RELATIVITY - MTH6132

PROBLEM SET 4

1. The 4 -velocity $\bar{U}=\left(U^{0}, U^{1}, U^{2}, U^{3}\right)$ corresponds to the 3 -velocity, \underline{v}, in the sense that $\bar{U}=\gamma(v)(1, \underline{v})$. Express
(a) U^{0} in terms of $|\underline{v}|$
(b) U^{α} in terms of \underline{v}, where α represents the spatial components and takes values $(\alpha=1,2,3)$
(c) U^{0} in terms of U^{α}
(d) $\frac{d}{d \tau}$ in terms of $\frac{d}{d t}$ and \underline{v}, where τ is proper time
(e) v^{α} in terms of U^{α}
(f) $|\underline{v}|$ in terms of U^{0}
2. A particle at rest with mass m_{0} is hit by a photon with frequency ν. The photon is absorbed, and the resulting particle has a new mass m and moves away with speed u. Thus, $\bar{P}_{\gamma}+\bar{P}_{0}=\bar{P}$, where $\bar{P}_{\gamma}, \bar{P}_{0}$ and \bar{P} are the 4 -momenta of the photon, initial particle and resulting particle respectively.
(a) Using $|\bar{P}|^{2}=\left|\bar{P}_{\gamma}+\bar{P}_{0}\right|^{2}$, find m in terms of m_{0} and ν.
(b) Using $\left|\bar{P}_{0}\right|^{2}=\left|\bar{P}_{\gamma}-\bar{P}\right|^{2}$, and the result of part (a), show that

$$
\frac{1-u}{1+u}=\frac{m_{0}}{m_{0}+2 h \nu} .
$$

Hence find u in terms of m_{0} and ν.
3. An atom of rest mass m_{0} at rest in a laboratory absorbs a photon of frequency ν. Use the conservation law of 4 -momentum to find the velocity and rest mass of the resulting particle.
4. A stationary particle of rest mass M decays into a massive particle with rest-mass m_{1} moving with speed u_{1} towards the left along the x-axis and a massless particle moving in the opposite direction with energy E. Show that

$$
E=\frac{m_{1} u_{1}}{\sqrt{1-u_{1}^{2}}}
$$

Use this to derive an expression relating the rest-mass M directly to m_{1} and u_{1}.
5. A positron with velocity $4 / 5$ is anhilated in a collision with a stationary electron, yielding two photons which emerge in opposite directions along the track of the incoming particle. If m_{0} is the mass of the electron and positron, find the energies of the photons.
6. A particle has rest mass m_{0}. Whilst at rest, it emits a photon and, as a result, its rest mass is reduced to $m_{0} / 2$.
(a) By comparing components of the 4 -momenta before and after the event, show that the speed of the particle after the reduction of mass is $\frac{3}{5}$.
(b) Show that the energy $E=h \nu$ of the photon is $3 m_{0} / 8$.
7. A particle of rest mass M moving along the x-axis with speed v decays into two particles each with a rest mass $M / 2$. Both particles continue to move along the x axis. Show that the new particles move with the same speed. Show also that the speed of the new particles equals that of the original particle.
8. A stationary particle of rest mass M decays into two particles that both move along the x-axis. One has a rest-mass m_{1} and a speed u_{1} and the other has a rest-mass m_{2} and a speed u_{2}. Prove that

$$
M^{2}=m_{1}^{2}+m_{2}^{2}+2 m_{2}^{2} \frac{u_{2}}{1-u_{2}^{2}}\left(\frac{1}{u_{1}}+u_{2}\right) .
$$

9. A particle moving along the x-axis with speed v disintegrates into two photons (particles with zero rest mass) moving in directions making angles α and β with the x-axis and on opposite sides of it. Show that

$$
v=\frac{\sin \beta \cos \alpha+\sin \alpha \cos \beta}{\sin \alpha,+\sin \beta}
$$

where we assume the speed of light $c=1$. Show also that

$$
\tan \frac{\alpha}{2} \tan \frac{\beta}{2}=\frac{1-v}{1+v} .
$$

Conclude that if a photon disintegrates into two photons, they must both move along the direction of the original photon.

Hint: For the second part of this question use the identities:

$$
\sin 2 \alpha=2 \sin \alpha \cos \alpha, \quad \sin (\alpha / 2)=\sqrt{\frac{1}{2}(1-\cos \alpha)}, \quad \cos (\alpha / 2)=\sqrt{\frac{1}{2}(1+\cos \alpha)} .
$$

10. Consider the collision of a proton and an anti-proton both with rest mass m_{p} and 3 -velocity v in units of $c=1$, see Fig. 1 .
(a) Assuming that the collision is head on along the x axis so that the 3 -velocities of the proton and the anti-proton are v and $-v$ respectively, find the value of v so that the collision produces a Higgs boson at rest with rest mass $M_{H}=125 m_{p}$.
(b) Consider now that both the proton and the anti-proton move along the positive x-direction forming an angle θ_{1} and θ_{2} respectively with respect to the x-axis in the $x-y$ plane. See the Figure below. Find v and θ_{1} such that the Higgs boson that is formed as a result of the collision moves only along the positive x-direction with 3 -velocity $u=\frac{\sqrt{3}}{2}$.

Figure 1: Collision of a proton and an anti-proton.
11. Consider two vector fields X and Y and an arbitrary smooth scalar function $f(x)$. The Lie derivative of f along X is given by $\mathcal{L}_{X}(f)=X(f)=X^{a} \partial_{a} f$. Similarly, in the lectures we saw that the Lie derivative of Y along X, written as $\mathcal{L}_{X} Y$, is given by the commutator $[X, Y]$. From the definition of $[X, Y]$ acting on f as in the notes,

$$
[X, Y](f) \equiv X(Y(f))-Y(X(f))
$$

1. Show that the components of the vector field $[X, Y]^{a}$ are

$$
[X, Y]^{a}=X^{b} \partial_{b} Y^{a}-Y^{b} \partial_{b} X^{a}
$$

2. Show that $[X, Y]^{a}$ transforms as a vector under general coordinate transformations.
3. Consider a one form ω_{a}. Using that the Lie derivative satisfies the Leibniz rule and recalling that $\omega_{a} Y^{a}$ is a scalar, show that

$$
\mathcal{L}_{X}(\omega)_{a}=X^{b} \partial_{b} \omega_{a}+\omega_{b} \partial_{a} X^{b} .
$$

4. Is $\mathcal{L}_{X}(\omega)_{a}$ a one form?

Reading Assignment \& Further Exploration: Relativistic Doppler Effect.

- Read carefully the subsection on Doppler shift in the Week 4 Lecture Notes, checking all the calculations (and asking me if you have any questions).
- Compare and contrast these results with the classical Doppler effect, discussed in the Further Exploration exercises of Problem Set 3.
- For further exploration, use the Suggested Reading list (found in the module syllabus) to learn how relativistic Doppler shift is used in Cosmology and write one-page summary of your findings.

