Lines through the origin and products of vectors

Claudia Garetto

Queen Mary University of London c.garetto@qmul.ac.uk

February 2024

Lines through the origin and example of sub-vector spaces

Let us consider the equation of the line / passing through the origin O and defined via the vector \mathbf{u} , i.e., $\mathbf{r} = \lambda \mathbf{u}$, for $\lambda \in \mathbb{R}$. This gives

$$V = \{\lambda \mathbf{u} : \lambda \in \mathbb{R}\}.$$

Proposition 4.2.1

For all $v, v_1, v_2 \in V$ and all $\alpha \in \mathbb{R}$,

$$v_1+v_2\in V,$$

$$\alpha v \in V$$
.

Proposition 4.2.2

Let **i** and **j** be the standard vector in \mathbb{R}^2 . The set,

$$V = \{x\mathbf{i} + y\mathbf{j} : x, y \in \mathbb{R}\},\$$

is a sub-vector space of \mathbb{R}^2 .

Scalar product

If \mathbf{u} and \mathbf{v} are non-zero vectors with \overrightarrow{AB} representing \mathbf{u} and \overrightarrow{AC} representing \mathbf{v} , we define the *angle between* \mathbf{u} *and* \mathbf{v} to be the angle θ (in radians) between the line segments \overrightarrow{AB} and \overrightarrow{AC} with $0 \le \theta \le \pi$.

Definition 5.1.1

The scalar product of ${\bf u}$ and ${\bf v}$ is denoted by ${\bf u}\cdot{\bf v}$ and defined by

$$\mathbf{u} \cdot \mathbf{v} = \begin{cases} |\mathbf{u}| |\mathbf{v}| \cos \theta & \text{if } \mathbf{u} \neq \mathbf{0}, \mathbf{v} \neq \mathbf{0} \\ 0 & \text{if } \mathbf{u} = \mathbf{0} \text{ or } \mathbf{v} = \mathbf{0} \end{cases}$$

where θ is the angle between \mathbf{u} and \mathbf{v} .

Definition 5.1.2

We say that \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

Theorem 5.1.3

If
$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$. Then

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+u_3v_3.$$

Remark 5.1.4

Proposition 5.1.5

For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and $\alpha \in \mathbb{R}$ we have

- $\mathbf{0} \ \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u},$
- $\mathbf{Q} \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w},$

Interesting inequalities

Cauchy-Schwarz Inequality

Let ${\boldsymbol u}$ and ${\boldsymbol v}$ be two vectors in \mathbb{R}^3 . The following inequality holds:

$$|\mathbf{u}\cdot\mathbf{v}|\leq |\mathbf{u}||\mathbf{v}|.$$

Triangle inequality

Let \mathbf{u} and \mathbf{v} be two vectors in \mathbb{R}^3 . The following inequality holds:

$$|u+v| \leq |u|+|v|.$$

The equation of a plane

Distance from a point to a plane

Proposition 5.4.1

If the plane Π has equation $\mathbf{r} \cdot \mathbf{n} = d$, and the point Q has position vector \mathbf{q} , then the distance between Q and Π is

$$\frac{|\mathbf{q}\cdot\mathbf{n}-d|}{|\mathbf{n}|}\,,$$

and the point on Π that is closest to Q has position vector

$$\mathbf{q} - \left(\frac{\mathbf{q} \cdot \mathbf{n} - d}{|\mathbf{n}|^2}\right) \mathbf{n} .$$