RELATIVITY - MTH6132

PROBLEM SET 4

- 1. The 4-velocity $\overline{U}=(U^0,U^1,U^2,U^3)$ corresponds to the 3-velocity, \underline{v} , in the sense that $\overline{U}=\gamma(v)(1,v)$. Express
 - (a) U^0 in terms of $|\underline{v}|$
 - (b) U^{α} in terms of \underline{v} , where α represents the spatial components and takes values $(\alpha = 1, 2, 3)$
 - (c) U^0 in terms of U^{α}
- (d) $\frac{d}{d\tau}$ in terms of $\frac{d}{dt}$ and \underline{v} , where τ is proper time
- (e) v^{α} in terms of U^{α}
- (f) $|\underline{v}|$ in terms of U^0
- **2.** A particle at rest with mass m_0 is hit by a photon with frequency ν . The photon is absorbed, and the resulting particle has a new mass m and moves away with speed u. Thus, $\bar{P}_{\gamma} + \bar{P}_0 = \bar{P}$, where $\bar{P}_{\gamma}, \bar{P}_0$ and \bar{P} are the 4-momenta of the photon, initial particle and resulting particle respectively.
 - (a) Using $|\bar{P}|^2 = |\bar{P}_{\gamma} + \bar{P}_0|^2$, find m in terms of m_0 and ν .
 - (b) Using $|\bar{P}_0|^2 = |\bar{P}_{\gamma} \bar{P}|^2$, and the result of part (a), show that

$$\frac{1-u}{1+u} = \frac{m_0}{m_0 + 2h\nu}.$$

Hence find u in terms of m_0 and ν .

- **3.** An atom of rest mass m_0 at rest in a laboratory absorbs a photon of frequency ν . Use the conservation law of 4-momentum to find the velocity and rest mass of the resulting particle.
- **4.** A stationary particle of rest mass M decays into a massive particle with rest-mass m_1 moving with speed u_1 towards the left along the x-axis and a massless particle moving in the opposite direction with energy E. Show that

$$E = \frac{m_1 u_1}{\sqrt{1 - u_1^2}}.$$

Use this to derive an expression relating the rest-mass M directly to m_1 and u_1 .

5. A positron with velocity 4/5 is anhilated in a collision with a stationary electron, yielding two photons which emerge in opposite directions along the track of the incoming particle. If m_0 is the mass of the electron and positron, find the energies of the photons.

- **6.** A particle has rest mass m_0 . Whilst at rest, it emits a photon and, as a result, its rest mass is reduced to $m_0/2$.
 - (a) By comparing components of the 4-momenta before and after the event, show that the speed of the particle after the reduction of mass is $\frac{3}{5}$.
 - (b) Show that the energy $E = h\nu$ of the photon is $3m_0/8$.
- 7. A particle of rest mass M moving along the x-axis with speed v decays into two particles each with a rest mass M/2. Both particles continue to move along the x-axis. Show that the new particles move with the same speed. Show also that the speed of the new particles equals that of the original particle.
- 8. A stationary particle of rest mass M decays into two particles that both move along the x-axis. One has a rest-mass m_1 and a speed u_1 and the other has a rest-mass m_2 and a speed u_2 . Prove that

$$M^{2} = m_{1}^{2} + m_{2}^{2} + 2m_{2}^{2} \frac{u_{2}}{1 - u_{2}^{2}} \left(\frac{1}{u_{1}} + u_{2}\right).$$

9. A particle moving along the x-axis with speed v disintegrates into two photons (particles with zero rest mass) moving in directions making angles α and β with the x-axis and on opposite sides of it. Show that

$$v = \frac{\sin \beta \cos \alpha + \sin \alpha \cos \beta}{\sin \alpha, + \sin \beta}$$

where we assume the speed of light c=1. Show also that

$$\tan\frac{\alpha}{2}\tan\frac{\beta}{2} = \frac{1-v}{1+v}.$$

Conclude that if a photon disintegrates into two photons, they must both move along the direction of the original photon.

Hint: For the second part of this question use the identities:

$$\sin 2\alpha = 2\sin \alpha \cos \alpha, \quad \sin(\alpha/2) = \sqrt{\frac{1}{2}(1-\cos \alpha)}, \quad \cos(\alpha/2) = \sqrt{\frac{1}{2}(1+\cos \alpha)}.$$

- 10. Consider the collision of a proton and an anti-proton both with rest mass m_p and 3-velocity v in units of c = 1, see Fig. 1.
 - (a) Assuming that the collision is head on along the x axis so that the 3-velocities of the proton and the anti-proton are v and -v respectively, find the value of v so that the collision produces a Higgs boson at rest with rest mass $M_H = 125 \, m_p$.
 - (b) Consider now that both the proton and the anti-proton move along the positive x-direction forming an angle θ_1 and θ_2 respectively with respect to the x-axis in the x-y plane. See the Figure below. Find v and θ_1 such that the Higgs boson that is formed as a result of the collision moves only along the positive x-direction with 3-velocity $u = \frac{\sqrt{3}}{2}$.

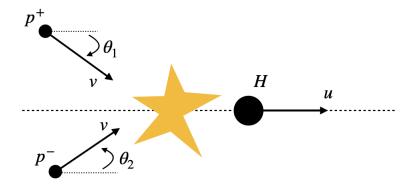


Figure 1: Collision of a proton and an anti-proton.

11. Consider two vector fields X and Y and an arbitrary smooth scalar function f(x). The Lie derivative of f along X is given by $\mathcal{L}_X(f) = X(f) = X^a \partial_a f$. Similarly, in the lectures we saw that the Lie derivative of Y along X, written as $\mathcal{L}_X Y$, is given by the commutator [X,Y]. From the definition of [X,Y] acting on f as in the notes,

$$[X,Y](f) \equiv X(Y(f)) - Y(X(f)),$$

1. Show that the components of the vector field $[X,Y]^a$ are

$$[X,Y]^a = X^b \partial_b Y^a - Y^b \partial_b X^a .$$

- 2. Show that $[X,Y]^a$ transforms as a vector under general coordinate transformations.
- 3. Consider a one form ω_a . Using that the Lie derivative satisfies the Leibniz rule and recalling that $\omega_a Y^a$ is a scalar, show that

$$\mathcal{L}_X(\omega)_a = X^b \partial_b \omega_a + \omega_b \partial_a X^b.$$

4. Is $\mathcal{L}_X(\omega)_a$ a one form?

Reading Assignment & Further Exploration: Relativistic Doppler Effect.

- Read carefully the subsection on Doppler shift in the Week 4 Lecture Notes, checking all the calculations (and asking me if you have any questions).
- Compare and contrast these results with the classical Doppler effect, discussed in the Further Exploration exercises of Problem Set 3.
- For further exploration, use the Suggested Reading list (found in the module syllabus) to learn how relativistic Doppler shift is used in Cosmology and write one-page summary of your findings.