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Last week
Lectures on assessing the model

• Residuals

• ANOVA tables

6 more short video lectures to watch

• 7 & 8 on properties of the parameters

• 9 – 12 recapping ANOVA, fitted values and residuals

Your own data for modelling

• Submitted to QM Plus with answers to the questionnaire

• You will need this for the assessed coursework coming next week



This week
Lectures on assessing the model

• Putting together all we have covered so far on modelling

• Confidence intervals and prediction intervals

More short video lectures to watch

• Inference

• Using the models to make predictions

IT Labs

• Opportunity to practice modelling in R

• Skills you will need for the two assessed courseworks



Topics in this Statistical Modelling 
module

4

1
• Principles of statistical modelling

2
• The Simple Linear Regression Model

3
• Least Squares estimation

4
• Properties of estimators

5
• Assessing the model

6
• Inference about the model parameters

7
• Matrix approaches to simple linear regression

8
• Multiple Linear Regression Models



Our Simple Linear Regression Model

𝑦𝑖 = 𝛽0 + 𝛽1 𝑥𝑖 + 𝜀𝑖

where the 𝜀𝑖 are iid 𝜀𝑖 ~ 𝑁(0, 𝜎2)
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… with Least Squares estimators of the 
two model parameters

𝛽0 = ത𝑦 − 𝛽1 ҧ𝑥

and

𝛽1 =
σ𝑖=0
𝑛 (𝑥𝑖− ҧ𝑥 )(𝑦𝑖− ത𝑦)

σ𝑖=0
𝑛 (𝑥𝑖− ҧ𝑥) 2
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Inference

Conclusions we would like to make:

▪ Confidence intervals 
ofor parameters or the mean response

▪ Tests of significance 
ofor parameters

▪ Prediction intervals 
ofor a new observation
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Confidence intervals

For some parameter ϴ

a 95% confidence interval for ϴ means to find boundaries a and b such that 

𝑃 𝑎 < 𝜃 < 𝑏 = 0.95

More generally a 100(1 − 𝛼)% confidence interval for ϴ is to find a and b such 

that 𝑃 𝑎 < 𝜃 < 𝑏 = 1 − 𝛼
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Confidence interval for 𝛽1

The true value of 𝛽1is unknown

We have a point estimate via least squares, 𝛽1

There are times when it would be more useful to have an interval within 
which we are confident 𝛽1 lies

To do this we need to understand the distribution of 𝛽1 and the effect of 
replacing 𝜎2 with its estimate 𝑆2
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Sampling distribution for 𝛽1

We showed last week that the sampling distribution is

𝛽1 ~ 𝑁(𝛽1 ,
𝜎2

𝑆𝑥𝑥
)

Note that even if the yi are not Normal, the 𝛽1 still will be

We can standardise this

𝛽1− 𝛽1
𝜎

√𝑆𝑥𝑥

~ 𝑁(0, 1)
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But the 𝜎2 here is a problem

However, the 𝜎2 is not known

The best we can do is replace it with our unbiased estimate from last week S2

but when we do that the probability distribution changes from Normal to 
Students-t

From Probability & Statistics II

if Z ~ N(0,1) and U ~ 𝜒𝜐
2 then 

𝑍

𝑈/𝜐
~ 𝑡𝜐
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Student t distribution

The student t distribution applies here because we have

𝑍 =
𝛽1− 𝛽1

𝜎

√𝑆𝑥𝑥

~ 𝑁(0, 1) and 𝑈 =
(𝑛−2)𝑆2

𝜎2
~ 𝜒𝑛−2

2

[the second of these we will show formally later in the module]

therefore,  𝑇 =

𝛽1−𝛽1
𝜎

√𝑆𝑥𝑥

√
(𝑛−2)𝑆2

𝜎2(𝑛−2)

=
𝛽1− 𝛽1

𝑆

√𝑆𝑥𝑥

~ 𝑡𝑛−2
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Developing a confidence interval for 𝛽1

If  
𝛽1− 𝛽1

𝑆

√𝑆𝑥𝑥

~ 𝑡𝑛−2 and we define 𝑡𝛼
2

to be the quantity such that

𝑃 𝑡𝜐 < 𝑡𝛼
2
= 1 − 𝛼

then

𝑃 𝛽1 − 𝑡𝛼
2

𝑆

𝑆𝑥𝑥
< 𝛽1 < 𝛽1 + 𝑡𝛼

2

𝑆

𝑆𝑥𝑥
= 1 − 𝛼
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Comment 

The confidence interval for 𝛽1 based on 𝑡𝛼
2

depends on:

▪𝛽1 (which in general is a random variable) and

▪ 𝑆2 (which depends on our observed data)

This means that it only makes sense to calculate the confidence interval given 
a particular set of observed data
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Confidence interval for 𝛽1

For a particular data set

With 𝛽1 and 𝑆2 calculated for that data

𝑎, 𝑏 = 𝛽1 − 𝑡𝛼
2

𝑆

𝑆𝑥𝑥
, 𝛽1 + 𝑡𝛼

2

𝑆

𝑆𝑥𝑥
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Testing the significance of 𝛽1

Last week we used the ANOVA table and F statistic to test the null hypothesis 
H0: 𝛽1 = 0

Now that we have a confidence interval for 𝛽1 there is another way to test this 
same hypothesis

We have already seen 𝑇 =
𝛽1− 𝛽1

𝑆

√𝑆𝑥𝑥

~ 𝑡𝑛−2
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Developing the test statistic

Now under H0: 𝛽1 = 0 this test statistic becomes 𝑇 =
𝛽1
𝑆

√𝑆𝑥𝑥

~ 𝑡𝑛−2

Which we can calculate for any particular data set

We then reject H0 if 

|𝑇| > 𝑡
𝑛−2,

𝛼

2

This is mathematically equivalent to the F statistic test
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Estimated Standard Error of 𝛽1

The estimate of the standard error is the square root of the estimated variance

𝑠𝑒( 𝛽1) =
𝑆2

𝑆𝑥𝑥

We can then re-frame the confidence interval and the test statistic for 𝛽1 in 
terms of this estimated standard error 

𝑎, 𝑏 = 𝛽1 − 𝑡𝛼
2

𝑠𝑒 𝛽1 , 𝛽1 + 𝑡𝛼
2

𝑠𝑒(𝛽1) and 𝑇 =
𝛽1
𝑠𝑒( 𝛽1)

~ 𝑡𝑛−2
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Confidence interval for the mean 
response 𝜇𝑖

We can also develop confidence intervals and test hypotheses for the mean 
response, that is for 𝐸 𝑌𝑖 𝑋𝑖 = 𝑥𝑖] which is often written 𝜇𝑖

Under the simple linear regression model,

𝜇𝑖 = 𝐸 𝑌𝑖 𝑋𝑖 = 𝑥𝑖] = 𝛽0 + 𝛽1𝑥𝑖

And 𝜇𝑖 is estimated by least squares at a particular value of xi as

ෝ𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖
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Sampling distribution for 𝜇𝑖

Under the simple linear regression model, the sampling distribution of 𝜇𝑖 is also 
normal

ෝ𝜇𝑖 ~ 𝑁(𝜇𝑖 , 𝜎
2(

1

𝑛
+

(𝑥𝑖− ҧ𝑥) 2

𝑆𝑥𝑥
) )

Which leads to a 100(1 – α)% confidence interval for ෝ𝜇𝑖 of

𝑎, 𝑏 = ෝ𝜇𝑖 − 𝑡𝛼
2

𝑠𝑒 ෝ𝜇𝑖 , ෝ𝜇𝑖 + 𝑡𝛼
2

𝑠𝑒( ෝ𝜇𝑖)
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Test statistic for the mean response 𝜇𝑖

where,   𝑠𝑒( ෝ𝜇𝑖) = 𝑆2(
1

𝑛
+

(𝑥𝑖− ҧ𝑥) 2

𝑆𝑥𝑥
)

we can test the null hypothesis, 𝐻0: 𝜇𝑖 = 𝑀 for some value M (which is not 
necessarily zero), with the test statistic

𝑇 =
ෞ𝜇𝑖−𝑀

𝑠𝑒(ෞ𝜇𝑖)
~ 𝑡𝑛−2
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A note of caution 

For the estimation of the mean response to be valid,

The value of 𝑥𝑖 used should be within the range of observed values for X

The model has said nothing about the applicability of linear regression outside 
of this range for 𝑥𝑖

We should not use inference about 𝜇𝑖 as a method of extrapolation

However we can now turn to using the model to predict the response value for 
some new value of 𝑥𝑖 for which 𝑦𝑖 has not yet been observed
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Prediction Interval for a new observation

we can use a linear regression model to predict the response value for some 
new value of 𝑥𝑖 for which 𝑦𝑖 has not yet been observed

This is called a Prediction Interval sometimes just PI for a new observation

Let us say that we have a new value for 𝑥𝑖 which we will label 𝑥0

We have yet to observe 𝑦0 so we attempt to predict it

▪ we make this prediction as an interval rather than a single value because of the 
stochastic nature of the model
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Prediction interval (continued)

We seek 𝑦0 = 𝜇0+ 𝜀0

The “point prediction” would be ෞ𝑦0 = ෞ𝜇0 = 𝛽0 + 𝛽1𝑥0

We know that ෞ𝜇0 ~ 𝑁(𝜇0, 𝜎
2(

1

𝑛
+

(𝑥0− ҧ𝑥) 2

𝑆𝑥𝑥
) )

Therefore the distribution of ෞ𝜇0 − 𝜇0 is

ෞ𝜇0 − 𝜇0 ~ 𝑁(0, 𝜎2(
1

𝑛
+

(𝑥0− ҧ𝑥) 2

𝑆𝑥𝑥
) )
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From 𝜇0 to 𝑦0

But rather than ෞ𝜇0 − 𝜇0 we would prefer the distribution of ෞ𝑦0 − 𝑦0

If we add and subtract 𝜀0 to the distribution equation for ෞ𝜇0 − 𝜇0 we have

ෞ𝜇0 − 𝜇0 = ෞ𝜇0 − (𝜇0+ 𝜀0) + 𝜀0

= ෞ𝑦0 − 𝑦0 + 𝜀0 ~ 𝑁(0, 𝜎2(
1

𝑛
+

(𝑥0− ҧ𝑥) 2

𝑆𝑥𝑥
) )

But we know that 𝜀0 ~ 𝑁(0, 𝜎2) from the original model definition, so

ෞ𝑦0 − 𝑦0 ~ 𝑁(0, 𝜎2 1 +
1

𝑛
+

(𝑥0− ҧ𝑥) 2

𝑆𝑥𝑥
)
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From distribution to PI

To get to the prediction interval we need to:

1. standardise the normal distribution

2. replace the unknown variance 𝜎2 with its estimator S2

1. leads to   
ෞ𝑦0− 𝑦0

𝜎2 1+
1

𝑛
+
(𝑥0− ഥ𝑥) 2

𝑆𝑥𝑥

~ 𝑁(0, 1)

2. gives us 
ෞ𝑦0− 𝑦0

𝑆2 1+
1

𝑛
+
(𝑥0− ഥ𝑥) 2

𝑆𝑥𝑥

~ 𝑡𝑛−2
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Prediction interval for y0

The 100(1 − 𝛼 )% prediction interval for y0 is then

ෞ𝑦0 ± 𝑡𝛼
2

𝑆2 1 +
1

𝑛
+

(𝑥0− ҧ𝑥) 2

𝑆𝑥𝑥

Note the prediction interval for 𝑦0 is usually much wider than the confidence 

interval for 𝜇0 because the random variability term 𝜀0 impacts the PI.
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