Vectors in the plane and space

Claudia Garetto

Queen Mary University of London
c.garetto@qmul.ac.uk
January2024

Position vectors and geometrical interpretation

Definition 3.1.1

Let A and B be two points in \mathbb{R}^{3}. The vector $\overrightarrow{A B}$ is the segment with starting point A and ending point B.

Cartesian coordinates in \mathbb{R}^{3} and vectors

For the sake of simplicity we will fix the third system of axes in the figure above.

Let us consider the points $O=(0,0,0), P_{1}=(1,0,0), P_{2}=(0,1,0)$ and $P_{3}=(0,0,1)$ and the vectors

$$
\begin{array}{ll}
\overrightarrow{O P_{1}}, & \overrightarrow{O P_{1}}=\mathbf{i} \\
\overrightarrow{O P_{2}}, & \overrightarrow{O P_{2}}=\mathbf{j} \\
\overrightarrow{O P_{3}}, & \overrightarrow{O P_{3}}=\mathbf{k}
\end{array}
$$

Definition 3.1.2

Let $A=\left(x_{A}, y_{A}, z_{A}\right)$ be a point in \mathbb{R}^{3}. The position vector $\overrightarrow{O A}$ is defined by $x_{A} \mathbf{i}+y_{A} \mathbf{j}+z_{A} \mathbf{k}$ and it is geometrically represented by the segment with starting point O and ending point A.

Definition 3.1.3

Let \mathbb{R}^{n} the set of all n-ple $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$
of real numbers $z_{i}, i=1, \cdots, n$. Addition and multiplication by real scalars in \mathbb{R}^{n} are defined as follows:
(i) for all $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$,

$$
x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{n}+y_{n}\right) ;
$$

(ii) for all $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ and $\lambda \in \mathbb{R}$,

$$
\lambda x=\left(\lambda x_{1}, \lambda x_{2}, \cdots, \lambda x_{n}\right)
$$

The parallelogram rule

$\overrightarrow{O C}$ is the diagonal of the parallelogram with start point O. We need to prove that $\overrightarrow{O C}=\mathbf{u}+\mathbf{v}$.

Proposition 3.1.4

The sum of the vectors $\overrightarrow{O A}+\overrightarrow{O B}$ is the vector $\overrightarrow{O C}$ which represents the diagonal of the parallelogram constructed on $\overrightarrow{O A}$ and $\overrightarrow{O B}$.

Proof

Corollary 3.1.5

Let $O B C A$ be the parallelogram above. Then,

$$
\begin{aligned}
& \overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C}, \\
& \overrightarrow{O C}=\overrightarrow{O B}+\overrightarrow{B C} .
\end{aligned}
$$

Proposition 3.1.6

Let $A=\left(x_{A}, y_{A}, z_{A}\right)$ and $B=\left(x_{B}, y_{B}, z_{B}\right)$ be two points in \mathbb{R}^{3}. The vector $\overrightarrow{A B}$ is the sum

$$
\overrightarrow{A O}+\overrightarrow{O B}=\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k}
$$

Vectors in \mathbb{R}^{n}

Proposition 3.2.1

\mathbb{R}^{n} is a set closed with respect to addition and scalar multiplication. In addition, the following properties hold:
(i) for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}, \mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$, (addition in \mathbb{R}^{n} is commutative),
(ii) for all $\mathbf{v}, \mathbf{w}, \mathbf{z} \in \mathbb{R}^{n},(\mathbf{v}+\mathbf{w})+\mathbf{z}=\mathbf{v}+(\mathbf{w}+\mathbf{z})$, (addition in \mathbb{R}^{n} is associative),
(iii) for all $\mathbf{v} \in \mathbb{R}^{n}, \mathbf{v}+\mathbf{0}=\mathbf{v},(\mathbf{0}$ is the identity for the addition),
(iv) for all $\mathbf{v} \in \mathbb{R}^{n}, \mathbf{v}+(-\mathbf{v})=0(-\mathbf{v}$ is the additive inverse of $\mathbf{v})$,
(v) for all $\alpha, \beta \in \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^{n},(\alpha \beta) \mathbf{v}=\alpha(\beta \mathbf{v})$, (multiplication by scalars is associative),
(vi) for all $\mathbf{v} \in \mathbb{R}^{n}, \mathbf{1} \mathbf{v}=\mathbf{v}$, (1 is the identity for the multiplication by scalars),
(vi) for all $\alpha \in \mathbb{R}$ and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}, \alpha(\mathbf{v},+\mathbf{w})=\alpha \mathbf{v}+\alpha \mathbf{w}$, (distributive property),
(vii) or all $\alpha \beta \in \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^{n},(\alpha+\beta) \mathbf{v}=\alpha \mathbf{v}+\alpha \mathbf{w}$, (distributive property).

Definition 3.2.3

Let $i=1, \cdots, n$. The standard vector $\mathbf{e}_{\mathbf{i}}$ is the column vector with the i-th entry equal to 1 and all the others equal to 0 .

Proposition 3.2.4

Every vector \mathbf{v} in \mathbb{R}^{n} can be written as a unique linear combination of the standard vectors, i.e., there exists a unique choice of $v_{i} \in \mathbb{R}, i=1, \cdots, n$, such that

$$
\mathbf{v}=\sum_{i=1}^{n} v_{i} \mathbf{e}_{\mathbf{i}}
$$

Definition 3.2.6

Let $\mathbf{v}=\sum_{i=1}^{n} v_{i} \mathbf{e}_{\mathbf{i}}$ be a vector in \mathbb{R}^{n}. Its length (or norm or module) is defined as

$$
|\mathbf{v}|=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}
$$

Proposition 3.2.7

Let $\mathbf{v}=\mathbf{a} \mathbf{i}+\mathbf{j} \mathbf{j} \mathbf{c k}$ and let P be the point in \mathbb{R}^{3} with coordinates (a, b, c). Then $|\mathbf{v}|$ is the length of the segment $O P$.

