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You should attempt ALL questions. Marks available are shown next to the
questions.

In completing this assessment:

• You may use books and notes.
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• You must not seek or obtain help from anyone else.
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• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.
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taken to scan and upload your work. Please try to upload your work well before the end
of the submission window, in case you experience computer problems. Only one
attempt is allowed – once you have submitted your work, it is final.
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In this paper, V(G) denotes the set of vertices of a graph or digraph G, E(G) the set of
edges of a graph G, and A(G) the set of arcs of a digraph G. You may use any result
from lecture notes and exercises without proving it, but you must state clearly which
result you use.

Question 1 [22 marks]. Consider the following network (G,w), in which each
vertex is labeled with its name and each edge e ∈ E(G) with its weight w(e).
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(a) Use Prim’s algorithm starting from vertex a to find a minimum spanning tree of
(G,w). Show your working and give the minimum spanning tree and its weight. [10]

(b) Find another minimum spanning tree of (G,w). Show your working and give the
minimum spanning tree and its weight. [4]

(c) Does there exist a minimum spanning tree of (G,w) that does not contain the
edge de? Justify your answer. [4]

(d) Does there exist a minimum spanning tree of (G,w) that contains both of the
edges bd and bf? Justify your answer. [4]
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Model Solution

(a) Prim’s algorithm finds a spanning tree by starting from the tree with vertex a and
then repeatedly adding an edge of minimum weight among those that have exactly
one endpoint in the current tree. It may for example add edges in the order

ab, bd, dc, de, ef

to obtain the following minimum spanning tree of weight 12.
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(b) The algorithm may instead add edges in the order

ab, bf, fe, ed, dc

and obtain the following minimum spanning tree, which also has weight 12.
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(c) If S = {e, f}, then the edge de is the unique edge of minimum weight among all
edges in (G,w) with exactly one endpoint in S. By a result in the notes it must
therefore be contained in every minimum spanning tree of (G,w).

(d) Assume for contradiction that there exists a minimum spanning tree T that
contains the edges bd and bf. Since the edges {bd, bf, de, ef} form a cycle, there
must exists an edge x ∈ {de, ef} such that x /∈ E(T). Let T ′ be the graph with
V(T ′) = V(T) and E(T ′) = (E(T) \ {bd}) ∪ {x}, and observe that T ′ is a spanning
tree of G. The weight of T ′ is smaller than the weight of T , a contradiction to
minimality of T .
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Question 2 [26 marks]. Consider a tree T in which the degree of each vertex is
either 1 or 3. Let n = |V(T)|.

(a) Show that n is even. [2]

(b) Show that T has n
2
+ 1 leaves. [6]

(c) Determine the number of distinct simple graphs G such that T is a spanning tree
of G. Explain your reasoning. [6]

Call a graph G a tree-set if every connected component of G is a tree.

(d) For each of the following graphs, determine if the graph is a tree-set. Justify your
answer. [6]

(i) The graph G1 with V(G1) = {v1, v2, v3, v4, v5, v6} and E(G1) = ∅
(ii) The graph G2 with V(G2) = V(G1) and E(G2) = {v1v2, v2v4, v2v6, v4v6}

(iii) The graph G3 with V(G3) = V(G1) and E(G3) = {v1v5, v2v6, v3v4, v5v6}

Now consider an arbitrary graph G.

(e) Give a polynomial-time algorithm to determine whether G is a tree-set. Show
that the algorithm is indeed a polynomial-time algorithm. [6]
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Model Solution

(a) T is a graph, so it must have an even number of vertices of odd degree. In the
given graph all n vertices have an odd degree, so n must be even.

(b) Let m = |E(T)|. Let n1 and n3 respectively denote the number of vertices of
degree 1 and degree 3. Then n = n1 + n3 and thus n3 = n− n1. Since T is a tree,
by a result in the notes, m = n− 1. Since T is a graph, by a result in the notes,
2m =

∑
v∈V(T) dT(v) = n1 + 3n3 = n1 + 3(n− n1) = 3n− 2n1. Thus

2(n− 1) = 3n− 2n1, 2n1 = n+ 2, and n1 =
n
2
+ 1.

(c) If T is a spanning tree of G, then V(G) = V(T) and V(G) ⊇ V(T). Each of the(
n
2

)
− |E(T)| =

(
n
2

)
− (n− 1) unordered pairs of vertices that are not an edge of T

may or may not be an edge of G, so there are 2(
n
2)−(n−1) such graphs.

(d) (i) G1 has six connected components, each of which consists of a single vertex
and no edges and is therefore a tree. Therefore G1 is a tree-set.

(ii) G2, and indeed one of its connected components, contains the cycle
v2, v4, v6, v4. That connected component is not a tree, so G2 is not a tree-set.

(iii) G3 has two connected components, a path of length 1 and a path of length 3.
Both connected components are trees, so G3 is a tree-set.

(e) For v ∈ V(G), we can determine whether the connected component of G
containing v is a tree by running tree search starting at v and checking in each
iteration for the existence of edges with both endpoints inside the current tree.
The additional check can be performed without increasing the running time by
more than a constant factor, so the running time remains O(|V(G)| · |E(G)|). If G
has more than one connected component tree search will not immediately find all
vertices, and we need to repeat the procedure starting from a vertex that has not
been found so far. We run tree search at most |V(G)| times, so the overall running
time is O(|V(G)|2 · |E(G)|).
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Question 3 [24 marks]. Consider the following digraph D, in which each vertex is
labeled with its name.
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(a) Determine the strongly connected components of D. Show your working. [6]

Now consider the directed network (D,w), where w : A(D) → R with

w(v1v2) = 4, w(v1v6) = −1, w(v2v3) = 1, w(v2v4) = −2

w(v3v2) = 2, w(v3v4) = 2, w(v4v3) = 1, w(v5v2) = 2

w(v5v4) = 1, w(v6v2) = 4, w(v6v5) = 1.

(b) Recall that Dijkstra’s algorithm may fail to find shortest directed paths in the
presence of negative weights. Illustrate this fact by giving vertices u, v ∈ V(D)
such that Dijkstra’s algorithm fails to find a shortest directed u−v-path in
(D,w). Explain your reasoning. [6]

(c) Use the Bellman-Ford algorithm to find a shortest directed v1−v3-path in (D,w).
Show your working. [12]
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Model Solution

(a) The strongly connected component containing a particular vertex v ∈ V(D) can
be found by running tree search twice, once to find the set of vertices u such that
there exists a v−u-path in D and once to find the set of vertices u such that there
exists a u−v-path. Executing this procedure repeatedly from a vertex that has
not so far been discovered we obtain the following strongly connected components.
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(b) If Dijkstra’s algorithm is started from v5 it adds the arc v5v4 and concludes that
the path v5−, v4 of length 1 is a shortest v5−v4-path. There is, however, a shorter
v5−v4-path, namely the path v5, v2, v4 of length 0.

(c) The Bellman-Ford algorithm constructs the following table, where the entry in
the row for a particular value of k and the column for vertex v is the length δk(v)
of a shortest v1−v-path in (G,w) that uses at most k arcs.

k v1 v2 v3 v4 v5 v6
0 0 ∞ ∞ ∞ ∞ ∞
1 0 4(v1) ∞ ∞ ∞ −1(v1)
2 0 3(v6) 5(v2) 2(v2) 0(v6) −1(v1)
3 0 2(v5) 3(v4) 1(v2) 0(v6) −1(v1)
4 0 2(v5) 2(v4) 0(v2) 0(v6) −1(v1)
5 0 2(v5) 1(v4) 0(v2) 0(v6) −1(v1)
6 0 2(v5) 1(v4) 0(v2) 0(v6) −1(v1)

The rows for k = 5 and k = 6 are identical, which means that the algorithm has
not encountered a negative cycle and has therefore worked correctly. The entry
for k = 5 and v3 gives us the length of a shortest v1−v3-path, which is 1, as well
as the predecessor on such a path, v4. Tracing back the sequence of predecessors
we obtain the shortest path itself, v1, v6, v5, v2, v4, v3.
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Question 4 [28 marks].

(a) For each of the following graphs, state if the graph is bipartite or not. Justify
your answer. [6]
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Now consider the bipartite graph G with

V(G) = {u1, u2, u3, u4, u5, u6, v1, v2, v3, v4, v5, v6}

E(G) = {u1v2, u1v4, u2v1, u2v2, u2v3, u2v4, u2v5, u2v6, u3v2, u3v4,

u4v2, u4v3, u4v4, u5v2, u5v4, u6v1, u6v2, u6v4, u6v5, u6v6}.

(b) Let U = {u1, u3, u5, v2, v4, v6}. Draw G[U], the induced subgraph of G with vertex
set U. [2]

(c) For each of the following sets, state if the set is a matching of G or not. Justify
your answer. [6]

(i) M1 = {u1v2, u2v1, u5v2, u6v4}
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(ii) M2 = {u1v2, u2v1, u3v3, u4v4}

(iii) M3 = {u1v4, u2v2, u4v3, u6v5}

(d) Find a maximum matching of G. Show your working. [10]

(e) Show that the matching you have found is indeed a maximum matching. [4]
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Model Solution

(a) (i) The graph contains the cycle 1, 2, 3, 4, 5, 7, 8, 1 of odd length, so by a result
in the notes it cannot be bipartite.

(ii) Let L = {1, 3, 5, 7} and R = {2, 4, 6, 8}. Then L and R form a partition of the
set of vertices of the graph, and every edge of the graph has one endpoint in
L and one endpoint in R. Thus the graph is bipartite.

(iii) The graph contains the cycle 1, 7, 4, 5, 6, 1 of odd length, so by a result in the
notes it cannot be bipartite.

(b) G[U] looks as follows.

u1 u3 u5

v2 v4 v6

(c) (i) M1 is not a matching of G because v2 is an endpoint of more than one of the
edges in M1.

(ii) M2 is not a matching of G because M2 \ E(G) = {u3v3} and thus M2 ⊈ E(G).

(iii) M3 is a matching of G because M3 ⊆ E(G) and each vertex in V(G) appears
at most once as an endpoint of an edge in M3.

(d) Starting from vertex u3, which is not saturated by M3, we can construct the
following maximal tree of alternating paths:

u3

v2

v4

u2

u1

v1

v3

v5

v6

u4

u6

This tree contains the augmenting path u3, v2, u2, v1, which in turn yields the
matching M = M3△{u3v2, u2v2, u2v1} = {u1v4, u2v1, u3v2, u4v3, u6v5}. M has
cardinality |M| = |M3|+ 1 = 5, and we will see that it is a maximum matching.

(e) Since |M| = 5, M is a maximum matching unless the graph has a perfect
matching. Let X = {u1, u3, u5}, and observe that N(X) = {v2, v4}. Thus
|X| < |N(X)|, so by Hall’s theorem the graph does not have a perfect matching.
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End of Paper.
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