Vectors in the plane and space

Claudia Garetto

Queen Mary University of London c.garetto@qmul.ac.uk

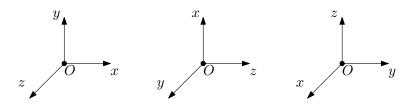
January2024

Position vectors and geometrical interpretation

Definition 3.1.1

Let A and B be two points in \mathbb{R}^3 . The vector \overrightarrow{AB} is the segment with starting point A and ending point B.

Cartesian coordinates in \mathbb{R}^3 and vectors



For the sake of simplicity we will fix the third system of axes in the figure above.

Let us consider the points O = (0,0,0), $P_1 = (1,0,0)$, $P_2 = (0,1,0)$ and $P_3 = (0,0,1)$ and the vectors

Definition 3.1.2

Let $A = (x_A, y_A, z_A)$ be a point in \mathbb{R}^3 . The position vector \overrightarrow{OA} is defined by $x_A \mathbf{i} + y_A \mathbf{j} + z_A \mathbf{k}$ and it is geometrically represented by the segment with starting point O and ending point A.

Definition 3.1.3

Let \mathbb{R}^n the set of all *n*-ple $z=(z_1,z_2,\cdots,z_n)$ of real numbers z_i , $i=1,\cdots,n$. Addition and multiplication by real scalars in \mathbb{R}^n are defined as follows:

(i) for all
$$x = (x_1, x_2, \dots, x_n)$$
 and $y = (y_1, y_2, \dots, y_n)$,

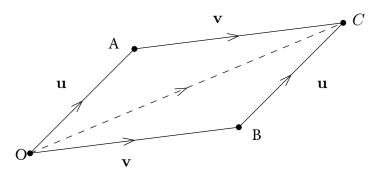
$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n);$$

(ii) for all
$$x=(x_1,x_2,\cdots,x_n)$$
 and $\lambda\in\mathbb{R}$,

$$\lambda x = (\lambda x_1, \lambda x_2, \cdots, \lambda x_n)$$

4D > 4A > 4B > 4B > B 990

The parallelogram rule



 \overrightarrow{OC} is the diagonal of the parallelogram with start point O. We need to prove that $\overrightarrow{OC} = \mathbf{u} + \mathbf{v}$.

Proposition 3.1.4

The sum of the vectors $\overrightarrow{OA} + \overrightarrow{OB}$ is the vector \overrightarrow{OC} which represents the diagonal of the parallelogram constructed on \overrightarrow{OA} and \overrightarrow{OB} .

Proof

Corollary 3.1.5

Let OBCA be the parallelogram above. Then,

$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC},$$
$$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}.$$

Proposition 3.1.6

Let $A = (x_A, y_A, z_A)$ and $B = (x_B, y_B, z_B)$ be two points in \mathbb{R}^3 . The vector \overrightarrow{AB} is the sum

$$\overrightarrow{AO} + \overrightarrow{OB} = (x_B - x_A)\mathbf{i} + (y_B - y_A)\mathbf{j} + (z_B - z_A)\mathbf{k}.$$

Vectors in \mathbb{R}^n

Proposition 3.2.1

 \mathbb{R}^n is a set closed with respect to addition and scalar multiplication. In addition, the following properties hold:

- (i) for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$, (addition in \mathbb{R}^n is commutative),
- (ii) for all $\mathbf{v}, \mathbf{w}, \mathbf{z} \in \mathbb{R}^n$, $(\mathbf{v} + \mathbf{w}) + \mathbf{z} = \mathbf{v} + (\mathbf{w} + \mathbf{z})$, (addition in \mathbb{R}^n is associative),
- (iii) for all $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} + \mathbf{0} = \mathbf{v}$, (0 is the identity for the addition),
- (iv) for all $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} + (-\mathbf{v}) = 0$ ($-\mathbf{v}$ is the additive inverse of \mathbf{v}),
- (v) for all $\alpha, \beta \in \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^n$, $(\alpha\beta)\mathbf{v} = \alpha(\beta\mathbf{v})$, (multiplication by scalars is associative),
- (vi) for all $\mathbf{v} \in \mathbb{R}^n$, $1\mathbf{v} = \mathbf{v}$, (1 is the identity for the multiplication by scalars),
- (vi) for all $\alpha \in \mathbb{R}$ and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $\alpha(\mathbf{v}, +\mathbf{w}) = \alpha \mathbf{v} + \alpha \mathbf{w}$, (distributive property),
- (vii) or all $\alpha \beta \in \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^n$, $(\alpha + \beta)\mathbf{v} = \alpha \mathbf{v} + \alpha \mathbf{w}$, (distributive property).

Definition 3.2.3

Let $i=1,\cdots,n$. The standard vector $\mathbf{e_i}$ is the column vector with the i-th entry equal to 1 and all the others equal to 0.

Proposition 3.2.4

Every vector \mathbf{v} in \mathbb{R}^n can be written as a unique linear combination of the standard vectors, i.e., there exists a unique choice of $v_i \in \mathbb{R}$, $i = 1, \dots, n$, such that

$$\mathbf{v} = \sum_{i=1}^n v_i \mathbf{e_i}.$$

Definition 3.2.6

Let $\mathbf{v} = \sum_{i=1}^{n} v_i \mathbf{e_i}$ be a vector in \mathbb{R}^n . Its length (or norm or module) is defined as

$$|\mathbf{v}| = \sqrt{\sum_{i=1}^n v_i^2}.$$

Proposition 3.2.7

Let $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and let P be the point in \mathbb{R}^3 with coordinates (a, b, c). Then $|\mathbf{v}|$ is the length of the segment OP.