Lines through the origin and products of vectors

Claudia Garetto

Queen Mary University of London
c.garetto@qmul.ac.uk

February 2024

Lines through the origin and example of sub-vector spaces

Let us consider the equation of the line / passing through the origin O and defined via the vector \mathbf{u}, i.e., $\mathbf{r}=\lambda \mathbf{u}$, for $\lambda \in \mathbb{R}$. This gives

$$
V=\{\lambda \mathbf{u}: \lambda \in \mathbb{R}\} .
$$

Proposition 4.2.1

For all $v, v_{1}, v_{2} \in V$ and all $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
v_{1}+v_{2} & \in V \\
\alpha v & \in V .
\end{aligned}
$$

Proposition 4.2.2

Let \mathbf{i} and \mathbf{j} be the standard vector in \mathbb{R}^{2}. The set,

$$
V=\{x \mathbf{i}+y \mathbf{j}: x, y \in \mathbb{R}\}
$$

is a sub-vector space of \mathbb{R}^{2}.

Scalar product

If \mathbf{u} and \mathbf{v} are non-zero vectors with $\overrightarrow{A B}$ representing \mathbf{u} and $\overrightarrow{A C}$ representing \mathbf{v}, we define the angle between \mathbf{u} and \mathbf{v} to be the angle θ (in radians) between the line segments $\overrightarrow{A B}$ and $\overrightarrow{A C}$ with $0 \leq \theta \leq \pi$.

Definition 5.1.1

The scalar product of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and defined by

$$
\mathbf{u} \cdot \mathbf{v}= \begin{cases}|\mathbf{u}||\mathbf{v}| \cos \theta & \text { if } \mathbf{u} \neq \mathbf{0}, \mathbf{v} \neq \mathbf{0} \\ 0 & \text { if } \mathbf{u}=\mathbf{0} \text { or } \mathbf{v}=\mathbf{0}\end{cases}
$$

where θ is the angle between \mathbf{u} and \mathbf{v}.

Definition 5.1.2

We say that \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

Theorem 5.1.3
If $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$. Then

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

Remark 5.1.4

Proposition 5.1.5

For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and $\alpha \in \mathbb{R}$ we have
(1) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$,
(2) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$,
(3) $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$,
(4) $(\alpha \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(\alpha \mathbf{v})=\alpha(\mathbf{u} \cdot \mathbf{v})$.

Interesting inequalities

Cauchy-Schwarz Inequality

Let \mathbf{u} and \mathbf{v} be two vectors in \mathbb{R}^{3}. The following inequality holds:

$$
|\mathbf{u} \cdot \mathbf{v}| \leq|\mathbf{u}||\mathbf{v}| .
$$

Triangle inequality

Let \mathbf{u} and \mathbf{v} be two vectors in \mathbb{R}^{3}. The following inequality holds:

$$
|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}| .
$$

The equation of a plane

Distance from a point to a plane

Proposition 5.4.1

If the plane Π has equation $\mathbf{r} \cdot \mathbf{n}=d$, and the point Q has position vector \mathbf{q}, then the distance between Q and Π is

$$
\frac{|\mathbf{q} \cdot \mathbf{n}-d|}{|\mathbf{n}|},
$$

and the point on Π that is closest to Q has position vector

$$
\mathbf{q}-\left(\frac{\mathbf{q} \cdot \mathbf{n}-d}{|\mathbf{n}|^{2}}\right) \mathbf{n} .
$$

