
Vectors & Matrices

Solutions to Problem Sheet 1

1. By definition, i =
−−→
OP1, j =

−−→
OP2, k =

−−→
OP3, where P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1).

If we let Q = (1, 1, 0), then by the definition of vector addition, we have:

i+ j =
−−→
OP1 +

−−→
OP2 =

−−→
OQ .

We can sum this derived vector with the remaining k to get:

−−→
OQ+ k =

−−→
OQ+

−−→
OP3 =

−−→
OR ,

where R = (1, 1, 1). But it’s clear that the points A and R are identical, and so:

−→
OA =

−−→
OR = i+ j+ k .

Per the lecture notes, the column vector


a

b

c


is simply an alternative representation of the vector ai+ bj+ ck, and so


1

1

1

 = i+ j+ k .

By Corollary 3.1.5 in the lecture notes,
−−→
OB +

−−→
BA =

−→
OA, and so these two vectors are equivalent.

By Proposition 3.1.6 in the notes, we find:

−−→
AB = (2− 1)i+ (2− 1)j+ (2− 1)k = i+ j+ k =

−→
OA ,

hence
−−→
AB is equivalent to

−→
OA.

The vector
−−→
OB is not equivalent to

−→
OA. This can be determined by computing the lengths of each

vector:
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|
−→
OA| = |i+ j+ k| = (12 + 12 + 12)

1
2 =

√
3 ,

|
−−→
OB| = |2i+ 2j+ 2k| = (22 + 22 + 22)

1
2 = 2

√
3 ,

Clearly,
−−→
OB has twice the length of

−→
OA, and so the two vectors cannot be equivalent.

2. By two applications of Corollary 3.1.5, we have:

−−→
AB +

−−→
BC +

−−→
CD = (

−−→
AB +

−−→
BC) +

−−→
BC

=
−→
AC +

−−→
CD

=
−−→
AD .

Therefore, taking the sums of the components of each of the three vectors on the left-hand side of

the above equality:

−−→
AD = (1 + 3− 1)i+ (−2 + 1 + 5)j+ (−5 + 4 + 2)k = 3i+ 4j+ k .

Since the components of a vector in the standard basis i, j, k are equal to the end point of its

position vector, we see that E = (3, 4, 1).

3. (i) Let A = (xA, yA, zA). We also define the point B = (xB , yB , zB) to be the point such that

−→
AO =

−−→
OB. (This point can be obtained by simply translating the vector

−→
AO so that its

starting point becomes the origin, and then finding the new end point of the vector).

By Corollary 3.1.5, we know that
−→
OA+

−→
AO =

−→
OA+

−−→
OB =

−−→
OO.

The end point of the vector on the right-hand side of the above equation is the origin, O =

(0, 0, 0). Since
−→
OA and

−−→
OB are both position vectors, we know that their sum must give a

position vector with end point equal the sums of A and B.

Hence, xA + xB = 0, yA + y + B = 0 and zA + zB = 0, and so B = (−xA,−yA,−zA) =

−1 · (xA, yA, zA).

Since
−−→
OB is a position vector, by the definition of scalar multiplication of vectors,

−−→
OB =

−1 ·
−→
OA = −

−→
OA.

(ii) By Corollary 3.1.5,
−−→
AB =

−→
AO +

−−→
OB.

We know from part (i) that
−→
AO = −

−→
OA, and so

−−→
AB = −

−→
OA+

−−→
OB.
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Negation is simply multiplication by a factor of −1, and so we can use the distributivity of

scalar multiples over vector sums (property (vii) in Proposition 3.2.1) to get:

−
−−→
AB = −1 ·

−−→
AB

= −1 · (−
−→
OA+

−−→
OB)

= −1 · (−1 ·
−→
OA+

−−→
OB)

= (−1)(−1)
−→
OA+ (−1)

−−→
OB)

=
−→
OA−

−−→
OB

Proposition 3.2.1 also gives us the commutativity of vector addition in property (i), we can

use this to show −
−−→
AB =

−→
OA−

−−→
OB = −

−−→
OB +

−→
OA.

We again use the fact that −
−−→
OB =

−−→
BO, combined with Corollary 3.1.5, to get:

−
−−→
AB = −

−−→
OB +

−→
OA =

−−→
BO +

−→
OA =

−−→
BA .

4. (i) Per the previous question,
−−→
QO = −

−−→
OQ = −q.

(ii) Let r =
−−→
OR be the position vector of the point R. By definition Corollary 3.1.5, we have:

q =
−−→
OQ =

−−→
OR+

−−→
RQ ,

but since
−−→
RQ =

−−→
OP :

q =
−−→
OR+

−−→
OP = r+ p .

Hence
−−→
OR = r = q− p.

(iii) Again, by Corollary 3.1.5,

−−→
PQ =

−−→
PO +

−−→
OQ = −

−−→
OP +

−−→
OQ = −p+ q = q− p .

(iv) Since OPQR is a parallelogram, we know that
−−→
RQ =

−−→
OP = p, hence

−−→
QR = −

−−→
RQ = −p.

(v) By Corollary 3.15:

−→
RP =

−−→
RO +

−−→
OP = −

−−→
OR+

−−→
OP .

Again, letting r =
−−→
OR gives us

−→
RP = −r+ p.
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But we know from part (ii) that r = q− p, and so:

−→
RP = −(q− p) + p = −q+ p+ p = 2p− q.

5. Suppose we write

v =

n∑
i=1

viei ,

where ei are the standard basis vectors over Rn.

By the distributivity of scalar multiples over vector sums (property (vii) of Proposition 3.2.1), we

have:

λv =

n∑
i=1

λviei .

Hence, by the definition of the length operator:

|λv| =

√√√√ n∑
i=1

(λvi)2 =

√√√√ n∑
i=1

λ2 · v2i =

√√√√λ2 ·
n∑

i=1

v2i ,

where the last equality was obtained by factoring out the common factor of λ2 present in every

term of the sum.

We can now split the square-root between these factors to obtain:

|λv| =

√√√√λ2 ·
n∑

i=1

v2i =
√
λ2

√√√√ n∑
i=1

v2i = |λ||v| .

Geometrically, this tells us that the effect of multiplying a vector by a scalar λ is to extend the

length of the vector by that same proportion.
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