## Vectors \& Matrices

## Problem Sheet 2

1. Consider the line $\ell$ that goes through the point $P=(3,-1,2)$ in the direction of the vector $\mathbf{v}=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$.
(i) Show that the point $Q=(24,-43,65)$ lies on the line $\ell$.
(ii) Does the point $R=(1,3,-7)$ lie on $\ell$ ?
(iii) The point $S=(14,-23, z)$ lies on $\ell$. What is the value of $z$ ?
2. Let $\mathbf{p}$ and $\mathbf{q}$ be the position vectors of the points $P$ and $Q$ (respectively).

In general, which of the following sets would not define the straight line through points $P$ and $Q$ ?

- $\{\mathbf{p}+\lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}$
- $\{\mathbf{p}+2 \lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}$
- $\{\mathbf{q}+\lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}$
- $\{2 \mathbf{p}+\lambda(\mathbf{q}-\mathbf{p}): \lambda \in \mathbb{R}\}$
- $\{\mathbf{p}+\lambda(\mathbf{p}-\mathbf{q}): \lambda \in \mathbb{R}\}$

Give a condition on $\mathbf{p}$ that would mean that this set does define the line through $P$ and $Q$.
3. Let $\mathbf{u}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.

Show that the set $\{\lambda \mathbf{u}+\mu \mathbf{v}: \lambda, \mu \in \mathbb{R}\}$ is a sub-vector space of $\mathbb{R}^{3}$
4. Let $\mathbf{u}=\left(\begin{array}{c}4 \\ -1 \\ 4\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}1 \\ -9 \\ 2\end{array}\right)$.
(i) Find the value of $\mathbf{u} \cdot \mathbf{v}$.
(ii) The vector $\mathbf{w}$ is given by $\left(\begin{array}{l}2 \\ 1 \\ z\end{array}\right)$, where $z \in \mathbb{R}$ is some undetermined parameter.

Find the value of $z$ that would make the vector $\mathbf{u}$ orthogonal to the vector $\mathbf{v}+\mathbf{w}$.

