Vectors & Matrices

Problem Sheet 3

1. Using the Cauchy-Schwarz Inequality, prove that for any vector $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$, we have

$$|u_1| + |u_2| + |u_3| \le \sqrt{3} |\mathbf{u}|$$
.

- 2. (i) Let L be the set of points on the line-segment between vertices (1,0) and (0,1). By considering the set of vectors $\{\lambda \mathbf{i} + (1-\lambda)\mathbf{j} : 0 \le \lambda \le 1\}$, show that the maximal distance between the origin and the line-segment L is 1.
 - (ii) Use your result from part (i) to show that for any square with sides of length 1, the maximal distance between any two points on the square is $\sqrt{2}$.
 - (iii) Show that for any two squares with side-length 1 and a non-empty intersection, the maximal distance between two points within their union is $2\sqrt{2}$.
- 3. The plane Π contains the point P = (2, 2, -2), and is such that the vector $\mathbf{n} = 6\mathbf{i} + \mathbf{j} + 5\mathbf{k}$ is orthogonal to its surface.
 - (i) Determine the Cartesian equation that defines the plane Π .
 - (ii) Consider the set of points $C = \{(\lambda, \lambda^2, 4) : \lambda \in \mathbb{R}\}$. C defines a parabola in three-dimensional space. Find the minimal distance between the parabola C and the plane Π .
- 4. Find the vectors that result from the following vector products:

(i)
$$\mathbf{i} \times \mathbf{j}$$
 , (ii) $\mathbf{j} \times \mathbf{i}$, (iii) $\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$, (iv) $\begin{pmatrix} 17 \\ 119 \\ -53 \end{pmatrix} \times \begin{pmatrix} 17 \\ 119 \\ -53 \end{pmatrix}$.

- 5. The set of points $C = \{ (15\sin\theta + 4, \cos\theta 4\sin\theta, 2\cos\theta + 2\sin\theta) : \theta \in [0, 2\pi) \}$ defines a circle in \mathbb{R}^3 .
 - (i) Identify three points on the circle C, and determine the Cartesian equation that defines the plane containing them.
 - (ii) Find the position vector of the point on this plane that lies closest to the origin.

1

- (iii) Prove that all points on C fall within this plane.
- (iv) Show that the point (1, -1, 1) does not lie on the circle C.