must have u · (v + w) = 0. Therefore, our

condition on z becomes 28 + 4z = 0, giving us z = −7.
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