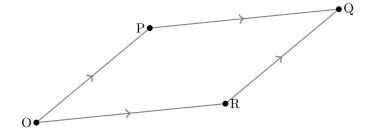
Vectors & Matrices

Problem Sheet 1


1. Let A = (1, 1, 1) and B = (2, 2, 2) be points in \mathbb{R}^3 .

Which of the following vectors is **not** equivalent to \overrightarrow{OA} ?

- \bullet \overrightarrow{AB}
- i + j + k
- $\bullet \overrightarrow{OB}$ $\bullet \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $\to \bullet$
- 2. Consider the vectors $\overrightarrow{AB} = \mathbf{i} 2\mathbf{j} 5\mathbf{k}$, $\overrightarrow{BC} = 3\mathbf{i} + \mathbf{j} + 4\mathbf{k}$, $\overrightarrow{CD} = -\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$. Find the coordinates of the point E such that $\overrightarrow{OE} = \overrightarrow{AD}$.
- 3. For any vector \mathbf{v} , we define the negation of \mathbf{v} by:

$$-\mathbf{v} = -1 \cdot \mathbf{v}$$

- (i) Prove that for any point $A \in \mathbb{R}^3$, we have $-\overrightarrow{OA} = \overrightarrow{AO}$.
- (ii) By using the properties of vectors listed in Proposition 3.2.1, generalise part (i) to show that for any points $A, B \in \mathbb{R}^3$, we have $-\overrightarrow{AB} = \overrightarrow{BA}$.
- 4. Consider the following diagram of the parallelogram OPQR:

Let $\mathbf{p} = \overrightarrow{OP}$, $\mathbf{q} = \overrightarrow{OQ}$ be the position vectors of the points P and Q (respectively).

Express each of the following vectors in terms of \mathbf{p} and \mathbf{q} :

- $(\mathrm{i}) \ \overrightarrow{QO} \ , \quad (\mathrm{ii}) \ \overrightarrow{OR} \ , \quad (\mathrm{iii}) \ \overrightarrow{PQ} \ , \quad (\mathrm{iv}) \ \overrightarrow{QR} \ , \quad (\mathrm{v}) \ \overrightarrow{RP}$
- 5. Prove that for any vector \mathbf{v} and any scalar $\lambda \in \mathbb{R}$, we have $|\lambda \mathbf{v}| = |\lambda| |\mathbf{v}|$.

How can we interpret this result geometrically?