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5 Further Model checking 

 

5.1 Outliers 

In regression, an outlier is a single observation where the absolute value of the standardised residual 
is large compared to the rest of the observations. Outliers are usually obvious in residual plots such 
as QQ plots. 

The standardised residual was defined in section 3.4 as 

𝑑 =  
𝑒

[𝑠 (1 − 𝑣 )]

 

or  

𝑑 =  
𝑦 −  𝑦

𝑠  (1 − 𝑣 )
  

 

where,  

𝑣 =
1

𝑛
+ 

(𝑥 − �̅�)

𝑆
 

In some literature you will find suggestions for simple rules for what size of standardised residual 
constitutes an outlier (e.g. some people suggest |𝑑 |>2). However, what residual values constitute 
an outlier should depend on the sample size n. If we take a statistical approach and calculate what 
maximum |𝑑 | would represent a critical value in a test of significance at 95% we get the following: 

Sample size n maximum |𝒅𝒊| at 95% significance 
6 1.93 
8 2.20 

10 2.37 
20 2.77 
30 3.06 
60 3.23 

 

If we discover an outlier, the first step is to check the data for any mistakes. If the data does not 
appear to be an error, then the next step is to re-run the regression analysis with the outlier 
excluded. If the model results differ from the original, then both should be presented. 

 

5.2 Leverage 

Outliers are where one yi is different from the others. We can also have cases where one xi is 
different. This is more of a problem with multiple regression models which we consider later in the 
course, but we will look at the detection of unusual xi now in the context of the simple linear 
regression model. We use leverage or vi which was part of the calculation of standardised residuals 
in section 3.4 but not discussed further at that time. 
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𝑣 =
1

𝑛
+ 

(𝑥 − �̅�)

𝑆
 

Now ∑ 𝑣 = 2 so with n observations, each on average will have leverage of . We generally 

consider an observation with 𝑣 >  as having large leverage. If 𝑣 >  then leverage is very high and 

it is best to check the data for any errors in the recording of the relevant xi value. Large leverage 
means that the observation is influential and taking that observation out would cause a large change 
in the β parameter estimates. 

We can measure the amount of influence any one observation has using Cook’s Statistic often 
labelled Di. We first perform a simple linear regression on n (x,y) observations and find 𝛽 , 𝛽  and 
hence 𝑦 values. Then if we omit the observation (xi , yi) and repeat the linear regression to gain new 
parameters and new fitted values denoted 𝑦( ), Cook’s Statistic for case i is 

𝐷 =
1

2𝑆
(𝑦

( )
−  𝑦 )  

It can be shown that  

𝐷 =
1

2
𝑑

𝑣

1 − 𝑣
 

This second formula for Di shows that that Cook’s Statistic depends on both the standardised 
residual di and the leverage vi. 

One way to use this statistic to see whether an observation is influential is to compare the Di value 
for that observation with the 50th percentile of the 𝐹  distribution. Another way is to rank all of 
the Di values and any that are noticeably larger than the others would suggest an influential 
observation.  

Influential observations do not need to be removed in the way that outliers do but any conclusions 
from a modelling exercise should note that the results would be different without the influential 
observation. 

 

5.3 Transformation of the Response 

If upon checking the model results, we find that the variance is not constant or that the data is not 
from a Normal distribution, it might be possible to obtain a better model by some simple 
transformation of the yi. 

If the data is all non-negative, then the most usual transformation to try first is ln 𝑦.  

Commonly used transformations and the conditions under which they work best are: 
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ln 𝑦 where Var(Y) is proportional to E(Y)2 

𝑦 where Var(Y) is proportional to E(Y), often useful when the data is a 
count 

𝑠𝑖𝑛 ( 𝑦) often useful if the data is proportions 

1/𝑦  

 

5.4 Pure Error and Lack of Fit 

If our analysis of the residuals suggests that the data is not from a Normal distribution with a 
constant variance (the underlying assumption of the simple linear regression model) this means that 
a straight line regression is not a good model choice. We can generally see this from residual plots, 
but here we show how to test for this lack of fit more formally. 

One possible reason for this which we have not explored so far is replications, that is where there 
are multiple different y observations that have the same xi value. 

For notation we use 𝑦  to be the jth observation at 𝑥  where i = 1, 2, … m and j = 1, 2, … ni 

In the simple linear regression model, although each of the 𝑦  observations might well be different 
at a certain 𝑥 , the fitted value will be the same 𝑦  for all j. 

The residuals are now 

𝑒 =  𝑦 −  𝑦    

But now the differences between observed and fitted values come from two sources: 

 random variation in 𝑦  where observations at the same 𝑥  can produce different y values 
 lack of fit in the model which does not capture all that is found in the observed data 

We can distinguish between these two sources of residual error. 

The pure error measures the amount of random variation at 𝑥  and is the difference between an 
observation 𝑦  and the mean of observations taken at the same 𝑥 . 

Pure Error = 𝑦 − 𝑦  

The lack of fit is the difference between the mean observed value and the model fitted value at 𝑥 . 

Lack of Fit = 𝑦 −  𝑦  

And so Residual Error = Pure Error + Lack of Fit 

More generally we can split the residual sum of squares SSE into a pure error sum of squares SSPE that 
measures overall random variation, and a lack of fit sum of squares SSLoF that measures overall 
model lack of fit. 
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Using the ij notation we have 

𝑆𝑆 =  (𝑦 −  𝑦 )  

𝑆𝑆 =  (𝑦 −  𝑦 )  

𝑆𝑆 =  (𝑦 −   𝑦 )  =  𝑛 (𝑦 −  𝑦 )  

and in the simple linear regression model we have 

𝑆𝑆 =  𝑆𝑆 +  𝑆𝑆  

 

Using this we can expand the ANOVA table where there are replications (multiple different yi 
observations at the same xi) splitting 𝑆𝑆  into pure error and lack of fit. 

We first need to apportion the n – 2 residual degrees of freedom between PE and LoF. To calculate 
SSPE we need to find m sample means, the 𝑦  for i = 1,2,… m and each of these calculations takes up a 
degree of freedom. Therefore the degrees of freedom for Pure Error are 𝑛 − 𝑚.  

This leaves (𝑛 − 2) − (𝑛 − 𝑚) = 𝑚 − 2 degrees of freedom for Lack of Fit. 

For the Mean Squares (MS) column of the ANOVA table we will see later in the course that 

𝐸[𝑆𝑆 ] = (𝑛 − 𝑚)𝜎  whether the model is true or not, and that 

𝐸[𝑆𝑆 ] = (𝑚 − 2)𝜎  if the model is true. 

Therefore MSPE gives an unbiased estimator of 𝜎  and furthermore MSLoF can give an unbiased 
estimator of 𝜎  if the regression model is true. 

Thus in all circumstances, 

(𝑛 − 𝑚)𝑀𝑆

𝜎
 ~ 𝜒  

and if the regression model is true, 

(𝑚 − 2)𝑀𝑆

𝜎
 ~ 𝜒  

So finally, for the Variance Ratio (VR) column of the ANOVA table, if the regression model is true 
then the ratio of the two chi-squared statistics above, each divided by their respective degrees of 
freedom, follows a 𝐹  distribution, 

𝑀𝑆

𝑀𝑆
 ~ 𝐹   

We can now set out the expanded ANOVA table for the case where there are replications in the 
observations, and we are able to split residual error between pure error and lack of fit. 
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Source of variation d.f. SS MS VR 

Regression 1 𝑆𝑆  𝑀𝑆   
𝑀𝑆

𝑀𝑆
 

Residual n – 2 𝑆𝑆  𝑀𝑆 =  
𝑆𝑆

𝑛 − 2
  

Lack of Fit 𝑚 − 2 𝑆𝑆  𝑀𝑆 =  
𝑆𝑆

𝑚 − 2
 

𝑀𝑆

𝑀𝑆
 

Pure Error 𝑛 − 𝑚 𝑆𝑆  𝑀𝑆 =  
𝑆𝑆

𝑛 − 𝑚
  

Total n – 1 𝑆𝑆    

 

We now have a lot of information to take into account when assessing a model: 

 residual plots 
 ANOVA table 
 significance tests on individual parameters 
 outliers 
 influential observations 

 

  


