Vectors \& Matrices

Solutions to Problem Sheet 1

1. By definition, $\mathbf{i}=\overrightarrow{O P_{1}}, \mathbf{j}=\overrightarrow{O P_{2}}, \mathbf{k}=\overrightarrow{O P_{3}}$, where $P_{1}=(1,0,0), P_{2}=(0,1,0), P_{3}=(0,0,1)$.

If we let $Q=(1,1,0)$, then by the definition of vector addition, we have:

$$
\mathbf{i}+\mathbf{j}=\overrightarrow{O P_{1}}+\overrightarrow{O P_{2}}=\overrightarrow{O Q}
$$

We can sum this derived vector with the remaining \mathbf{k} to get:

$$
\overrightarrow{O Q}+\mathbf{k}=\overrightarrow{O Q}+\overrightarrow{O P_{3}}=\overrightarrow{O R}
$$

where $R=(1,1,1)$. But it's clear that the points A and R are identical, and so:

$$
\overrightarrow{O A}=\overrightarrow{O R}=\mathbf{i}+\mathbf{j}+\mathbf{k}
$$

Per the lecture notes, the column vector

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

is simply an alternative representation of the vector $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$, and so

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\mathbf{i}+\mathbf{j}+\mathbf{k} .
$$

By Corollary 3.1.5 in the lecture notes, $\overrightarrow{O B}+\overrightarrow{B A}=\overrightarrow{O A}$, and so these two vectors are equivalent. By Proposition 3.1.6 in the notes, we find:

$$
\overrightarrow{A B}=(2-1) \mathbf{i}+(2-1) \mathbf{j}+(2-1) \mathbf{k}=\mathbf{i}+\mathbf{j}+\mathbf{k}=\overrightarrow{O A}
$$

hence $\overrightarrow{A B}$ is equivalent to $\overrightarrow{O A}$.
The vector $\overrightarrow{O B}$ is not equivalent to $\overrightarrow{O A}$. This can be determined by computing the lengths of each vector:

$$
\begin{aligned}
& |\overrightarrow{O A}|=|\mathbf{i}+\mathbf{j}+\mathbf{k}|=\left(1^{2}+1^{2}+1^{2}\right)^{\frac{1}{2}}=\sqrt{3} \\
& |\overrightarrow{O B}|=|2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}|=\left(2^{2}+2^{2}+2^{2}\right)^{\frac{1}{2}}=2 \sqrt{3}
\end{aligned}
$$

Clearly, $\overrightarrow{O B}$ has twice the length of $\overrightarrow{O A}$, and so the two vectors cannot be equivalent.
2. By two applications of Corollary 3.1.5, we have:

$$
\begin{aligned}
\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D} & =(\overrightarrow{A B}+\overrightarrow{B C})+\overrightarrow{B C} \\
& =\overrightarrow{A C}+\overrightarrow{C D} \\
& =\overrightarrow{A D}
\end{aligned}
$$

Therefore, taking the sums of the components of each of the three vectors on the left-hand side of the above equality:

$$
\overrightarrow{A D}=(1+3-1) \mathbf{i}+(-2+1+5) \mathbf{j}+(-5+4+2) \mathbf{k}=3 \mathbf{i}+4 \mathbf{j}+\mathbf{k}
$$

Since the components of a vector in the standard basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are equal to the end point of its position vector, we see that $E=(3,4,1)$.
3. (i) Let $A=\left(x_{A}, y_{A}, z_{A}\right)$. We also define the point $B=\left(x_{B}, y_{B}, z_{B}\right)$ to be the point such that $\overrightarrow{A O}=\overrightarrow{O B}$. (This point can be obtained by simply translating the vector $\overrightarrow{A O}$ so that its starting point becomes the origin, and then finding the new end point of the vector).

By Corollary 3.1.5, we know that $\overrightarrow{O A}+\overrightarrow{A O}=\overrightarrow{O A}+\overrightarrow{O B}=\overrightarrow{O O}$.
The end point of the vector on the right-hand side of the above equation is the origin, $O=$ $(0,0,0)$. Since $\overrightarrow{O A}$ and $\overrightarrow{O B}$ are both position vectors, we know that their sum must give a position vector with end point equal the sums of A and B.

Hence, $x_{A}+x_{B}=0, y_{A}+y+B=0$ and $z_{A}+z_{B}=0$, and so $B=\left(-x_{A},-y_{A},-z_{A}\right)=$ $-1 \cdot\left(x_{A}, y_{A}, z_{A}\right)$.
Since $\overrightarrow{O B}$ is a position vector, by the definition of scalar multiplication of vectors, $\overrightarrow{O B}=$ $-1 \cdot \overrightarrow{O A}=-\overrightarrow{O A}$.
(ii) By Corollary 3.1.5, $\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}$.

We know from part (i) that $\overrightarrow{A O}=-\overrightarrow{O A}$, and so $\overrightarrow{A B}=-\overrightarrow{O A}+\overrightarrow{O B}$.

Negation is simply multiplication by a factor of -1 , and so we can use the distributivity of scalar multiples over vector sums (property (vii) in Proposition 3.2.1) to get:

$$
\begin{aligned}
-\overrightarrow{A B} & =-1 \cdot \overrightarrow{A B} \\
& =-1 \cdot(-\overrightarrow{O A}+\overrightarrow{O B}) \\
& =-1 \cdot(-1 \cdot \overrightarrow{O A}+\overrightarrow{O B}) \\
& =(-1)(-1) \overrightarrow{O A}+(-1) \overrightarrow{O B}) \\
& =\overrightarrow{O A}-\overrightarrow{O B}
\end{aligned}
$$

Proposition 3.2.1 also gives us the commutativity of vector addition in property (i), we can use this to show $-\overrightarrow{A B}=\overrightarrow{O A}-\overrightarrow{O B}=-\overrightarrow{O B}+\overrightarrow{O A}$.

We again use the fact that $-\overrightarrow{O B}=\overrightarrow{B O}$, combined with Corollary 3.1.5, to get:

$$
-\overrightarrow{A B}=-\overrightarrow{O B}+\overrightarrow{O A}=\overrightarrow{B O}+\overrightarrow{O A}=\overrightarrow{B A}
$$

4. (i) Per the previous question, $\overrightarrow{Q O}=-\overrightarrow{O Q}=-\mathbf{q}$.
(ii) Let $\mathbf{r}=\overrightarrow{O R}$ be the position vector of the point R. By definition Corollary 3.1.5, we have:

$$
\mathbf{q}=\overrightarrow{O Q}=\overrightarrow{O R}+\overrightarrow{R Q}
$$

but since $\overrightarrow{R Q}=\overrightarrow{O P}$:

$$
\mathbf{q}=\overrightarrow{O R}+\overrightarrow{O P}=\mathbf{r}+\mathbf{p}
$$

Hence $\overrightarrow{O R}=\mathbf{r}=\mathbf{q}-\mathbf{p}$.
(iii) Again, by Corollary 3.1.5,

$$
\overrightarrow{P Q}=\overrightarrow{P O}+\overrightarrow{O Q}=-\overrightarrow{O P}+\overrightarrow{O Q}=-\mathbf{p}+\mathbf{q}=\mathbf{q}-\mathbf{p}
$$

(iv) Since $O P Q R$ is a parallelogram, we know that $\overrightarrow{R Q}=\overrightarrow{O P}=\mathbf{p}$, hence $\overrightarrow{Q R}=-\overrightarrow{R Q}=-\mathbf{p}$.
(v) By Corollary 3.15:

$$
\overrightarrow{R P}=\overrightarrow{R O}+\overrightarrow{O P}=-\overrightarrow{O R}+\overrightarrow{O P}
$$

Again, letting $\mathbf{r}=\overrightarrow{O R}$ gives us $\overrightarrow{R P}=-\mathbf{r}+\mathbf{p}$.

But we know from part (ii) that $\mathbf{r}=\mathbf{q}-\mathbf{p}$, and so:

$$
\overrightarrow{R P}=-(\mathbf{q}-\mathbf{p})+\mathbf{p}=-\mathbf{q}+\mathbf{p}+\mathbf{p}=2 \mathbf{p}-\mathbf{q}
$$

5. Suppose we write

$$
\mathbf{v}=\sum_{i=1}^{n} v_{i} \mathbf{e}_{\mathbf{i}}
$$

where e_{i} are the standard basis vectors over \mathbf{R}^{n}.
By the distributivity of scalar multiples over vector sums (property (vii) of Proposition 3.2.1), we have:

$$
\lambda \mathbf{v}=\sum_{i=1}^{n} \lambda v_{i} \mathbf{e}_{\mathbf{i}} .
$$

Hence, by the definition of the length operator:

$$
|\lambda \mathbf{v}|=\sqrt{\sum_{i=1}^{n}\left(\lambda v_{i}\right)^{2}}=\sqrt{\sum_{i=1}^{n} \lambda^{2} \cdot v_{i}^{2}}=\sqrt{\lambda^{2} \cdot \sum_{i=1}^{n} v_{i}^{2}},
$$

where the last equality was obtained by factoring out the common factor of λ^{2} present in every term of the sum.

We can now split the square-root between these factors to obtain:

$$
|\lambda \mathbf{v}|=\sqrt{\lambda^{2} \cdot \sum_{i=1}^{n} v_{i}^{2}}=\sqrt{\lambda^{2}} \sqrt{\sum_{i=1}^{n} v_{i}^{2}}=|\lambda||\mathbf{v}| .
$$

Geometrically, this tells us that the effect of multiplying a vector by a scalar λ is to extend the length of the vector by that same proportion.

