Vectors in the plane and space #### Claudia Garetto Queen Mary University of London c.garetto@qmul.ac.uk January2024 # Position vectors and geometrical interpretation #### Definition 3.1.1 Let A and B be two points in \mathbb{R}^3 . The vector \overrightarrow{AB} is the segment with starting point A and ending point B. ### Cartesian coordinates in \mathbb{R}^3 and vectors For the sake of simplicity we will fix the third system of axes in the figure above. Let us consider the points O = (0,0,0), $P_1 = (1,0,0)$, $P_2 = (0,1,0)$ and $P_3 = (0,0,1)$ and the vectors #### Definition 3.1.2 Let $A = (x_A, y_A, z_A)$ be a point in \mathbb{R}^3 . The position vector \overrightarrow{OA} is defined by $x_A \mathbf{i} + y_A \mathbf{j} + z_A \mathbf{k}$ and it is geometrically represented by the segment with starting point O and ending point A. #### Definition 3.1.3 Let \mathbb{R}^n the set of all *n*-ple $z=(z_1,z_2,\cdots,z_n)$ of real numbers z_i , $i=1,\cdots,n$. Addition and multiplication by real scalars in \mathbb{R}^n are defined as follows: (i) for all $$x = (x_1, x_2, \dots, x_n)$$ and $y = (y_1, y_2, \dots, y_n)$, $$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n);$$ (ii) for all $$x=(x_1,x_2,\cdots,x_n)$$ and $\lambda\in\mathbb{R}$, $$\lambda x = (\lambda x_1, \lambda x_2, \cdots, \lambda x_n)$$ 4D > 4A > 4B > 4B > B 990 # The parallelogram rule \overrightarrow{OC} is the diagonal of the parallelogram with start point O. We need to prove that $\overrightarrow{OC} = \mathbf{u} + \mathbf{v}$. ### Proposition 3.1.4 The sum of the vectors $\overrightarrow{OA} + \overrightarrow{OB}$ is the vector \overrightarrow{OC} which represents the diagonal of the parallelogram constructed on \overrightarrow{OA} and \overrightarrow{OB} . # Proof ### Corollary 3.1.5 Let OBCA be the parallelogram above. Then, $$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC},$$ $$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}.$$ ### Proposition 3.1.6 Let $A = (x_A, y_A, z_A)$ and $B = (x_B, y_B, z_B)$ be two points in \mathbb{R}^3 . The vector \overrightarrow{AB} is the sum $$\overrightarrow{AO} + \overrightarrow{OB} = (x_B - x_A)\mathbf{i} + (y_B - y_A)\mathbf{j} + (z_B - z_A)\mathbf{k}.$$ ## Vectors in \mathbb{R}^n ### Proposition 3.2.1 \mathbb{R}^n is a set closed with respect to addition and scalar multiplication. In addition, the following properties hold: - (i) for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$, (addition in \mathbb{R}^n is commutative), - (ii) for all $\mathbf{v}, \mathbf{w}, \mathbf{z} \in \mathbb{R}^n$, $(\mathbf{v} + \mathbf{w}) + \mathbf{z} = \mathbf{v} + (\mathbf{w} + \mathbf{z})$, (addition in \mathbb{R}^n is associative), - (iii) for all $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} + \mathbf{0} = \mathbf{v}$, (0 is the identity for the addition), - (iv) for all $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} + (-\mathbf{v}) = 0$ ($-\mathbf{v}$ is the additive inverse of \mathbf{v}), - (v) for all $\alpha, \beta \in \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^n$, $(\alpha\beta)\mathbf{v} = \alpha(\beta\mathbf{v})$, (multiplication by scalars is associative), - (vi) for all $\mathbf{v} \in \mathbb{R}^n$, $1\mathbf{v} = \mathbf{v}$, (1 is the identity for the multiplication by scalars), - (vi) for all $\alpha \in \mathbb{R}$ and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $\alpha(\mathbf{v}, +\mathbf{w}) = \alpha \mathbf{v} + \alpha \mathbf{w}$, (distributive property), - (vii) or all $\alpha \beta \in \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^n$, $(\alpha + \beta)\mathbf{v} = \alpha \mathbf{v} + \alpha \mathbf{w}$, (distributive property). #### Definition 3.2.3 Let $i=1,\cdots,n$. The standard vector $\mathbf{e_i}$ is the column vector with the i-th entry equal to 1 and all the others equal to 0. ### Proposition 3.2.4 Every vector \mathbf{v} in \mathbb{R}^n can be written as a unique linear combination of the standard vectors, i.e., there exists a unique choice of $v_i \in \mathbb{R}$, $i = 1, \dots, n$, such that $$\mathbf{v} = \sum_{i=1}^n v_i \mathbf{e_i}.$$ #### Definition 3.2.6 Let $\mathbf{v} = \sum_{i=1}^{n} v_i \mathbf{e_i}$ be a vector in \mathbb{R}^n . Its length (or norm or module) is defined as $$|\mathbf{v}| = \sqrt{\sum_{i=1}^n v_i^2}.$$ ### Proposition 3.2.7 Let $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and let P be the point in \mathbb{R}^3 with coordinates (a, b, c). Then $|\mathbf{v}|$ is the length of the segment OP.