Inference about the regression parameters

CHRIS SUTTON, FEBRUARY 2024

Last week

Lectures on assessing the model

- Residuals
- ANOVA tables

6 more short video lectures to watch

- 7 & 8 on properties of the parameters
- 9 12 recapping ANOVA, fitted values and residuals

Your own data for modelling

- Submitted to QM Plus with answers to the questionnaire
- You will need this for the assessed coursework coming next week

This week

Lectures on assessing the model

- Putting together all we have covered so far on modelling
- Confidence intervals and prediction intervals

More short video lectures to watch

- Inference
- Using the models to make predictions

IT Labs

- Opportunity to practice modelling in R
- Skills you will need for the two assessed courseworks

Topics in this Statistical Modelling module

• Principles of statistical modelling • The Simple Linear Regression Model • Least Squares estimation • Properties of estimators Assessing the model Inference about the model parameters • Matrix approaches to simple linear regression • Multiple Linear Regression Models

Our Simple Linear Regression Model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

where the ε_i are iid $\varepsilon_i \sim N(0, \sigma^2)$

... with Least Squares estimators of the two model parameters

$$\widehat{\beta_0} = \bar{y} - \widehat{\beta_1} \, \bar{x}$$

and

$$\widehat{\beta_1} = \frac{\sum_{i=0}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=0}^{n} (x_i - \bar{x})^2}$$

Inference

Conclusions we would like to make:

- Confidence intervals
 - ofor parameters or the mean response
- Tests of significance
 - ofor parameters
- Prediction intervals
 - ofor a new observation

inference

Noun: a conclusion reached on the basis of evidence and reasoning

Confidence intervals

For some parameter Θ

a 95% confidence interval for Θ means to find boundaries a and b such that $P(a < \theta < b) = 0.95$

More generally a $100(1-\alpha)\%$ confidence interval for Θ is to find a and b such that $P(a < \theta < b) = 1-\alpha$

Confidence interval for β_1

The true value of β_1 is unknown

We have a point estimate via least squares, $\widehat{\beta}_1$

There are times when it would be more useful to have an interval within which we are confident β_1 lies

To do this we need to understand the distribution of $\widehat{\beta}_1$ and the effect of replacing σ^2 with its estimate S^2

Sampling distribution for $\widehat{\beta_1}$

We showed last week that the sampling distribution is

$$\widehat{\beta_1} \sim N(\beta_1, \frac{\sigma^2}{S_{xx}})$$

Note that even if the y_i are not Normal, the $\widehat{\beta_1}$ still will be We can standardise this

$$\frac{\widehat{\beta_1} - \beta_1}{\frac{\sigma}{\sqrt{S_{xx}}}} \sim N(0, 1)$$

But the σ^2 here is a problem

However, the σ^2 is not known

The best we can do is replace it with our unbiased estimate from last week S²

but when we do that the probability distribution changes from Normal to Students-t

From Probability & Statistics II

if
$$Z \sim N(0,1)$$
 and $U \sim \chi_v^2$ then $\frac{Z}{\sqrt{U}/v} \sim t_v$

Student t distribution

The student t distribution applies here because we have

$$Z = \frac{\widehat{\beta_1} - \beta_1}{\frac{\sigma}{\sqrt{S_{XX}}}} \sim N(0, 1) \text{ and } U = \frac{(n-2)S^2}{\sigma^2} \sim \chi_{n-2}^2$$

[the second of these we will show formally later in the module]

therefore,
$$T=\frac{\frac{\widehat{\beta_1}-\beta_1}{\sigma}}{\sqrt{\frac{(n-2)S^2}{\sigma^2(n-2)}}}=\frac{\widehat{\beta_1}-\beta_1}{\frac{S}{\sqrt{S_{\chi\chi}}}}\sim t_{n-2}$$

Developing a confidence interval for eta_1

If
$$\frac{\widehat{\beta_1} - \beta_1}{\frac{S}{\sqrt{S_{XX}}}} \sim t_{n-2}$$
 and we define $t_{\frac{\alpha}{2}}$ to be the quantity such that

$$P\left(|t_v| < t_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

then

$$P\left(\widehat{\beta_1} - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}} < \beta_1 < \widehat{\beta_1} + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}}\right) = 1 - \alpha$$

Comment

The confidence interval for β_1 based on $t_{\frac{\alpha}{2}}$ depends on:

- lacksquare $\widehat{\beta_1}$ (which in general is a random variable) and
- $^{\bullet}$ S^2 (which depends on our observed data)

This means that it only makes sense to calculate the confidence interval given a particular set of observed data

Confidence interval for β_1

For a particular data set

With $\widehat{\beta_1}$ and S^2 calculated for that data

$$[a,b] = \left[\widehat{\beta_1} - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}}, \widehat{\beta_1} + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{S_{xx}}}\right]$$

Testing the significance of eta_1

Last week we used the ANOVA table and F statistic to test the null hypothesis H_0 : $\beta_1=0$

Now that we have a confidence interval for β_1 there is another way to test this same hypothesis

We have already seen
$$T=\frac{\widehat{\beta_1}-\beta_1}{\frac{S}{\sqrt{S_{\chi\chi}}}}\sim t_{n-2}$$

Developing the test statistic

Now under
$$H_0$$
: $\beta_1=0$ this test statistic becomes $T=\frac{\widehat{\beta_1}}{\frac{S}{\sqrt{S_{\chi\chi}}}}\sim t_{n-2}$

Which we can calculate for any particular data set

We then reject H₀ if

$$|T| > t_{n-2,\frac{\alpha}{2}}$$

This is mathematically equivalent to the F statistic test

Estimated Standard Error of $\widehat{\beta_1}$

The estimate of the standard error is the square root of the estimated variance

$$\widehat{se(\widehat{\beta_1})} = \sqrt{\frac{S^2}{S_{xx}}}$$

We can then re-frame the confidence interval and the test statistic for β_1 in terms of this estimated standard error

$$[a,b] = \left[\widehat{\beta_1} - t_{\frac{\alpha}{2}} \widehat{se(\widehat{\beta_1})}, \ \widehat{\beta_1} + t_{\frac{\alpha}{2}} \widehat{se(\widehat{\beta_1})}\right] \text{ and } T = \frac{\widehat{\beta_1}}{\widehat{se(\widehat{\beta_1})}} \sim t_{n-2}$$

Confidence interval for the mean response μ_i

We can also develop confidence intervals and test hypotheses for the mean response, that is for $E[Y_i|X_i=x_i]$ which is often written μ_i

Under the simple linear regression model,

$$\mu_i = E[Y_i | X_i = x_i] = \beta_0 + \beta_1 x_i$$

And μ_i is estimated by least squares at a particular value of x_i as

$$\widehat{\mu_i} = \widehat{\beta_0} + \widehat{\beta_1} x_i$$

Sampling distribution for μ_i

Under the simple linear regression model, the sampling distribution of μ_i is also normal

$$\widehat{\mu_i} \sim N(\mu_i, \sigma^2(\frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}))$$

Which leads to a $100(1-\alpha)\%$ confidence interval for $\widehat{\mu_i}$ of

$$[a,b] = \left[\widehat{\mu_i} - t_{\frac{\alpha}{2}} \widehat{se(\widehat{\mu_i})}, \widehat{\mu_i} + t_{\frac{\alpha}{2}} \widehat{se(\widehat{\mu_i})}\right]$$

Test statistic for the mean response μ_i

where,
$$\widehat{se(\widehat{\mu_i})} = \sqrt{S^2(\frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}})}$$

we can test the null hypothesis, H_0 : $\mu_i = M$ for some value M (which is not necessarily zero), with the test statistic

$$T = \frac{\widehat{\mu_i} - M}{\widehat{se(\widehat{\mu_i})}} \sim t_{n-2}$$

A note of caution

For the estimation of the mean response to be valid,

The value of x_i used should be within the range of observed values for X

The model has said nothing about the applicability of linear regression outside of this range for x_i

We should not use inference about μ_i as a method of extrapolation

However we can now turn to using the model to predict the response value for some new value of x_i for which y_i has not yet been observed

Prediction Interval for a new observation

we can use a linear regression model to predict the response value for some new value of x_i for which y_i has not yet been observed

This is called a *Prediction Interval* sometimes just *PI* for a new observation

Let us say that we have a new value for x_i which we will label x_0

We have yet to observe y_0 so we attempt to predict it

 we make this prediction as an interval rather than a single value because of the stochastic nature of the model

Prediction interval (continued)

We seek $y_0 = \mu_0 + \varepsilon_0$

The "point prediction" would be $\widehat{y_0} = \widehat{\mu_0} = \widehat{\beta_0} + \widehat{\beta_1} x_0$

We know that $\widehat{\mu_0} \sim N(\mu_0, \, \sigma^2(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}))$

Therefore the distribution of $\widehat{\mu_0} - \mu_0$ is

$$\widehat{\mu_0} - \mu_0 \sim N(0, \sigma^2(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}))$$

From μ_0 to y_0

But rather than $\widehat{\mu_0} - \mu_0$ we would prefer the distribution of $\widehat{y_0} - y_0$ If we add and subtract ε_0 to the distribution equation for $\widehat{\mu_0} - \mu_0$ we have

$$\widehat{\mu_0} - \mu_0 = \widehat{\mu_0} - (\mu_0 + \varepsilon_0) + \varepsilon_0$$

$$= \widehat{y_0} - y_0 + \varepsilon_0 \sim N(0, \sigma^2 (\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}))$$

But we know that $\varepsilon_0 \sim N(0, \sigma^2)$ from the original model definition, so

$$\widehat{y_0} - y_0 \sim N(0, \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right))$$

From distribution to PI

To get to the prediction interval we need to:

- 1. standardise the normal distribution
- 2. replace the unknown variance σ^2 with its estimator S^2

1. leads to
$$\frac{\widehat{y_0} - y_0}{\sqrt{\sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right)}} \sim N(0, 1)$$

2. gives us
$$\frac{\widehat{y_0} - y_0}{\sqrt{S^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}\right)}} \sim t_{n-2}$$

Prediction interval for y_0

The $100(1 - \alpha)$ % prediction interval for y_0 is then

$$\widehat{y_0} \pm t_{\frac{\alpha}{2}} \sqrt{S^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

Note the prediction interval for y_0 is usually much wider than the confidence interval for μ_0 because the random variability term ε_0 impacts the PI.