
MTH6105 – Algorithmic Graph Theory Spring 2024

Problem Sheet 4 F. Fischer

You are expected to attempt all exercises before the seminar and to actively
participate in the seminar itself.

1. (a) For functions f, g, h : N → R+ show the following:

(i) f(n) + g(n) is O(max{f(n), g(n)}).
(ii) if f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)).

(b) Let f(n) = a0+a1n+a2n
2+a3n

3, where a0, a1, a2, a3 ∈ Z are constants. Show
that f(n) is O(n3).

(c) Show that 22n is not O(2n). To this end, you may want to assume that it was
and derive a contradiction.

Note: This type of question looks intimidating, but really it is all bark and no
bite. Recalling the relevant definition, all we need to do to show that f(n) is O(g(n))
is find constants c and n0 with certain properties and verify that they indeed satisfy
these properties.

Solution:

(a) (i) Let n0 = 0 and c = 2. Then f(n) + g(n) ≤ c · max{f(n), g(n)} for all
n ≥ n0, so f(n) + g(n) is O(max{f(n), g(n)}).

(ii) Since f(n) is O(g(n)), there exist c > 0 and n0 ≥ 0 such that f(n) ≤ cg(n)
for all n ≥ n0. Since g(n) is O(h(n)), there exist d > 0 and n1 ≥ 0 such
that g(n) ≤ dh(n) for all n ≥ n1. Let e = cd and n2 = max{n0, n1}. Then
f(n) ≤ cg(n) ≤ cdh(n) = eh(n) for all n ≥ n2, so f(n) is O(h(n)).

(b) Let c = |a0|+ |a1|+ |a2|+ |a3| and n0 = 1. Then, for n ≥ n0, f(n) = a0+a1n+
a2n

2 + a3n
3 ≤ |a0|+ |a1|n+ |a2|n2 + |a3|n3 ≤ (|a0|+ |a1|+ |a2|+ |a3|)n3 = cn3.

Thus f(n) is O(n3).

(c) Assume for contradiction that 22n is O(2n), i.e., that there are constants c and
n0 such that for all n ≥ n0, 2

2n ≤ c2n. Let m = max{n0, log2(c) + 1}. Then
m ≥ n0, 2

m > c, and 22m = 2m2m > c2m, which is a contradiction.

Bonus question: Is it true for all functions f : N → R+ and g : N → R+ that
f(n) is O(g(n)) or g(n) is O(f(n))?

2. Euclid’s algorithm determines the greatest common divisor gcd(a, b) of two non-
negative integers a ≥ b by setting r0 = a, r1 = b, and then repeating the following
steps for rounds n = 2, 3, 4, . . . :

• If rn−1 = 0 then stop, output gcd(a, b) = rn−2.

• Find qn and rn such that rn−2 = qnrn−1 + rn and 0 ≤ rn < rn−1.

Problem Sheet 4 MTH6105 (Spring 2024)

Note that (rn)n≥0 is a decreasing sequence of non-negative integers and the algorithm
thus stops after a finite number of rounds. Note further that it makes sense to say
that the size of the input of the algorithm is log2 a + log2 b, because this is the
number of digits of a and b as binary numbers.

(a) If rn were to decrease by 1 in each round, how many rounds would the algorithm
run for?

(b) Show that rn in fact decreases significantly over two consecutive rounds of the
algorithm, namely rn < rn−2/2. You may want to distinguish among the three
cases where rn−1 = rn−2, rn−2/2 < rn−1 < rn−2, or rn−1 ≤ rn−2/2.

(c) Give an upper bound on the maximum number of rounds of the algorithm in
terms of the size of the input to the problem. You may want to argue that
after a certain number k of rounds, rk < 1 and the algorithm must therefore
have stopped.

Solution:

(a) If rn were to decrease by 1 in each round, the algorithm would run for a rounds.
Its running time would therefore be exponential in the size of the input!

(b) If rn−1 = rn−2, then rn = 0 < rn−2/2. If rn−2/2 < rn−1 < rn−2, then rn =
rn−2 mod rn−1 = rn−2 − rn−1 < rn−2/2. Finally, if rn−1 ≤ rn−2/2, then rn =
rn−2 mod rn−1 < rn−1 ≤ rn−2/2.

(c) We have shown that rn < rn−2/2, so rn < r0/2
⌊n/2⌋ = a/2⌊n/2⌋. Assume that

the algorithm has not terminated after k rounds. Then rk ≥ 1, so 2⌊k/2⌋ < a
and thus ⌊k/2⌋ < log2 a. The algorithm therefore cannot run for more than
2 log2 a+ 2 rounds. This is O(log2 a), linear in the size of the input.

3. Consider the following graph.

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

(a) Apply breadth-first search to the graph, starting from v1. Give the tree T after
each iteration of the algorithm.

(b) Apply depth-first search to the graph, starting from v1. Give the tree T after
each iteration of the algorithm.

(c) Which of the algorithms can be used to find a spanning tree of the graph?
Draw such a spanning tree.

2

Problem Sheet 4 MTH6105 (Spring 2024)

(d) Which of the algorithms can be used to find a shortest v1−v8-path in the graph?
Give such a path.

Solution:

(a) When started from v1, breadth-first search constructs a spanning tree T of
the connected component containing v1. Initially V (T) = {v1} and E(T) =
∅. In each iteration the algorithm considers for inclusion any edge that has
exactly one endpoint in V (T), and among these edges chooses one that has
been considered for a maximum number of past iterations. It may thus add
edges in the order

v1v2, v1v5, v1v6, v2v3, v2v7, v5v4, v5v10, v6v8, v6v9.

(b) Depth-first search proceeds in a similar fashion as breadth-first search, but
among the edges considered for inclusion chooses one that has been considered
for a minimum number of past iterations. It may thus add edges in the order

v1v2, v2v3, v3v4, v4v5, v5v10, v10v7, v7v9, v9v6, v6v8.

(c) Both algorithms produce a spanning tree of the connected component contain-
ing the vertex they are started from, and thus a spanning tree of the whole
graph when the graph is connected. For breadth-first search and depth-first
search as described above, these spanning trees look as follows.

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10

(d) The spanning tree T constructed by breadth-first search has the special prop-
erty that it contains a shortest v−u-path for every vertex u, where v is the
vertex the algorithm is started from. The path v1, v6, v8 is thus a shortest
v1−v8-path.

Bonus question: Depth-first search finds a longest path in the above example,
but it does not do so in every graph. In fact, the problem of finding a longest path
is NP-hard, so no efficient algorithm for it may exist. Can you give a graph where
depth-first search does not find a longest path? Why does NP-hardness of finding a
longest path not contradict the fact a longest path is easy to find in some graphs?

3

