Vectors & Matrices

Problem Sheet 2

1. Consider the line ℓ that goes through the point P=(3,-1,2) in the direction of the vector $\mathbf{v}=\mathbf{i}-2\mathbf{j}+3\mathbf{k}$.

(i) Show that the point Q = (24, -43, 65) lies on the line ℓ .

(ii) Does the point R = (1, 3, -7) lie on ℓ ?

(iii) The point S = (14, -23, z) lies on ℓ . What is the value of z?

2. Let \mathbf{p} and \mathbf{q} be the position vectors of the points P and Q (respectively).

In general, which of the following sets would **not** define the straight line through points P and Q?

• $\{\mathbf{p} + \lambda(\mathbf{q} - \mathbf{p}) : \lambda \in \mathbb{R}\}$

• $\{\mathbf{p} + 2\lambda(\mathbf{q} - \mathbf{p}) : \lambda \in \mathbb{R}\}$

• $\{\mathbf{q} + \lambda(\mathbf{q} - \mathbf{p}) : \lambda \in \mathbb{R}\}$

• $\{2\mathbf{p} + \lambda(\mathbf{q} - \mathbf{p}) : \lambda \in \mathbb{R}\}\$

• $\{\mathbf{p} + \lambda(\mathbf{p} - \mathbf{q}) : \lambda \in \mathbb{R}\}$

Give a condition on \mathbf{p} that would mean that this set **does** define the line through P and Q.

3. Let $\mathbf{u} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.

Show that the set $\{\lambda \mathbf{u} + \mu \mathbf{v} : \lambda, \mu \in \mathbb{R}\}$ is a sub-vector space of \mathbb{R}^3

4. Let $\mathbf{u} = \begin{pmatrix} 4 \\ -1 \\ 4 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 1 \\ -9 \\ 2 \end{pmatrix}$.

(i) Find the value of $\mathbf{u} \cdot \mathbf{v}$.

(ii) The vector **w** is given by $\begin{pmatrix} 2 \\ 1 \\ z \end{pmatrix}$, where $z \in \mathbb{R}$ is some undetermined parameter.

Find the value of z that would make the vector \mathbf{u} orthogonal to the vector $\mathbf{v} + \mathbf{w}$.

1