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1. Principles of Statistical Modelling 

1.1 Why and how models are used  

A model is an imitation of a real-world system or process. Models of many activities can be 

developed, for example, in economics, medicine and business. Suppose we wished to ‘predict’ the 

effect that a real-world change would have. In some cases, it might be too risky, or too expensive or 

too slow, to try a proposed change in the real-world even on a sample basis. Trying out the change 

first without the benefit of a model could have serious consequences. A model enables the possible 

consequences to be investigated. The effect of changing certain input parameters can be studied 

before a decision is made to implement the plans in the real-world.  

To build a model of a system or process, a set of mathematical or logical assumptions about how it 

works needs to be developed. The complexity of a model is determined by the complexity of the 

relationships between the various model parameters. For example, in modelling the profitability of a 

business, consideration must be given to issues such as regulations, taxation and sales terms. Future 

events affecting interest rates, inflation, new business and expenses also affect these relationships.  

In order to produce the model and determine suitable parameters, data is needed, and judgements 

need to be made as to the relevance of the observed data to the future environment. Such data may 

result from past observations, from current observations or from expectations of future changes.  

Where observed data is considered to be suitable for producing the parameters for a chosen model, 

statistical methods can be used to fit the data.  

Before finalising the choice of model and parameters, it is important to consider the objectives for 

creation and use of the model. For example, in many cases there may not be a desire to create the 

most accurate model, but instead to create a model that will not understate costs or other risks that 

may be involved.  

While in reality a modelling process does not follow a rigid pattern of prescribed steps, it is helpful in 

introducing the topic to imagine a set of key steps. In practice, statisticians who build and use 

models move back and forth between these key steps continuously to improve the model.  

The key steps in a modelling process can be described as follows:  

i. Develop a well-defined set of objectives which need to be met by the modelling process.  

ii. Plan the modelling process and how the model will be validated.  

iii. Collect and analyse the necessary data for the model.  
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iv. Define the parameters for the model and consider appropriate parameter values.  

v. Define the model initially by capturing the essence of the real-world system. Refining the 

level of detail in the model can come at a later stage.  

vi. Involve experts on the real-world system you are trying to imitate to get feedback on the 

validity of the conceptual model.  

vii. Write the computer program for the model.  

viii. Test the reasonableness of the output from the model.  

ix. Review and carefully consider the appropriateness of the model in the light of small 

changes in input parameters.  

x. Analyse the output from the model.  

xi. Ensure that any relevant professional guidance has been complied with. 

xii. Communicate and document the results and the model.  

 

1.2 Modelling the benefits and limitations  

In many areas of work, one of the most important benefits of modelling is that systems with long 

time frames can be studied in compressed time.  

Other benefits include:  

• Complex systems with stochastic elements, such as the operation of a company can be studied.  

• Different future policies or possible actions can be compared to see which best suits the 

requirements or constraints of a user.  

• In a model of a complex system we can usually get control over the experimental conditions so 

that we can reduce the variance of the results output from the model without upsetting their mean 

values.  

However, models are not the simple solution to all problems – they have drawbacks that must be 

understood when interpreting the output from a model and communicating the results. 

The drawbacks include:  

• Model development requires a considerable investment of time, and expertise. The financial costs 

of development can be quite large given the need to check the validity of the model’s assumptions, 

the computer code, the reasonableness of results and the way in which results can be interpreted in 

plain language by the target audience.  

• In a stochastic model, for any given set of inputs each run gives only estimates of a model’s 

outputs. So, to study the outputs for any given set of inputs, several independent runs of the model 

are needed. As a rule, models are more useful for comparing the results of input variations than for 

optimising outputs.  

• Models can look impressive when run on a computer so that there is a danger that one gets lulled 

into a false sense of confidence. If a model has not passed the tests of validity and verification, its 

impressive output is a poor substitute for its ability to imitate its corresponding real-world system.  

• Models rely heavily on the data input. If the data quality is poor or lacks credibility, then the 

output from the model is likely to be flawed.  
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• It is important that the users of the model understand the model and the uses to which it can be 

safely put. There is a danger of using a model from which it is assumed that all results are valid 

without considering the appropriateness of using that model for the data input and the output 

expected.  

• It is not possible to include all future events in a model. For example, a change in legislation could 

invalidate the results of a model, but may be impossible to predict when the model is constructed.  

• It may be difficult to interpret some of the outputs of the model. They may only be valid in relative 

rather than absolute terms, as when, for example, comparing the level of risk of the outputs 

associated with different inputs.  

 

1.3 Stochastic and deterministic models  

If it is desired to represent reality as accurately as possible, the model needs to imitate the random 

nature of the variables. A stochastic model is one that recognises the random nature of the input 

components. A model that does not contain any random component is deterministic in nature.  

In a deterministic model, the output is determined once the set of fixed inputs and the relationships 

between them have been defined. By contrast, in a stochastic model the output is random in nature 

– like the inputs, which are random variables. The output is only a snapshot or an estimate of the 

characteristics of the model for a given set of inputs. Several independent runs are required for each 

set of inputs so that statistical theory can be used to help in the study of the implications of the set 

of inputs.  

A deterministic model is really just a special (simplified) case of a stochastic model.  

Whether to use a deterministic or a stochastic model depends on whether you are interested in the 

results of a single ‘scenario’ or in the distribution of results of possible ‘scenarios’. A deterministic 

model will give one the results of the relevant calculations for a single scenario; a stochastic model 

gives distributions of the relevant results for a distribution of scenarios.  

 

1.4 Discrete and continuous states and time  

The state of a model is the set of variables that describe the system at a particular point in time 

taking into account the goals of the study. 

Discrete states are where the variables exhibit step function changes in time. For example, from a 

state of alive to dead, or an increase in the number of cars manufactured in a factory. Continuous 

states are where the variables change continuously with respect to time. For example, real time 

changes in values of investments.  

The decision to use a discrete or continuous state model for a particular system is driven by the 

objectives of the study, rather than whether or not the system itself is of a discrete or continuous 

nature.  

A model may also consider time in a discrete or a continuous way.  
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1.5 Suitability of a model  

In assessing the suitability of a model for a particular exercise it is important to consider the 

following:  

• The objectives of the modelling exercise.  

• The validity of the model for the purpose to which it is to be put.  

• The validity of the data to be used.  

• The validity of the assumptions.  

• The possible errors associated with the model or parameters used not being a perfect 

representation of the real-world situation being modelled.  

• The impact of correlations between the random variables that ‘drive’ the model.  

• The extent of correlations between the various results produced from the model.  

• The current relevance of models written and used in the past.  

• The credibility of the data input.  

• The credibility of the results output. 

• The dangers of spurious accuracy.  

• The ease with which the model and its results can be communicated.  

• Regulatory requirements.  

 

1.6 Short-term and long-term properties of a model  

The stability of the relationships incorporated in the model may not be realistic in the longer term. 

For example, exponential growth can appear linear if surveyed over a short period of time. If 

changes can be predicted, they can be incorporated in the model, but often it must be accepted that 

longer term models are suspect.  

Models are by definition, simplified versions of the real-world. They may, therefore, ignore ‘higher 

order’ relationships which are of little importance in the short term, but which may accumulate in 

the longer term.  

 

1.7 Analysing the output of a model  

Statistical sampling techniques are needed to analyse the output of a model, as a simulation is just a 

computer-aided statistical sampling project. The statistician must exercise great care and judgement 

at this stage of the modelling process as the observations in the process are correlated with each 

other and the distributions of the successive observations change over time. Therefore we need to 

be particularly careful before making any assumptions that rely on independence or identical 

distributions. 
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1.8 Sensitivity testing  

Where possible, it is important to test the reasonableness of the output from the model against the 

real-world. To do this, an examination of the sensitivity of the outputs to small changes in the inputs 

or their statistical distributions should be carried out. The appropriateness of the model should then 

be reviewed, particularly if small changes in inputs or their statistical distributions give rise to large 

changes in the outputs. In this way, the key inputs and relationships to which particular attention 

should be given in designing and using the model can be determined.  

 

1.9 Communication of the results  

The final step in the modelling process is the communication and documentation of the results and 

the model itself to others. The communication must be such that it takes account of the knowledge 

of the target audience and their viewpoint. A key issue here is to make sure that the audience 

accepts the model as being valid and a useful tool in decision making. It is important to ensure that 

any limitations on the use and validity of the model are fully appreciated. 
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2. The Simple Linear Regression Model 

 

2.1. The Model 

Let us begin with a simple situation where we have 

• one response variable, Y 

• one explanatory variable, X 

In many situations, 

• X can be controlled and is known 

• Y is unknown but can be observed 

• we have n pairs of observations { (x1,y1), (x2,y2), …, (xn,yn) } 

We would like to use these observations to estimate (or predict) the mean value of Y for some given 

values of X. A good place to start exploring the relationship between X and Y is often to plot them 

using the n pairs of observations. This plot might begin to show the nature of the relationship 

between X and Y.  

It is good practice to seek the simplest model that describes the relationship well. This idea is called 

the principle of parsimony. At this stage we have not defined what “describes well” means and we 

will return to this issue a number of times through the module. A linear relationship (which would be 

indicated by something close to a straight-line plot) is the obvious place to start when looking for a 

simple model. 

Given observation data (xi, yi) for i = 1, 2, … n we can fit a straight line to describe the response 

variable Y in terms of the explanatory variable X where 

𝑌 = 𝛽0 + 𝛽1 𝑋 

where, 

• 𝛽0 denotes the intercept 

• 𝛽1 is the slope of the line 

However this is a deterministic model, meaning it does not allow for any randomness. As such it is 

unlikely that this model properly describes the data which will usually include some random 

elements. 

We introduce randomness by having a probabilistic or stochastic element to the model where the 

model for Y has two parts: 

• the value for Y we expect to observe for a given value of X 

• an additional uncontrolled random value 

This model can be written either as 

𝑌𝑖 = 𝐸[𝑌𝑖|𝑋 = 𝑥𝑖] + 𝜀𝑖  

or as 

𝑌𝑖 = 𝛽0 + 𝛽1 𝑋 + 𝜀𝑖  
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for i = 1, 2, … n 

Here 𝜀𝑖  is the random error. 

It is usual to make the following three standard assumptions about the random error: 

(1) 𝐸[𝜀𝑖] = 0  for all i 

(2) 𝑣𝑎𝑟[𝜀𝑖] =  𝜎
2  for all i 

(3) 𝑐𝑜𝑣[𝜀𝑖, 𝜀𝑗] = 0  for all i ≠ j 

Because 𝜀𝑖  is a random variable, 𝑌𝑖  is also a random variable. We can re-write the three assumptions 

above in terms of 𝑌𝑖|𝑋 = 𝑥𝑖 rather than 𝜀𝑖  

(1) 𝐸[ 𝑌𝑖|𝑋 = 𝑥𝑖] = 𝜇𝑖 = 𝛽0 + 𝛽1 𝑥𝑖  for all i 

(2) 𝑣𝑎𝑟[ 𝑌𝑖|𝑋 = 𝑥𝑖] =  𝜎
2  for all i 

(3) 𝑐𝑜𝑣[𝑌𝑖|𝑋 = 𝑥𝑖, 𝑌𝑗|𝑋 = 𝑥𝑗] = 0  for all i ≠ j 

Putting these three assumptions into words we might say that 

(1) the dependence of Y on X is linear 

(2) the variance of Y at each value of X is constant and does not depend on xi 

(3) Yi and Yj are uncorrelated 

Rather than keep writing 𝑌𝑖|𝑋 = 𝑥𝑖  we often use 𝑦𝑖 = (𝑌𝑖|𝑋 = 𝑥𝑖) and then the simple linear model 

can be written as 

𝐸[𝑦𝑖] =  𝛽0 + 𝛽1 𝑥𝑖 

and  

𝑣𝑎𝑟[𝑦𝑖] =  𝜎
2 

It is often convenient to make a further assumption, that the conditional distribution of Yi is Normal. 

This is the Normal Simple Linear Regression Model which can be written in one of three (equivalent) 

ways: 

(A) 𝑦𝑖  ~ 𝑁(𝜇𝑖 , 𝜎
2) where 𝜇𝑖 = 𝛽0 + 𝛽1 𝑥𝑖   

(B) 𝑦𝑖  ~ 𝑁(𝛽0 + 𝛽1 𝑥𝑖, 𝜎
2) 

(C) 𝑦𝑖 = 𝛽0 + 𝛽1 𝑥𝑖 + 𝜀𝑖 where the 𝜀𝑖  are iid  𝜀𝑖 ~ 𝑁(0, 𝜎
2) 

It can be convenient to redefine the parameters of the simple linear model into a centred form. This 

expresses the response variable 𝑦𝑖  in terms of both the explanatory variable 𝑥𝑖 and the mean level 

of that explanatory variable 𝑥 where 

𝑥 =
1

𝑛
 ∑𝑥𝑖

𝑛

𝑖=1

 

if we set  

𝛼 = 𝛽0 + 𝛽1𝑥  and 𝛽 = 𝛽1 
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then the centred form of the model is 

𝑦𝑖 =  𝛼 +  𝛽(𝑥𝑖 − 𝑥 ) + 𝜀𝑖  

This model is mathematically identical to the previous (non-centred) form of the model but with new 

parameters (𝛼 and 𝛽 instead of 𝛽0, 𝛽1) which allows a new interpretation: 

• the slope 𝛽 is the same as that in the previous model 𝛽1 

• the new intercept 𝛼 is the mean response at the mean level of the explanatory variable  

 

2.2. Least Squares Estimation 

The model parameters (𝛽0, 𝛽1 in the simple linear regression model above) are unknown. With a 

data set we can estimate these parameters – that is find values for the parameters that best explain 

the data we have observed. There are various ways in which parameters can be estimated. Here we 

consider least squares estimation. In later statistics modules you will see other methods e.g. 

maximum likelihood estimation. 

The least squares estimators of the model parameters 𝛽0 and 𝛽1 are the parameter values that 

minimise the sum of the squares of the errors S(𝛽0, 𝛽1). 

𝑆(𝛽0, 𝛽1) =  ∑𝜀𝑖
2

𝑛

𝑖=1

= ∑[𝑦𝑖 − (

𝑛

𝑖=1

𝛽0 + 𝛽1 𝑥𝑖)] 
2 

To find the minimum we need to differentiate S(𝛽0, 𝛽1) with respect to both 𝛽0 and 𝛽1 and set each 

differential to zero, then solve the two simultaneous equations in 𝛽0 and 𝛽1. The values of 𝛽0 and 𝛽1 

that satisfy these simultaneous equations are 𝛽0̂ and 𝛽1̂. 

𝑑𝑆

𝑑𝛽0
= −2∑[𝑦𝑖 − (

𝑛

𝑖=1

𝛽0 + 𝛽1 𝑥𝑖)] =  0          (𝐴) 

and 

𝑑𝑆

𝑑𝛽1
= −2∑[𝑦𝑖 − (

𝑛

𝑖=1

𝛽0 + 𝛽1 𝑥𝑖)]𝑥𝑖 =  0          (𝐵) 

if we divide by -2 and separate the items in the brackets in (A) and (B) above we get 

𝑛𝛽0̂ + 𝛽1 ̂∑𝑥𝑖

𝑛

𝑖=1

= ∑𝑦𝑖

𝑛

𝑖=1

          (𝐶) 

and 

𝛽0̂  ∑𝑥𝑖

𝑛

𝑖=1

+ 𝛽1̂  ∑𝑥𝑖
2
 

𝑛

𝑖=1

= ∑𝑥𝑖

𝑛

𝑖=1

𝑦𝑖            (𝐷) 

 

 where (C) and (D) are sometimes called the normal equations. 

If we divide (C) by n we have 
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𝛽0̂ = 
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

− 𝛽1 ̂
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

           

or 

𝛽0̂ = �̅� − 𝛽1̂ �̅� 

 

and from (D) substituting for 𝛽0̂ from above and rearranging gives 

𝛽1̂ = 
∑ 𝑥𝑖
𝑛
𝑖=1 𝑦𝑖 −

1
𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  ∑ 𝑦𝑖

𝑛
𝑖=1  

∑ 𝑥𝑖
2 −

1
𝑛
 (∑ 𝑥𝑖

𝑛
𝑖=1 ) 2

 

𝑛
𝑖=1

 

or 

𝛽1̂ = 
∑ (𝑥𝑖 − �̅�
𝑛
𝑖=1  )(𝑦𝑖 − �̅�)

∑ (𝑥𝑖 − �̅�) 
2
 

𝑛
𝑖=1

 

which can be written in shorthand as 

𝛽1̂ = 
𝑆𝑥𝑦

𝑆𝑥𝑥
 

Now in calculus, to check that this is indeed a minimum not a maximum for S(𝛽0, 𝛽1) we need to find 

all the second derivatives 
𝑑2𝑆

𝑑𝛽0
2 , 

𝑑2𝑆

𝑑𝛽1
2 , 

𝑑𝑆

𝑑𝛽0𝛽1
 and 

𝑑𝑆

𝑑𝛽1𝛽0
 to check that all are > 0. 

Note that the equations for the least squares estimators 𝛽0̂ and 𝛽1̂ above are functions of Y as well 

as of X. Now Y is a random variable and is generally unknown. This means that 𝛽0̂ and 𝛽1̂ are also 

random variables. Because the response variable Y is not known, all that we can do is calculate 

values for 𝛽0̂ and 𝛽1̂ given a particular set of observations for (xi, yi). These values for 𝛽0̂ and 𝛽1̂ are 

called least squares estimates. The estimator is the algebraic form depending on the variables Xi and 

Yi whilst the estimate is that form evaluated for a certain set of observations (xi, yi). If we use a 

different set of observations, we should expect to get different values for the estimates 𝛽0̂ and 𝛽1̂. 
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3. Assessing the Simple Linear Regression Model 

 

3.1. Properties of the estimators 

There are a number of properties of estimators that are desirable. One is for an estimator to be 

unbiased. 

If 𝜃 is an estimator of 𝜃 then we say that 𝜃 is an unbiased estimator of 𝜃 if 𝐸[𝜃] =  𝜃. 

So what about 𝛽0̂ and 𝛽1̂ in our Normal Simple Linear Regression Model. Are they unbiased? 

We will begin with the estimator of the slope parameter, 𝛽1̂  

Recall from section 2.2 above that  

𝛽1̂ = 
∑ (𝑥𝑖 − �̅�
𝑛
𝑖=1  )(𝑦𝑖 − �̅�)

∑ (𝑥𝑖 − �̅�) 
2
 

𝑛
𝑖=1

 

which means that 𝛽1̂ can be expressed as a function of Yi in the form 

𝛽1̂ = ∑𝑐𝑖𝑌𝑖

𝑛

𝑖=1

 

where 𝑐𝑖 = 
(𝑥𝑖− �̅� )

∑ (𝑥𝑖− �̅�) 
2
 

𝑛
𝑖=1

 or 
(𝑥𝑖− �̅�)

𝑆𝑥𝑥
 

Now under our Normal Simple Linear Regression Model, we assume that the Yi are independent and 

normally distributed, 

𝑦𝑖 = 𝛽0 + 𝛽1 𝑥𝑖 + 𝜀𝑖 where the 𝜀𝑖  are iid  𝜀𝑖 ~ 𝑁(0, 𝜎
2) 

so 

𝑦𝑖  ~ 𝑁(𝛽0 + 𝛽1 𝑥𝑖, 𝜎
2) 

We know from MTH5129 Probability & Statistics II that a linear combination of independent normal 

random variables is itself normally distributed. This means that if Yi follows a Normal distribution, 

then 𝛽1̂ will follow a Normal distribution as well. 

To determine whether 𝛽1̂ is an unbiased estimator we need to find E[ 𝛽1̂] 

𝐸[𝛽1̂] = 𝐸 [∑𝑐𝑖𝑌𝑖

𝑛

𝑖=1

] =∑𝑐𝑖𝐸[𝑌𝑖] =  ∑𝑐𝑖(𝛽0 + 𝛽1 𝑥𝑖) =  𝛽0∑𝑐𝑖

𝑛

𝑖=1

+ 𝛽1 ∑ 

𝑛

𝑖=1

𝑐𝑖𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

 

but  ∑ 𝑐𝑖
𝑛
𝑖=1 = 0 because ∑ (𝑥𝑖 − �̅�) = 0

𝑛
𝑖=1  from the definition of �̅� 

and ∑  𝑛
𝑖=1 𝑐𝑖𝑥𝑖 = 1 because ∑  𝑛

𝑖=1 (𝑥𝑖 − �̅�)𝑥𝑖 = 𝑆𝑥𝑥 

therefore 

𝐸[𝛽1̂] =  𝛽0∑ 𝑐𝑖
𝑛
𝑖=1 + 𝛽1 ∑  𝑛

𝑖=1 𝑐𝑖𝑥𝑖 = 𝛽1  so 𝛽1̂ is an unbiased estimator of 𝛽1  □ 
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Now for the variance of 𝛽1̂ 

𝑣𝑎𝑟[𝛽1̂] = 𝑣𝑎𝑟[ ∑ 𝑐𝑖𝑌𝑖
𝑛
𝑖=1 ] =  ∑ 𝑐𝑖  

2𝑣𝑎𝑟[𝑌𝑖]
𝑛
𝑖=1 = ∑

(𝑥𝑖− �̅�) 
2𝜎2

𝑆𝑥𝑥
2 = 

𝜎2

𝑆𝑥𝑥

𝑛
𝑖=1  

so in summary for 𝛽1̂, the least squares estimator of the slope parameter in the Normal Simple 

Linear Regression Model 

𝛽1̂ ~ 𝑁(𝛽1 ,
𝜎2

𝑆𝑥𝑥
) 

 

Turning to the intercept parameter 𝛽0  

Recall from section 2.2 that 

𝛽0̂ = �̅� − 𝛽1̂ �̅� 

and substituting in our expression for 𝛽1̂ in terms of Yi 

𝛽0̂ = �̅� − �̅�∑𝑐𝑖𝑌𝑖

𝑛

𝑖=1

=
1

𝑛
∑𝑌𝑖

𝑛

𝑖=1

− �̅�∑𝑐𝑖𝑌𝑖

𝑛

𝑖=1

= ∑𝑌𝑖  (
1

𝑛
− 𝑐𝑖�̅�

𝑛

𝑖=1

) 

where 𝑐𝑖 is defined as before. 

This means that 𝛽0̂ can also be expressed as a linear combination of Yi and therefore by the same 

reasoning as for 𝛽1̂ we find that 𝛽0̂ follows a Normal distribution. 

then 

𝐸[𝛽0̂] = 𝐸[�̅� − 𝛽1̂ �̅�] = 𝐸[�̅�] − �̅�𝐸[𝛽1̂] =  𝛽0 + 𝛽1�̅� − 𝛽1�̅�  =  𝛽0  

so 𝛽0̂ is an unbiased estimator of 𝛽0 . 

for the variance of 𝛽0̂ 

𝑣𝑎𝑟[𝛽0̂] = 𝑣𝑎𝑟[∑ 𝑌𝑖  (
1

𝑛
− 𝑐𝑖�̅�

𝑛
𝑖=1 )] =  ∑ 𝜎2 (

1

𝑛
− 𝑐𝑖�̅�)  

2𝑛
𝑖=1 = 𝜎2∑ (

1

𝑛2
− 2

𝑐𝑖�̅�

𝑛
+ 𝑐𝑖

2�̅�2)𝑛
𝑖=1   

= 𝜎2( 
𝑛

𝑛2
− 0 + ∑

(𝑥𝑖 − �̅�) 
2 �̅�2

𝑆𝑥𝑥
2

𝑛

𝑖=1

= 𝜎2(
1

𝑛
+
�̅�2

𝑆𝑥𝑥
 ) 

putting these together we have, for 𝛽0̂, the least squares estimator of the intercept parameter in the 

Normal Simple Linear Regression Model 

𝛽0̂ ~ 𝑁(𝛽0, 𝜎
2(
1

𝑛
+
�̅�2

𝑆𝑥𝑥
 ) ) 

 

3.2. Assessing the model 

If our model is 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖 
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then with estimates 𝛽0̂ and 𝛽1̂ and a set of observations (xi, yi) i=1, 2, …, n we can fit the model and 

estimate the response variable with 

�̂�𝑖 = �̂�0 + �̂�1𝑥𝑖 

where the �̂�𝑖  values �̂�1, �̂�2, … �̂�𝑛 are the fitted values or points on the fitted regression line 

corresponding to the n observed 𝑥𝑖 values. 

Now the observed values 𝑦1, 𝑦2, … 𝑦𝑛 will be different to the fitted values �̂�1, �̂�2, … �̂�𝑛 that is the 

observed values will not all lie on the fitted regression line. We define the residuals (sometimes 

called the crude residuals) to be  

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖  

That is the residuals are the observed values minus the fitted values. 

The residuals 𝑒𝑖 are estimates of the random errors 𝜀𝑖  in the original model specification. 

From the least squares definition of �̂�0 and �̂�1 we will see that ∑ 𝑒𝑖 = 0
𝑛
𝑖=0  

 

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 = 𝑒𝑖 = 𝑦𝑖 − (�̂�0 + �̂�1𝑥𝑖) = 𝑦𝑖 − �̅� − �̂�1(𝑥𝑖 − �̅�)  

so 

∑ 𝑒𝑖 = ∑ (𝑦𝑖 − �̅�)
𝑛
𝑖=0 − 𝑛

𝑖=0 �̂�1∑ (𝑥𝑖 − �̅�)
𝑛
𝑖=1 = 0 − 0 = 0  from the definitions of �̅� and �̅�. 

 

When we found the least squares estimators 𝛽0̂ and 𝛽1̂ we used a quantity S which is actually a 

function of 𝛽0 and 𝛽1 so S(𝛽0, 𝛽1) where from section 2.2 

𝑆(𝛽0, 𝛽1) =  ∑𝜀𝑖
2

𝑛

𝑖=1

 

The value of this function for a given data set (xi, yi) evaluated at the least squares estimates �̂�0 and 

�̂�1 is called the Residual Sum of Squares and is denoted 𝑆𝑆𝐸 where 

𝑆𝑆𝐸 = ∑𝑒𝑖
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − �̂�𝑖) 
2

𝑛

𝑖=1

 

 

For a particular data set, 𝑆𝑆𝐸 is the minimum value of S(𝛽0, 𝛽1) and is a measure of how well the 

model fits the data. The 𝑆𝑆𝐸 is one of the sources of variance of the 𝑦𝑖  around their mean �̅�. 

The total variance of the 𝑦𝑖  around their mean �̅� can be expressed as the Total Sum of Squares 

denoted 𝑆𝑆𝑇 where 

𝑆𝑆𝑇 = ∑(𝑦𝑖 − �̅�) 
2

𝑛

𝑖=1

 

In the Simple Linear Regression Model we will see that: 
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Total Sum of Squares = Regression Sum of Squares + Residual Sum of Squares 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 

where 𝑆𝑆𝑇 and 𝑆𝑆𝐸 have already been defined.  

This equation is sometimes called the Analysis of Variance Identity 

The Regression Sum of Squares is 𝑆𝑆𝑅 = ∑ (�̂�𝑖 − �̅�) 
2𝑛

𝑖=1  which is sometimes referred to as the 

Model Fit Sum of Squares 

𝑆𝑆𝑇 = ∑(𝑦𝑖 − �̅�) 
2

𝑛

𝑖=1

=∑[(𝑦𝑖 − �̂�𝑖) + (�̂�𝑖 − �̅�)] 
2

𝑛

𝑖=1

  

= ∑[(𝑦𝑖 − �̂�𝑖) 
2 + (�̂�𝑖 − �̅�) 

2

𝑛

𝑖=1

− 2(𝑦𝑖 − �̂�𝑖)(�̂�𝑖 − �̅�)] 
  

= 𝑆𝑆𝐸 + 𝑆𝑆𝑅 +  2∑ 

𝑛

𝑖=1

(𝑦𝑖 − �̂�𝑖)(�̂�𝑖 − �̅�) 

 

now the third term in this equation becomes, after multiplying out the second bracket, 

∑(𝑦𝑖 − �̂�𝑖)�̂�𝑖 − �̅�  ∑(𝑦𝑖 − �̂�𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

= ∑𝑒𝑖�̂�𝑖

𝑛

𝑖=1

− �̅�∑𝑒𝑖 = 

𝑛

𝑖=1

∑𝑒𝑖�̂�𝑖

𝑛

𝑖=1

− 0 

 

∑𝑒𝑖�̂�𝑖

𝑛

𝑖=1

= ∑𝑒𝑖(�̂�0 + �̂�1𝑥𝑖)

𝑛

𝑖=1

=  �̂�0∑𝑒𝑖 + �̂�1 

𝑛

𝑖=1

∑𝑒𝑖𝑥𝑖 =   0 + 0 = 0

𝑛

𝑖=1

 

 

therefore 𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸    □ 

That is Total Sum of Squares is made up of: 

• the Regression Sum of Squares – the variability in the 𝑦𝑖  around their mean �̅� which is 

accounted for by the fitted model, and 

• the Residual Sum of Squares - the variability in the 𝑦𝑖  accounted for by the difference 

between observed and fitted values. 

This view of the variability in the 𝑦𝑖  is often represented in an Analysis of Variance Table often called 

an ANOVA Table for short. 

 

3.3 The ANOVA Table 

The Analysis of Variance (ANOVA) table is shown below: 
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Source of variation d.f. SS MS VR 

Regression 𝑣𝑅 = 1 𝑆𝑆𝑅 𝑀𝑆𝑅 = 
𝑆𝑆𝑅
𝑣𝑅

 𝐹 = 
𝑀𝑆𝑅
𝑀𝑆𝐸

 

Residual 𝑣𝐸  = n – 2 𝑆𝑆𝐸 𝑀𝑆𝐸 = 
𝑆𝑆𝐸
𝑣𝐸

  

Total 𝑣𝑇 = n – 1 𝑆𝑆𝑇   

 

In the ANOVA table, the variability in the 𝑦𝑖  is accounted for in four different quantities, each 

represented by a column in the table: 

• degrees of freedom (d.f.) 

• Sum of Squares (SS) 

• Mean Squares (MS) 

• Variance Ratio (VR) 

We have already covered Sum of Squares above but will now look at the other quantities in the 

table. 

Degrees of Freedom 

If we have n observations y1, y2, …, yn and then fix either the sum of them or their mean, we can let 

the values of y1 vary and still get that sum or mean, we can let the values of y1 and y2 vary and still 

get that sum or mean, … indeed we can let the values of y1, y2, …, yn-1 vary, but then we will need a 

certain value for yn to get the required sum or mean. So here if we have n observations, n-1 are free 

to vary but one will need to depend on the others. One way of thinking about this is with n 

observations and a fixed sum or mean, n-1 are independent and free to vary and 1 is taken up by the 

fixed sum or mean. An estimate of a parameter will be based on observations or pieces of 

information. The number of independent observations that are used in the estimation of a 

parameter are the degrees of freedom (often abbreviated d.f.). 

With the Total Sum of Squares 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − �̅�) 
2𝑛

𝑖=1  we have n observations, and one degree of 

freedom is taken up by the calculation of �̅�, so 𝑆𝑆𝑇 has n – 1 degrees of freedom in the ANOVA 

table. 

With the Residual Sum of Squares 𝑆𝑆𝐸 = ∑ 𝑒𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − �̂�𝑖) 
2 = ∑ (𝑦𝑖 − �̂�0 − �̂�1𝑥𝑖) 

2𝑛
𝑖=1

𝑛
𝑖=1  

one degree of freedom is taken up with the estimation of �̂�0 and one d.f. is taken up with the 

estimation of �̂�1, so 𝑆𝑆𝐸 has n – 2 degrees of freedom in the ANOVA table. 

As 𝑆𝑆𝑅 = 𝑆𝑆𝑇 − 𝑆𝑆𝐸 we can find the degrees of freedom for the Regression Sum of Squares 𝑆𝑆𝑅 by 

the difference in the d.f. for the Total and Residual Sums of Squares = (n – 1) – (n – 2) = 1. 

Mean Squares 

The 𝑀𝑆𝑅 and 𝑀𝑆𝐸 in the ANOVA table are a measure of the average variation by Regression and 

Residuals found by dividing the appropriate Sum of Squares by its degrees of freedom. 

Variance Ratio 



15 
 

This ratio measures the variation explained by the model fit relative to that explained by the 

residuals and is denoted F. 

𝐹 = 
𝑀𝑆𝑅
𝑀𝑆𝐸

 

We know from MTH5129 Probability & Statistics II that if random variable X follows a Chi-squared 

distribution on v1 degrees of freedom and variable Y follows a Chi-squared distribution on v2 degrees 

of freedom, then  
𝑋
𝑣1⁄

𝑌
𝑣2⁄

 follows a Fisher’s F Distribution often simply called an F-Distribution with 

𝑣1and 𝑣2 degrees of freedom. 

This is written as ℱ𝑣1,𝑣2 or ℱ𝑣2
𝑣1 or as ℱ(𝑣1, 𝑣2). The F-Distribution is skewed and depends on two 

parameters (𝑣1, 𝑣2). 

This distribution and the Variance Ratio are particularly useful in the Linear Regression model for 

testing whether 𝛽1is statistically different from zero. If 𝛽1 = 0 then we could replace the full linear 

regression model 𝑦𝑖 = 𝛽0 + 𝛽1 𝑥𝑖 + 𝜀𝑖 with a simpler constant model, 𝑦𝑖 = 𝛽0 + 𝜀𝑖. 

We will see later in this course that if 𝛽1 = 0 then the Variance Ratio,  

𝐹 = 
𝑀𝑆𝑅
𝑀𝑆𝐸

 ~ ℱ𝑛−2
1  

So to test the null hypothesis 𝐻0: 𝛽1 = 0 versus the alternative 𝐻1: 𝛽1 ≠ 0 we use the Variance 

Ratio, F as a test statistic. We reject 𝐻0 at significance level 𝛼 if  

𝐹 > ℱ𝑛−2
1 (𝛼) 

where ℱ𝑛−2
1 (𝛼) is the value such that 𝑃 (𝐹 > ℱ𝑛−2

1 (𝛼)) =  𝛼  

The ANOVA table can also be used to estimate the variance of the residuals 𝜎2 (which in the Normal 

Simple Regression Model is also the variance of the yi). 

The Sums of Squares are all functions of the yi which means that because the yi are random 

variables, the different Sums of Squares are random variables as well. It can be helpful to explore the 

stochastic properties of the Sums of Squares: their expectation, variance and distribution. We will do 

this in full later on in the course. For now, we will note without proof that in the simple linear 

regression model, the expected value of the Residual Sum of Squares is given by 

𝐸(𝑆𝑆𝐸) = (𝑛 − 2)𝜎
2 

Now  

𝑀𝑆𝐸 = 
𝑆𝑆𝐸
𝑣𝐸

= 
𝑆𝑆𝐸
𝑛 − 2

 

which means that  
𝐸(𝑀𝑆𝐸) = 𝜎

2 

so 𝑀𝑆𝐸 is an unbiased estimator for 𝜎2 and is often denoted 𝑆2. This is interesting because 𝑀𝑆𝐸 

itself is not the sample variance in the full linear regression model. 

The final quantity to mention here is the Coefficient of Determination denoted 𝑅2 which is usually 

expressed as a percentage and is the percentage of total variation in the yi explained by the model 

fitted. That is 
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𝑅2 = 
𝑆𝑆𝑅
𝑆𝑆𝑇

100% = (1 − 
𝑆𝑆𝐸
𝑆𝑆𝑇

)100% 

where, 𝑅2 = 0 means that none of the variability in the data is explained by the regression model, 

and 𝑅2 = 100 means that all the observations fit precisely on the fitted regression line. 

Note that 𝑅2 is not an indicator of whether there is a relationship between Y and X but rather the 

extent to which that relationship is linear. 

 

3.4 Fitted values and residuals 
 

From section 3.2 above, the residuals or crude residuals are 𝑒𝑖 where 

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖  

which we can also write as 

𝑒𝑖 = 𝑦𝑖 − (�̂�0 + �̂�1𝑥𝑖) 

or as 

𝑒𝑖 = 𝑦𝑖 − �̅� − �̂�1(𝑥𝑖 − �̅�) 

and that ∑ 𝑒𝑖 = 0
𝑛
𝑖=1 . 

Now 𝐸(𝑒𝑖) = 𝐸 (𝑦𝑖 − (�̂�0 + �̂�1𝑥𝑖)) = 𝐸(𝑦𝑖) − 𝐸 ((�̂�0 + �̂�1𝑥𝑖)) = (𝛽0 + 𝛽1𝑥𝑖) − (𝛽0 + 𝛽1𝑥𝑖) = 0 

So the mean of the ith residual is zero. 

The variance of 𝑒𝑖 is given by 

𝑣𝑎𝑟(𝑒𝑖) =  𝜎
2(1 −

1

𝑛
− 
(𝑥𝑖 − �̅�)

2

𝑆𝑥𝑥
) 

We will not derive this (or the covariance term below) from first principles in this module. 

Note though that 𝑣𝑎𝑟(𝑒𝑖) is not the same as 𝑣𝑎𝑟(𝜀𝑖) which is a constant, 𝜎2 whereas the expression 

for 𝑣𝑎𝑟(𝑒𝑖) includes 𝑥𝑖 so it is different for each i. 

The covariance of two residuals 𝑒𝑖 and 𝑒𝑗 is given by 

𝑐𝑜𝑣(𝑒𝑖, 𝑒𝑗) =  −𝜎
2(
1

𝑛
+ 
(𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�)

 

𝑆𝑥𝑥
) 

which again is different from 𝑐𝑜𝑣(𝜀𝑖, 𝜀𝑗) = 0. 

Therefore from the variance and covariance terms we see that the residuals of the fitted model (𝑒𝑖) 

do not behave in exactly the same way as the error term in the original model specification (𝜀𝑖). 

Therefore rather than crude residuals (𝑒𝑖) it is sometimes useful to consider standardised residuals 

sometimes denoted 𝑑𝑖. The standardised residuals are designed to have a variance that is closer to 

the constant 𝜎2 and covariances that are closer to zero. 
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𝑑𝑖 = 
𝑒𝑖

[𝑠2(1 − 𝑣𝑖)]
1
2

 

where,  

𝑣𝑖 =
1

𝑛
+ 
(𝑥𝑖 − �̅�)

2

𝑆𝑥𝑥
 

Residual Plots can be a useful way of checking a linear regression model: 

• plot the 𝑑𝑖  against the 𝑥𝑖 to check whether a linear model is appropriate and to see whether 

the Normal assumptions are appropriate 

• plot the 𝑑𝑖  against the fitted �̂�𝑖  to check for a constant variance (which is called 

homoscedasticity) 

To check the assumption of normality (that the errors follow a Normal distribution) we can also use 

a QQ Plot. If the residual data is from a Normal distribution, then the QQ Plot will be close to a 

straight line. Points on the QQ Plot away from a straight line suggest that the residuals follow some 

other, non-Normal, distribution. The QQ Plot is a good first indication but later in the module we will 

look at a more formal statistical test of the hypothesis that the errors are normally distributed. 

 

  



18 
 

4 Inference about the regression parameters 

In our simple linear regression model of 

𝑦𝑖 = 𝛽0 + 𝛽1 𝑥𝑖 + 𝜀𝑖 where the 𝜀𝑖  are iid  𝜀𝑖 ~ 𝑁(0, 𝜎
2) 

we have found (see section 2.2 above) that the least squares estimates of 𝛽0 and 𝛽1 are given by 

𝛽0̂ = �̅� − 𝛽1̂ �̅� 

and 

𝛽1̂ = 
∑ (𝑥𝑖 − �̅�
𝑛
𝑖=1  )(𝑦𝑖 − �̅�)

∑ (𝑥𝑖 − �̅�) 
2
 

𝑛
𝑖=1

 

 

4.1 Confidence Interval for 𝛽1  

We found earlier that the sampling distribution of 𝛽1 ̂ is  

𝛽1̂ ~ 𝑁(𝛽1 ,
𝜎2

𝑆𝑥𝑥
) 

(Note that even where the yi are not normally distributed the distribution of 𝛽1̂ is approximately 

normal.) 

We can standardise the 𝛽1̂, that is find the function of 𝛽1̂ that follows a standard normal N(0,1) 

distribution, 

𝛽1̂ − 𝛽1 
𝜎   

√𝑆𝑥𝑥

 ~ 𝑁(0, 1) 

However σ2 is generally not known, so we will need to replace it with it’s estimate s2. When we do 

this, the normal distribution becomes a Student t-distribution. 

That is because, more generally, if Z ~ N(0,1) and U ~ 𝜒𝜐
2 then 

𝑍

√𝑈/𝜐
 ~ 𝑡𝜐  

We already have  

𝑍 =  
𝛽1̂ − 𝛽1 
𝜎  

√𝑆𝑥𝑥

 ~ 𝑁(0, 1) 

and we will see later in the course that 

𝑈 = 
(𝑛 − 2)𝑆2

𝜎2
 ~ 𝜒𝑛−2

2  

therefore 𝑇 = 

𝛽1̂− 𝛽1 
𝜎 

√𝑆𝑥𝑥

√
(𝑛−2)𝑆2

𝜎2(𝑛−2)

= 
𝛽1̂− 𝛽1 

𝑆

√𝑆𝑥𝑥

 ~ 𝑡𝑛−2 
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If we have some parameter ϴ a 95% confidence interval for ϴ means to find boundaries a and b such 

that 𝑃(𝑎 < 𝜃 < 𝑏) = 0.95. More generally a 100(1 −  𝛼)% confidence interval for ϴ is to find a and 

b such that 𝑃(𝑎 < 𝜃 < 𝑏) = 1 −  𝛼. 

In practice, a confidence interval for 𝛽1 will depend on the data and the estimate  𝛽1̂ found from that 

data. Using the Student-t distribution above, and defining 𝑡𝛼
2
 to be the quantity such that  

𝑃 (|𝑡𝜐| <  𝑡𝛼
2
) = 1 − 𝛼 

then  

𝑃 ( 𝛽1̂ − 𝑡𝛼
2

𝑆

√𝑆𝑥𝑥
< 𝛽1 < 𝛽1̂ + 𝑡𝛼

2

𝑆

√𝑆𝑥𝑥
) = 1 − 𝛼 

So for a particular data set where 𝛽1̂ and S become values from observed data rather than random 

variables, we can calculate the 100(1 − 𝛼 )% confidence interval [a, b] for 𝛽1  where 

[𝑎, 𝑏] = [𝛽1̂ − 𝑡𝛼
2

𝑆

√𝑆𝑥𝑥
 , 𝛽1̂ + 𝑡𝛼

2

𝑆

√𝑆𝑥𝑥
] 

 

4.2 Testing the significance of 𝛽1  

In section 3.3 above we saw that we can test the null hypothesis 𝐻0: 𝛽1 = 0 using the ANOVA table 

and the F statistic. There is another way to test the same null hypothesis based upon how we have 

derived the confidence interval for 𝛽1. 

Under this null hypothesis, the slope is zero and therefore we have a constant model that can be 

written 𝑦𝑖 = 𝛽0 + 𝜀𝑖 

We can test this null hypothesis using the test statistic T developed above for confidence intervals. If 

H0 is true then 𝛽1 is zero and so 

𝑇 = 
𝛽1̂
𝑆

√𝑆𝑥𝑥

 ~ 𝑡𝑛−2 

For a given data set we can calculate the value of T. We then reject the null hypothesis 𝐻0: 𝛽1 = 0 

at significance level α if 

|𝑇| >  𝑡
𝑛−2,

𝛼
2

 

This methodology is in fact equivalent mathematically to the ANOVA table F-statistic route. 

Sometimes you will see equations such as those above for the confidence interval and the test 

statistic T written in terms of the estimated standard error of  𝛽1̂. The standard error se(𝛽1̂) is the 

square root of the variance of  𝛽1̂. Our estimate of the standard error of  𝛽1̂ is 

𝑠𝑒( 𝛽
1
̂)̂ = √

𝑆2

𝑆𝑥𝑥
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and using the standard error notation, the confidence interval becomes 

[𝑎, 𝑏] = [𝛽1̂ − 𝑡𝛼
2
 𝑠𝑒( 𝛽1̂)
̂  , 𝛽1̂ + 𝑡𝛼

2
 𝑠𝑒( 𝛽1̂)
̂ ] 

and the T test statistic is 

𝑇 = 
𝛽1̂

𝑠𝑒( 𝛽1̂)
̂

 ~ 𝑡𝑛−2 

 

4.3 Inference about 𝛽0 

Because in modelling we are generally interested in the relationship between Y and X, we are usually 

most interested in parameter 𝛽1. We can however also develop confidence intervals and test 

hypotheses for 𝛽0. We found earlier that the sampling distribution of 𝛽0 is, 

𝛽0̂ ~ 𝑁(𝛽0, 𝜎
2(
1

𝑛
+
�̅�2

𝑆𝑥𝑥
 ) ) 

Using the same methodology as for 𝛽1̂ above, we find that the 100(1 − 𝛼 )% confidence interval for 

𝛽0 is 

[𝑎, 𝑏] = [𝛽0̂ − 𝑡𝛼
2
 𝑠𝑒( 𝛽0̂)
̂  , 𝛽0̂ + 𝑡𝛼

2
 𝑠𝑒( 𝛽0̂)
̂ ] 

and the test statistic to test the null hypothesis 𝐻0: 𝛽0 = 𝐵 for some value B (which may or may not 

be zero) is 

𝑇 = 
𝛽0̂ − 𝐵

𝑠𝑒( 𝛽0̂)
̂

 ~ 𝑡𝑛−2 

where 𝑠𝑒( 𝛽
0
̂)̂ = √𝑆2(

1

𝑛
+ 

�̅�2

𝑆𝑥𝑥
) 

 

4.4 Inference about the mean response 

We may also develop confidence intervals and test hypotheses for the mean of the response 

variable given some value of the explanatory variable, that is 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥𝑖] which is also often 

written as 𝜇𝑖. 

Under the simple linear regression model, 

𝜇𝑖 =  𝐸[𝑌𝑖|𝑋𝑖 = 𝑥𝑖] =  𝛽0 + 𝛽1𝑥𝑖 

and the least squares estimator of 𝜇𝑖  is given by 

𝜇�̂� = 𝛽0̂ + 𝛽1̂𝑥𝑖 

so that for any value of the explanatory variable 𝑥𝑖 we can estimate the mean response. 

Under the simple linear regression model, the sampling distribution of 𝜇𝑖  is also Normal, 
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𝜇�̂� ~ 𝑁(𝜇𝑖,  𝜎
2(
1

𝑛
+
(𝑥𝑖 − �̅�)

2

𝑆𝑥𝑥
 ) ) 

which allows us to obtain a 100(1 − 𝛼 )% confidence interval for 𝜇�̂� which is 

[𝑎, 𝑏] = [𝜇�̂� − 𝑡𝛼
2
 𝑠𝑒( 𝜇�̂�)̂  , 𝜇�̂� + 𝑡𝛼

2
 𝑠𝑒( 𝜇�̂�)̂ ] 

 

and we can test the null hypothesis, 𝐻0: 𝜇𝑖 = 𝑀 for some value M, with the test statistic 

𝑇 =  
𝜇�̂� −𝑀

𝑠𝑒( 𝜇�̂�)̂
 ~ 𝑡𝑛−2 

where 𝑠𝑒( 𝜇
�̂�
)̂ = √𝑆2(

1

𝑛
+ 

(𝑥𝑖− �̅�)
2

𝑆𝑥𝑥
) 

We should note here though that the value of 𝑥𝑖 should be within the range of observed data values 

for X for this estimation of the mean response to be valid. The model has said nothing about the 

applicability of the linear regression beyond that data range and this should not be used as a method 

of extrapolation. What we can do though, and will consider next, is to use the model to predict the 

value of the response variable when presented with some new value for 𝑥𝑖 for which yi has not yet 

been observed. 

 

4.5 A Prediction Interval for a new observation 

More precisely we can develop what is known as a Prediction Interval (sometimes just PI) for some 

new observation. Let us say that we have a new value for 𝑥𝑖 which we will label 𝑥0. We have yet to 

observe the response for 𝑥0 but we wish to predict it, which we will do by way of an interval rather 

than a single value given the stochastic nature of our model. 

We seek 𝑦0 where 𝑦0 = 𝜇0 + 𝜀0 and the point “prediction” for this would be  

𝑦0̂ = 𝜇0̂ = 𝛽0̂ + 𝛽1̂𝑥0 

We know that 

𝜇0̂ ~ 𝑁(𝜇0,  𝜎
2(
1

𝑛
+
(𝑥0 − �̅�)

2

𝑆𝑥𝑥
 ) ) 

and therefore the distribution of 𝜇0̂ − 𝜇0 is 

𝜇0̂ − 𝜇0  ~ 𝑁(0,  𝜎
2(
1

𝑛
+
(𝑥0 − �̅�)

2

𝑆𝑥𝑥
 ) ) 

To gain a prediction interval we would like to have the distribution for 𝑦0̂ − 𝑦0 rather than 𝜇0̂ − 𝜇0 

So taking our previous equation and then adding and subtracting 𝜀0 to the left-hand side 

𝜇0̂ − (𝜇0 + 𝜀0) + 𝜀0  ~ 𝑁(0,  𝜎
2(
1

𝑛
+
(𝑥0 − �̅�)

2

𝑆𝑥𝑥
 ) ) 

but the term in the brackets (𝜇0 + 𝜀0) is 𝑦0 and 𝑦0̂ =  𝜇0̂ so we can re-write this equation as 
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𝑦0̂ − 𝑦0 + 𝜀0  ~ 𝑁(0,  𝜎
2(
1

𝑛
+
(𝑥0 − �̅�)

2

𝑆𝑥𝑥
 ) ) 

and because we know 𝜀0  ~ 𝑁(0,  𝜎
2) from the original specification of the simple linear model we 

have 

𝑦0̂ − 𝑦0  ~ 𝑁(0,  𝜎
2 (
1

𝑛
+
(𝑥0 − �̅�)

2

𝑆𝑥𝑥
 ) +  𝜎2 ) 

or 

𝑦0̂ − 𝑦0  ~ 𝑁(0,  𝜎
2 (1 +

1

𝑛
+
(𝑥0 − �̅�)

2

𝑆𝑥𝑥
 )) 

 

To find a formula for the prediction interval we need to standardise the normal distribution, that is 

find the function of 𝑦0̂ − 𝑦0 that follows N(0,1). 

𝑦0̂ − 𝑦0

√ 𝜎2 (1 +
1
𝑛 +

𝑥0 − �̅�
2

𝑆𝑥𝑥
 )

  ~ 𝑁(0, 1) 

and if we replace  𝜎2 with its estimator S2 we have 

𝑦0̂ − 𝑦0

√ 𝑆2 (1 +
1
𝑛 +

(𝑥0 − �̅�)
2

𝑆𝑥𝑥
 )

  ~ 𝑡𝑛−2 

which allows us to find the 100(1 − 𝛼 )% prediction interval for y0 which is 

𝑦0̂  ± 𝑡𝛼
2
 √ 𝑆2 (1 +

1

𝑛
+
(𝑥0 − �̅�)

2

𝑆𝑥𝑥
 ) 

 

The prediction interval for 𝑦0 is usually much wider than the confidence interval for 𝜇0 at the same 

value of α. This is because the random variability term 𝜀0 impacts the prediction interval. 
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5 Further Model checking 

 

5.1 Outliers 

In regression, an outlier is a single observation where the absolute value of the standardised residual 

is large compared to the rest of the observations. Outliers are usually obvious in residual plots such 

as QQ plots. 

The standardised residual was defined in section 3.4 as 

𝑑𝑖 = 
𝑒𝑖

[𝑠2(1 − 𝑣𝑖)]
1
2

 

or  

𝑑𝑖 = 
𝑦𝑖 − 𝑦�̂�

𝑠  √(1 − 𝑣𝑖)
  

 

where,  

𝑣𝑖 =
1

𝑛
+ 
(𝑥𝑖 − �̅�)

2

𝑆𝑥𝑥
 

In some literature you will find suggestions for simple rules for what size of standardised residual 

constitutes an outlier (e.g. some people suggest |𝑑𝑖|>2). However, what residual values constitute 

an outlier should depend on the sample size n. If we take a statistical approach and calculate what 

maximum |𝑑𝑖| would represent a critical value in a test of significance at 95% we get the following: 

Sample size n maximum |𝒅𝒊| at 95% significance 

6 1.93 

8 2.20 

10 2.37 

20 2.77 

30 3.06 

60 3.23 

 

If we discover an outlier, the first step is to check the data for any mistakes. If the data does not 

appear to be an error, then the next step is to re-run the regression analysis with the outlier 

excluded. If the model results differ from the original, then both should be presented. 

 

5.2 Leverage 

Outliers are where one yi is different from the others. We can also have cases where one xi is 

different. This is more of a problem with multiple regression models which we consider later in the 

course, but we will look at the detection of unusual xi now in the context of the simple linear 

regression model. We use leverage or vi which was part of the calculation of standardised residuals 

in section 3.4 but not discussed further at that time. 
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𝑣𝑖 =
1

𝑛
+ 
(𝑥𝑖 − �̅�)

2

𝑆𝑥𝑥
 

Now ∑ 𝑣𝑖𝑖 = 2 so with n observations, each on average will have leverage of 
2

𝑛
. We generally 

consider an observation with 𝑣𝑖 >
4

𝑛
 as having large leverage. If 𝑣𝑖 >

6

𝑛
 then leverage is very high and 

it is best to check the data for any errors in the recording of the relevant xi value. Large leverage 

means that the observation is influential and taking that observation out would cause a large change 

in the β parameter estimates. 

We can measure the amount of influence any one observation has using Cook’s Statistic often 

labelled Di. We first perform a simple linear regression on n (x,y) observations and find 𝛽0̂, 𝛽1̂ and 

hence �̂� values. Then if we omit the observation (xi , yi) and repeat the linear regression to gain new 

parameters and new fitted values denoted �̂�(𝑖), Cook’s Statistic for case i is 

𝐷𝑖 =
1

2𝑆2
∑(�̂�𝑗

(𝑖)
− �̂�𝑗)

2

𝑛

𝑗=1

 

It can be shown that  

𝐷𝑖 =
1

2
𝑑𝑖
2 𝑣𝑖
1 − 𝑣𝑖

 

This second formula for Di shows that that Cook’s Statistic depends on both the standardised 

residual di and the leverage vi. 

One way to use this statistic to see whether an observation is influential is to compare the Di value 

for that observation with the 50th percentile of the 𝐹𝑛−2
2  distribution. Another way is to rank all of 

the Di values and any that are noticeably larger than the others would suggest an influential 

observation.  

Influential observations do not need to be removed in the way that outliers do but any conclusions 

from a modelling exercise should note that the results would be different without the influential 

observation. 

 

5.3 Transformation of the Response 

If upon checking the model results, we find that the variance is not constant or that the data is not 

from a Normal distribution, it might be possible to obtain a better model by some simple 

transformation of the yi. 

If the data is all non-negative, then the most usual transformation to try first is ln 𝑦.  

Commonly used transformations and the conditions under which they work best are: 
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ln 𝑦 where Var(Y) is proportional to E(Y)2 

√𝑦 where Var(Y) is proportional to E(Y), often useful when the data is a 
count 

𝑠𝑖𝑛−1(√𝑦) often useful if the data is proportions 

1/𝑦  

 

5.4 Pure Error and Lack of Fit 

If our analysis of the residuals suggests that the data is not from a Normal distribution with a 

constant variance (the underlying assumption of the simple linear regression model) this means that 

a straight line regression is not a good model choice. We can generally see this from residual plots, 

but here we show how to test for this lack of fit more formally. 

One possible reason for this which we have not explored so far is replications, that is where there 

are multiple different y observations that have the same xi value. 

For notation we use 𝑦𝑖𝑗  to be the jth observation at 𝑥𝑖 where i = 1, 2, … m and j = 1, 2, … ni 

In the simple linear regression model, although each of the 𝑦𝑖𝑗  observations might well be different 

at a certain 𝑥𝑖, the fitted value will be the same �̂�𝑖  for all j. 

The residuals are now 

𝑒𝑖𝑗 = 𝑦𝑖𝑗 − �̂�𝑖    

But now the differences between observed and fitted values come from two sources: 

• random variation in 𝑦𝑖𝑗  where observations at the same 𝑥𝑖 can produce different y values 

• lack of fit in the model which does not capture all that is found in the observed data 

We can distinguish between these two sources of residual error. 

The pure error measures the amount of random variation at 𝑥𝑖 and is the difference between an 

observation 𝑦𝑖𝑗  and the mean of observations taken at the same 𝑥𝑖. 

Pure Error = 𝑦𝑖𝑗 − �̅�𝑖  

The lack of fit is the difference between the mean observed value and the model fitted value at 𝑥𝑖. 

Lack of Fit = �̅�𝑖 − �̂�𝑖  

And so Residual Error = Pure Error + Lack of Fit 

More generally we can split the residual sum of squares SSE into a pure error sum of squares SSPE that 

measures overall random variation, and a lack of fit sum of squares SSLoF that measures overall 

model lack of fit. 
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Using the ij notation we have 

𝑆𝑆𝐸 = ∑∑(𝑦𝑖𝑗 −  �̂�𝑖) 
2

𝑛𝑖

𝑗=1

𝑚

𝑖=1

 

𝑆𝑆𝑃𝐸 = ∑∑(𝑦𝑖𝑗 −  �̅�𝑖) 
2

𝑛𝑖

𝑗=1

𝑚

𝑖=1

 

𝑆𝑆𝐿𝑜𝐹 = ∑∑(�̅�𝑖 −  �̂�𝑖) 
2

𝑛𝑖

𝑗=1

𝑚

𝑖=1

 =  ∑𝑛𝑖(�̅�𝑖 −  �̂�𝑖) 
2

𝑚

𝑖=1

 

and in the simple linear regression model we have 

𝑆𝑆𝐸 = 𝑆𝑆𝑃𝐸 + 𝑆𝑆𝐿𝑜𝐹 

 

Using this we can expand the ANOVA table where there are replications (multiple different yi 

observations at the same xi) splitting 𝑆𝑆𝐸 into pure error and lack of fit. 

We first need to apportion the n – 2 residual degrees of freedom between PE and LoF. To calculate 

SSPE we need to find m sample means, the �̅�𝑖  for i = 1,2,… m and each of these calculations takes up a 

degree of freedom. Therefore the degrees of freedom for Pure Error are 𝑛 −𝑚.  

This leaves (𝑛 − 2) − (𝑛 −𝑚) = 𝑚 − 2 degrees of freedom for Lack of Fit. 

For the Mean Squares (MS) column of the ANOVA table we will see later in the course that 

𝐸[𝑆𝑆𝑃𝐸] = (𝑛 −𝑚)𝜎
2 whether the model is true or not, and that 

𝐸[𝑆𝑆𝐿𝑜𝐹] = (𝑚 − 2)𝜎
2 if the model is true. 

Therefore MSPE gives an unbiased estimator of 𝜎2 and furthermore MSLoF can give an unbiased 

estimator of 𝜎2 if the regression model is true. 

Thus in all circumstances, 

(𝑛 − 𝑚)𝑀𝑆𝑃𝐸
𝜎2

 ~ 𝜒𝑛−𝑚
2  

and if the regression model is true, 

(𝑚 − 2)𝑀𝑆𝐿𝑜𝐹
𝜎2

 ~ 𝜒𝑚−2
2  

So finally, for the Variance Ratio (VR) column of the ANOVA table, if the regression model is true 

then the ratio of the two chi-squared statistics above, each divided by their respective degrees of 

freedom, follows a 𝐹𝑛−𝑚
𝑚−2 distribution, 

𝑀𝑆𝐿𝑜𝐹
𝑀𝑆𝑃𝐸

 ~ 𝐹𝑛−𝑚
𝑚−2  

We can now set out the expanded ANOVA table for the case where there are replications in the 

observations, and we are able to split residual error between pure error and lack of fit. 
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Source of variation d.f. SS MS VR 

Regression 1 𝑆𝑆𝑅 𝑀𝑆𝑅  
𝑀𝑆𝑅
𝑀𝑆𝐸

 

Residual n – 2 𝑆𝑆𝐸 𝑀𝑆𝐸 = 
𝑆𝑆𝐸
𝑛 − 2

  

Lack of Fit 𝑚 − 2 𝑆𝑆𝐿𝑜𝐹  𝑀𝑆𝐿𝑜𝐹 = 
𝑆𝑆𝐿𝑜𝐹
𝑚− 2

 
𝑀𝑆𝐿𝑜𝐹
𝑀𝑆𝑃𝐸

 

Pure Error 𝑛 −𝑚 𝑆𝑆𝑃𝐸 𝑀𝑆𝐸 = 
𝑆𝑆𝑃𝐸
𝑛 −𝑚

  

Total n – 1 𝑆𝑆𝑇   

 

We now have a lot of information to take into account when assessing a model: 

• residual plots 

• ANOVA table 

• significance tests on individual parameters 

• outliers 

• influential observations 
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6 Matrix approach to Simple Linear Regression 

 

6.1 Re-writing the model in matrix form 

Simple linear regression models can also be fitted using matrix approaches. We can think of the 

previous simple linear regression model based on n observations for (xi, yi) as a set of n equations: 

𝑦1 = 𝛽0 + 𝛽1𝑥1 + 𝜀1 

𝑦2 = 𝛽0 + 𝛽1𝑥2 + 𝜀2 

… 

𝑦𝑛 = 𝛽0 + 𝛽1𝑥𝑛 + 𝜀𝑛 

Now these same n equations can be re-written using matrices and vectors. 

If, 

• Y is a (nx1) vector of observations yi 

• X is a (nx2) matrix called the design matrix where the first column is a series of 1 and the 

second column is the set of observations xi 

• β is a (2x1) vector of the unknown parameters 𝛽0 and 𝛽1 

then the n equations can be rewritten  

Y = X 𝛃 +  𝜀 

This way of writing the simple linear model is sometimes called the General Linear Model (but care is 

needed here not to confuse that terminology with Generalised Linear Modelling or GLM which is a 

different form of statistical modelling you will encounter in later statistics modules). 

Now Y and 𝜀 here are random vectors, that is they are vectors whose elements are random 

variables. Before we can fit the simple linear regression model in matrix form we need to cover 

some properties of random vectors and also introduce the Multivariate Normal Distribution as a 

more general case of the usual Normal Distribution used so far. 

 

6.2 Random Vectors 

The first property of random vectors we will need is that the expected value of a random vector is 

the vector of expected values of the components of that random vector. 

So if 𝑧 =  (𝑧1, … , 𝑧𝑛)
𝑇 is a random vector then 

𝐸[𝑧] = 𝐸 (

 
𝑧1
𝑧2
…
𝑧𝑛
) =  

(

 
 

 
𝐸[𝑧1]

𝐸[𝑧2]…
𝐸[𝑧𝑛]

)

 
 

 

We also have properties for expectation of linear transformations of random vectors which are 

analogous to the properties for single random variables. So if a is a constant, b is a constant vector, 

and A, B are matrices of constants, then 
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• 𝐸[𝑎𝑧 + 𝑏] = 𝑎𝐸[𝑧] + 𝑏 

• 𝐸[𝑨𝑧] = 𝑨𝐸[𝑧] 

• 𝐸[𝑧𝑇𝑩] =  𝐸[𝑧]𝑇  𝑩 

With random vectors, variances and covariances of the random variables 𝑧𝑖  together form the 

dispersion matrix sometimes called the variance-covariance matrix. 

𝑉𝑎𝑟(𝑧) =  (
𝑣𝑎𝑟(𝑧1) ⋯ 𝑐𝑜𝑣(𝑧1, 𝑧𝑛)
⋮ ⋱ ⋮

𝑐𝑜𝑣(𝑧𝑛, 𝑧1) ⋯ 𝑣𝑎𝑟(𝑧𝑛)
) 

• 𝑉𝑎𝑟(𝑧) can also be expressed as 𝐸[(𝑧 − 𝐸[𝑧])(𝑧 − 𝐸[𝑧])𝑇] 

• the dispersion matrix is symmetric since 𝑐𝑜𝑣(𝑧𝑖 , 𝑧𝑗) = 𝑐𝑜𝑣(𝑧𝑗 , 𝑧𝑖) 

• if all of the 𝑧𝑖  are uncorrelated all 𝑐𝑜𝑣(𝑧𝑖, 𝑧𝑗) = 0 and hence the dispersion matrix is diagonal 

with the variances 

• if A is a matrix of constants then 𝑉𝑎𝑟(𝑨𝑧) = 𝑨 𝑉𝑎𝑟(𝑧) 𝑨𝑇 

 

6.3 The Multivariate Normal Distribution 
 

MTH5129 Probability & Statistics II introduced the Bivariate Normal Distribution. We will now extend 

this to a general case where there are more than two random variables, known as the Multivariate 

Normal Distribution. 

A random vector z has a multivariate normal distribution if its probability density function (pdf) can 

be written in the form 

𝑓(𝑧) =  
1

(2𝜋)𝑛/2√det(𝑽)
 exp {−

1

2
(𝑧 −  𝜇)𝑇𝑽−1(𝑧 −  𝜇)} 

where, 

• vector 𝜇 is the mean of z 

• 𝑽 is the dispersion matrix of z 

• det(𝑽) is the determinant of V 

With the multivariate normal distribution we typically use the notation 𝑧 ~ 𝑁𝑛(𝜇, 𝑽) 

 

6.4 Least Squares Estimation using matrices 

We are now ready to consider least squares estimation in the general linear model using matrices. 

Our goal is to find �̂� a (2x1) vector with the least squares estimates of the model parameters 𝛽0 and 

𝛽1. 

When we estimated parameters 𝛽0 and 𝛽1 in the simple linear regression model before we solved 

the two simultaneous “normal equations” found from taking the derivative of the equation for the 

sum of squares of errors with respect to each of the two parameters. In matrix form and with our 

general linear model above, the normal equations become, 

𝑿𝑻𝒚 = 𝑿𝑻𝑿 �̂� 
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Now as long as 𝑿𝑻𝑿 is invertible, that is its determinant is not zero, then there is a unique solution 

to the matrix form normal equations given by 

�̂� =  (𝑿𝑻𝑿)−1𝑿𝑻𝒚 

 

In the simple linear regression model, 

𝑿 = (
1 𝑥1
⋮ ⋮
1 𝑥𝑛

) 

therefore 

𝑿𝑻𝒚 =  (
1 … 1
𝑥1 … 𝑥𝑛

)(

𝑦1
⋮
𝑦𝑛
) = (

∑𝑦𝑖

∑𝑥𝑖 𝑦𝑖

) 

and 

𝑿𝑻𝑿 = (
𝑛 ∑𝑥𝑖

∑𝑥𝑖 ∑𝑥𝑖
2
) 

which means that the determinant of 𝑿𝑻𝑿 is 

|𝑿𝑻𝑿| = 𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)

2

= 𝑛 𝑆𝑥𝑥  ≠ 0 

hence there is a solution to the normal equations. 

The inverse of 𝑿𝑻𝑿 is given by 

(𝑿𝑻𝑿)−1 =
1

𝑛 𝑆𝑥𝑥 
 (
∑𝑥𝑖

2 −∑𝑥𝑖

−∑𝑥𝑖 𝑛
) = 

1

𝑆𝑥𝑥 
 (
1

𝑛
∑𝑥𝑖

2 −�̅�

−�̅� 1

) 

which means we now have all the components we need to solve the normal equations in matrix 

form. 

�̂� =  (𝑿𝑻𝑿)−1𝑿𝑻𝒚 

�̂� =  
1

𝑆𝑥𝑥 
 (
1

𝑛
∑𝑥𝑖

2 −�̅�

−�̅� 1

)(
∑𝑦𝑖

∑𝑥𝑖 𝑦𝑖

) 

�̂� =  
1

𝑆𝑥𝑥 
 (
1

𝑛
∑𝑥𝑖

2∑𝑦𝑖 − �̅� ∑ 𝑥𝑖 𝑦𝑖  

∑ 𝑥𝑖 𝑦𝑖 − �̅� ∑  𝑦𝑖  
) =  

1

𝑆𝑥𝑥 
 (
�̅�𝑆𝑥𝑥 − �̅�𝑆𝑥𝑦

𝑆𝑥𝑦
) =  (

�̅� − 𝛽1̂�̅� 

𝛽1̂
)  

 

which is identical to the previous result for 𝛽0̂ and 𝛽1̂ in the simple linear regression model not in 

matrix form. 



31 
 

Then the fitted values in matrix form are then, 

�̂�𝑖 = 𝒙𝑖
𝑇�̂� =  �̂�0 + �̂�1𝑥𝑖 

and the Residual Sum of Squares in matrix form is 

𝑆𝑆𝐸 = 𝒚
𝑻𝒚 − �̂�𝑻𝑿𝑻𝒚 

which if you complete all the matrix multiplication gives 

𝑆𝑆𝐸 = 𝑆𝑦𝑦 − �̂�1𝑆𝑥𝑦 = 𝑆𝑦𝑦 − 
(𝑆𝑥𝑦)

2

𝑆𝑥𝑥
 

 

6.5 Properties that follow from the matrix approach 

There follows a number of theorem and lemmas that flow from the matrix approach parameters and 

residuals which we will present here. 

 

(a) The least squares estimator �̂� is an unbiased estimator of 𝛃 that is 𝐸[�̂�] =  𝜷 

 

(b) 𝑉𝑎𝑟[𝛃] =  𝜎2 (𝑿𝑻𝑿)−1 

 

(c) If, Y = X 𝛃 +  𝜀 and 𝜀~ 𝑁𝑛(𝟎, 𝜎
2𝑰) then �̂� ~ 𝑁𝑝(𝛃, 𝜎

2(𝑿𝑻𝑿)−1) 

 

(d) The vector of fitted values, �̂� = �̂� =  𝑿�̂� can be written in the form �̂� = 𝑯𝒀 where 𝑯 is 

called the hat matrix and is given by 𝑯 = 𝑿 (𝑿𝑻𝑿)−1 𝑿𝑻 and 𝑯 has the two properties that 

𝑯 = 𝑯𝑻 and 𝑯𝑯 = 𝑯 (this second property is called an indempotent matrix). 

 

(e) If the residual vector is 𝒆 = 𝒀 − �̂� = 𝒀 −𝑯𝒀 = (𝑰 − 𝑯)𝒀 then 𝐸[𝒆] = 𝟎 

 

(f) 𝑉𝑎𝑟[𝒆] =  𝜎2(𝑰 − 𝑯) 

 

(g) The sum of squares of the residuals is 𝒀𝑻(𝑰 − 𝑯)𝒀 

 

(h) The elements of the residual vector 𝒆 sum to zero, that is ∑ 𝑒𝑖 = 0
𝑛
𝑖=1  

 

(i) Because of the result (h) above and all the 𝑒𝑖 sum to zero, we also have 
1

𝑛
∑𝑌�̂� = �̅� 

 

 

The centred form of the simple linear regression model can also be written in matrix or general 

linear form. From before the centred form was 𝑦𝑖 =  𝛼 +  𝛽(𝑥𝑖 − 𝑥 ) + 𝜀𝑖  
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Now in matrix form and centred we use 

𝑿 =  (
1 𝑥1 − �̅�
⋮ ⋮
1 𝑥𝑛 − �̅�

) 

and  

𝜷 = (
𝛼
𝛽) 

and the results which follow are 

�̂� = �̅� 

�̂� =  
𝑆𝑥𝑦

𝑆𝑥𝑥
 

𝑣𝑎𝑟[�̂�] =  𝜎2/𝑛 

𝑣𝑎𝑟[�̂�] =  
𝜎2

𝑆𝑥𝑥
 

and  

𝑐𝑜𝑣[�̂�, �̂�] = 0 

This last result, that �̂� and �̂� are uncorrelated, can make this centred form useful in certain areas of 

practical work. 
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6.6 Maximum Likelihood Estimation 

So far, we have used least squares estimation to find our model parameter estimators �̂�. There are 

other ways of finding estimates for parameters in a model and we will now consider one here that is 

widely used beyond the simple linear regression model. This is Maximum Likelihood Estimation 

(MLE) which you will encounter in a number of different contexts and with various probability 

distributions, in later statistics modules. 

Let us say we have a set of n observations Y1, Y2, … Yn which are assumed to be independent 

observations which all come from the same probability distribution. 

Now let us say that the probability distribution from which these are assumed to come has a 

probability density function 𝑓(𝑦𝑖) which has a parameter 𝜃 so that the pdf can be written 𝑓(𝑦𝑖|𝜃). 

The parameter 𝜃 is unknown and we wish to estimate it by Maximum Likelihood Estimation. 

The maximum likelihood estimator of 𝜃 is that value of 𝜃 which maximises the joint probability that 

the n observations occur. To find this probability to maximise we develop something called the 

Likelihood function which is usually written 𝐿(𝜃, 𝑦) or sometimes just 𝐿(𝜃) and is a function of 𝜃. 

𝐿(𝜃, 𝑦) =  ∏𝑓(𝑦𝑖|𝜃)

𝑛

𝑖=1

 

And for discrete observations this becomes 

𝐿(𝜃, 𝑦) =  ∏𝑃𝑟(𝑌𝑖 = 𝑦𝑖|𝜃)

𝑛

𝑖=1

 

The maximum likelihood estimator written 𝜃 is that value of 𝜃 which maximises the Likelihood 

function 𝐿(𝜃, 𝑦). 

Once again, we will use calculus to find the estimator. In least squares estimation we differentiated 

the sum of squares equation with respect to the model parameters β0 and β1 and set to zero to find 

a minimum. Here we will differentiate the Likelihood function with respect to the parameters and 

set to zero to find a maximum. 

In most cases of MLE for probability distributions it is easier to take the log of the likelihood function 

and differentiate log  𝐿(𝜃, 𝑦) rather than 𝐿(𝜃, 𝑦). The 𝜃 that maximises log  𝐿(𝜃, 𝑦) will be the same 

as the one that maximises 𝐿(𝜃, 𝑦). 

Before we look at MLE for the Normal distribution and its application to the simple linear regression 

model, let us look at MLE for a more straightforward probability distribution, the Binomial. 

Let us say that we have n binomial trials where 𝑦𝑖 = 1 if the ith trial is a success and 𝑦𝑖 = 0 

otherwise. 

Let the probability of a success be p (which is unknown and we seek to estimate from the n 

observations). We seek the Maximum Likelihood Estimator of p the Binomial success parameter. 

If 𝑦 =  ∑ 𝑦𝑖
𝑛
𝑖=1  that is the total number of successful trials, 

Then the Likelihood function is 

𝐿(𝑝) = 𝐿(𝑦1… 𝑦𝑛|𝑝) =  𝑝
𝑦(1 − 𝑝)𝑛−𝑦 
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And we seek �̂� which is the value of p that maximises 𝐿(𝑝) by differentiating and setting to zero. 

As 𝐿(𝑝) is a product of functions, it will be easier to differentiate log 𝐿(𝑝) 

𝑙𝑜𝑔𝐿(𝑝) = log(𝑝𝑦(1 − 𝑝)𝑛−𝑦) = 𝑦 log(𝑝) + (𝑛 − 𝑦)log (1 − 𝑝) 

And 

𝑑𝑙𝑜𝑔𝐿(𝑝)

𝑑𝑝
= 𝑦

1

𝑝
− (𝑛 − 𝑦)

1

1 − 𝑝
 

If we set this to zero and solve for p 

𝑦
1

�̂�
− (𝑛 − 𝑦)

1

1 − �̂�
= 0 

𝑦

�̂�
−
𝑛 − 𝑦

1 − �̂�
= 0 

𝑦(1 − �̂�) = (𝑛 − 𝑦)�̂� 

𝑦 = 𝑛�̂� 

�̂� =  
𝑦

𝑛
 

So the MLE for Binomial parameter p is the proportion of observed trials that are successful. 

To complete this we should take second derivatives to see that we have found a maximum not a 

minimum for the log likelihood. 

The Binomial example highlights one of the key properties of (and advantages of) maximum 

likelihood estimators. With this Binomial case we would expect the quality of the estimate to 

increase with sample size n. Statistically we say that the estimator has strong asymptotic properties, 

that is as n → ∞  

In particular, maximum likelihood estimators are: 

• Asymptotically unbiased 

• Normally distributed 

• Achieve the smallest variance possible. 

But the Binomial example also highlights the key weakness  

• At small n the estimator can be biased 

• In general the asymptotic properties may not apply at smaller sample sizes. 

 

We can now move to MLE in the Normal distribution which we will need to apply maximum 

likelihood in the simple linear regression model. 

For a normal distribution with mean 𝜇 and variance 𝜎2 we can estimate 𝜇 by MLE. We begin with 

the Normal pdf 

𝑓(𝑦|𝜇) =  
1

𝜎√2𝜋
exp (−

1

2𝜎2
(𝑦 −  𝜇)2) 



35 
 

And so the likelihood function is 

𝐿(𝜇, 𝑦) =  
1

𝜎𝑛(2𝜋)𝑛/2
exp (−

1

2𝜎2
∑ (𝑦 −  𝜇)2)  

And taking logs 

𝑙𝑜𝑔𝐿 =  − log (𝜎𝑛(2𝜋)
𝑛
2) − 

1

2𝜎2
∑ (𝑦 −  𝜇)2 

Differentiating 

𝑑𝑙𝑜𝑔𝐿

𝑑𝜇
=  
1

𝜎2
∑ (𝑦 −  𝜇)  

Which equals zero when �̂� = �̅� 

Now in our simple linear regression model instead of  𝑌𝑖~ 𝑁(𝜇, 𝜎
2) we now have 

 𝑌𝑖~ 𝑁(𝛽0 + 𝛽1𝑥𝑖, 𝜎
2) and we seek to estimate β0 and β1 by MLE. 

Now the likelihood function becomes a function of the two model parameters rather than of the 

normal mean 

𝐿(𝛽0, 𝛽1, 𝑦𝑖) =  
1

𝜎𝑛(2𝜋)𝑛/2
exp (−

1

2𝜎2
∑ (𝑦𝑖 − 𝛽0 + 𝛽1𝑥𝑖, )

2)  

 

And the likelihood and the log likelihood are maximised when − ∑  (𝑦𝑖 − 𝛽0 + 𝛽1𝑥𝑖, )
2 is 

maximised. Note that this is exactly the same place where ∑  (𝑦𝑖 − 𝛽0 + 𝛽1𝑥𝑖, )
2 is minimised, 

which was precisely what we did when we found parameter estimates by least squares. 

Therefore in the simple linear regression model, the least squares estimators of β0 and β1 are the 

same as the maximum likelihood estimators. 
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4 Multiple Linear Regression Model 

4.1 Other explanatory variables 

Whenever we fit a simple linear regression model there will be some amount of variation in 

the yi that is not explained by the regression (that part of the R2 less than 100%). Part of this 

remaining variation might be other explanatory variables. A multiple linear regression model 

is one that seeks to take into account more than one explanatory variable. 

If we have 2 explanatory variables X1 and X2 and a response variable Y we can write the 

multiple linear regression model as 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖 

For i = 1, 2, …, n observations of the form ( x1i ,  x2i , yi ) 

More generally we can have a multiple linear regression model with p – 1 explanatory 

variables X1 , X2 , … , Xp-1  which we can write either as 

𝐸[𝑦𝑖] =  𝜇𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝−1𝑥𝑝−1 𝑖 

𝑣𝑎𝑟(𝑦𝑖) =  𝜎
2 for all i = 1, …, n 

𝑐𝑜𝑣(𝑦𝑖, 𝑦𝑗) = 0 for all i ≠ j 

Or alternatively and equivalently as, 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝−1𝑥𝑝−1 𝑖 + 𝜀𝑖 

𝑣𝑎𝑟(𝜀𝑖) =  𝜎
2 for all i = 1, …, n 

𝑐𝑜𝑣(𝜀𝑖, 𝜀𝑗) = 0 for all i ≠ j 

And we usually have the additional assumption of normality which can be written as either 

𝑦𝑖 ~ 𝑁(𝜇𝑖, 𝜎
2) or as 𝜀𝑖 ~ 𝑁(0, 𝜎

2) 

We can also write the multiple linear regression model in matrix form. This is 

Y = X 𝛃 +  𝜀 

where, 

𝒀 = (

𝑦1
⋮
𝑦𝑛
)    the vector of responses 

𝑿 = (
1 𝑥1
⋮ ⋮
1 𝑥𝑛

)   the design matrix 

𝜷 = (

𝛽0
⋮

𝛽𝑝−1

)   the vector of parameters which are unknowns 
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𝜀 = (

𝜀1
⋮
𝜀𝑛
)    the vector of random errors 

 

4.2 Least Squares estimation in the multiple regression model 

Algebraically we will find it easiest to work with the matrix form to derive the least squares 

estimates for β and then we will find that the results are the same as those found for the 

simple linear regression model in section 3 above. 

Once again to find the least squares estimators we minimise the sum of squares of residuals 

that is 

𝑆(𝜷) =  ∑(𝑦𝑖 − 

𝑛

𝑖=1

(𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝−1𝑥𝑝−1 𝑖)) 
2 

or 

𝑆(𝜷) =  ∑  𝜀𝑖
2

𝑛

𝑖=1

 

𝑆(𝜷) =  𝜀𝑇𝜀 

The least squares estimator �̂� of the vector of unknown parameters 𝜷 is given by 

�̂� =  (𝑿𝑻𝑿)−1𝑿𝑻𝒚 

This is the same result as in section 3 above except that this time the identity matrix X has p 

columns for p – 1 explanatory variables whereas before it had 2 columns. 

From the work we have already done on the simple linear regression model we also know 

that: 

• �̂� is an unbiased estimator for 𝜷 

• Var[�̂�] = 𝜎2 (𝑿𝑻𝑿)−1 

• If Y = X 𝛃 +  𝜀 with 𝜀  ~ 𝑁(0, 𝜎
2𝑰) then �̂� ~ 𝑁(𝜷, 𝜎2 (𝑿𝑻𝑿)

−1
) 

In finding the vector of fitted values �̂� we can use the hat matrix H where 

�̂� = �̂� = 𝑿�̂� = 𝑿(𝑿𝑻𝑿)
−𝟏
𝑿𝑻𝒀 = 𝑯𝒀 

So 

𝑯 =  𝑿(𝑿𝑻𝑿)
−𝟏
𝑿𝑻  

And recall from section 3 that HT = H and HH = H, the property of an idempotent matrix. 

With the hat matrix we can now look at the residual vector e 

𝒆 = 𝒀 − �̂� = 𝒀 − 𝑯𝒀 = (𝑰 − 𝑯)𝒀 



38 
 

Then 

𝐸[𝒆] = 0 

Which we can show by: 

𝐸[𝒆] = (𝑰 − 𝑯)𝐸(𝒀) = (𝑰 −  𝑿(𝑿𝑻𝑿)−𝟏𝑿𝑻 )𝐸[𝒀] =  (𝑰 −  𝑿(𝑿𝑻𝑿)−𝟏𝑿𝑻 )𝑿𝜷 =  𝑿𝜷 −  𝑿𝜷 

Also 

𝑣𝑎𝑟(𝒆) =  𝜎2(𝑰 − 𝑯) 

Which we can show by: 

𝑣𝑎𝑟(𝒆) = (𝑰 − 𝑯)𝑣𝑎𝑟(𝒀)(𝑰 − 𝑯)𝑇 = 𝜎2(𝑰 − 𝑯) 2 = 𝜎2(𝑰 − 2𝑯 − 𝑯2) =  𝜎2(𝑰 − 𝑯)  

 

The sum of all the elements in e is zero which is the same as the ∑𝑒𝑖 = 0 result we had 

before in section 2. 

The sum of squares of residuals in matrix form is eTe and 

𝒆𝑻𝒆 =  𝒀𝑻(𝑰 − 𝑯) 𝒀 

 

4.3 Analysis of Variance 

The analysis of variance identity can be used for multiple linear regression and for 

regression in matrix form in the same way that it was for simple linear regression. That is, 

Total sum of squares = Regression sum of squares + Residual sum of squares 

SST = SSR + SSE 

In matrix form the total sum of squares is 

𝑆𝑆𝑇 = ∑(𝑌𝑖 − �̅�)
2 = 𝒀𝑻𝒀 − 𝑛�̅�2 

And the regression sum of squares is 

𝑆𝑆𝑅 = ∑(�̂�𝑖 − �̅�)
2 = 𝒀𝑻𝑯 𝒀 −  𝑛�̅�2 

We have already seen that the residual sum of squares can be written as 

𝑆𝑆𝐸 =∑(𝑌𝑖 − �̂�𝑖)
2 = 𝒀𝑻(𝑰 − 𝑯) 𝒀 

It is possible to combine these to show the analysis of variance identity in matrix form and 

for multiple linear regression as we previously did with the simple linear regression model. 

We can also produce an ANOVA table for a multiple linear regression with n observations 

and p – 1 explanatory variables and hence p parameters estimated (β0 , β1 … βp-1 ) 
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The ANOVA table is again in the format we have seen before 

 

 d.f. SS MS VR 

Regression     
Residuals     

Total     

 

Where now the Regression row represents the multiple linear regression. 

Now the degrees of freedom are: 

• n – p for residuals (this is the general case of n – 2 when p = 2 in the simple linear 

regression model before) 

• p – 1 for regression (this is the general case of 1 when p = 2 in the simple linear 

regression model before) 

• n – 1 in total (as before) 

We have already given the formulae for sums of squares. Mean squares are then those 

sums of squares divided by their respective degrees of freedom. 

𝑀𝑆𝑅 = 
𝑆𝑆𝑅
𝑝 − 1

 

 

𝑀𝑆𝐸 = 
𝑆𝑆𝐸
𝑛 − 𝑝

=  𝑆2 

And once again 𝑀𝑆𝐸 = 𝑆
2 is an unbiased estimator for 𝜎2  

Then the variance ratio or F statistic becomes 

𝑉𝑅 = 
𝑀𝑆𝑅
𝑀𝑆𝐸

= 

𝑆𝑆𝑅
𝑝 − 1

𝑆2
 

 

4.4 Overall test of significance of a multiple regression 

We can use the Variance Ratio in the multiple regression ANOVA table to test whether the 

overall multiple regression has significance compared to a “null model” of a constant 𝛽0 plus 

some random variation 𝜀𝑖. 

Our null hypothesis is 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝−1 = 0 

And the alternative hypothesis is that at least one of β1 , β2 , … βp-1 is not zero. 

 



40 
 

Our F-statistic, sometimes written F* is the variance ratio in the ANOVA table 

𝐹∗ = 

𝑆𝑆𝑅
𝑝 − 1
𝑆𝑆𝐸
𝑛 −  𝑝

=  

𝑆𝑆𝑅
𝑝 − 1

𝑆2
 

Where the denominator is always an unbiased estimator of 𝜎2 but the numerator is only an 

unbiased estimator of 𝜎2 if the multiple regression assumptions (linear relationships, 

constant variance and normal distribution) are true. 

Under H0 we will have 𝐹∗ ≈ 1 so large values of 𝐹∗ are required to reject H0 (which is what 

we generally seek to do as we would like a model that has significance). 

The F-test here compares 𝐹∗ with the critical value of the Fisher’s-F distribution on p – 1 and 

n – p degrees of freedom where we reject H0 at 100(1 – α)% significance if 𝐹∗ > 𝐹𝑛−𝑝
𝑝−1(𝛼). 

 

4.5 Inference about parameters in multiple regression models 

We already have the distribution of the least squares estimators of the p model parameters 

�̂� ~ 𝑁(𝜷, 𝜎2 (𝑿𝑻𝑿)−1) 

So if we want the jth parameter estimator 𝛽�̂� where j = 0, 1, …, p – 1, then 

𝛽�̂�~ 𝑁(𝛽𝑗 , 𝜎
2 𝑐𝑗𝑗)  where 𝑐𝑗𝑗 is the jth diagonal element of  (𝑿𝑻𝑿)−1 where we count the 

diagonal elements 0, 1, …, p – 1 (i.e. the first diagonal element relates to 𝛽0, the second one 

to 𝛽1, and the last one to 𝛽𝑝−1. 

In this way we can make inference about 𝛽𝑗 in the ways in which we did for 𝛽1 in the simple 

linear regression model earlier. These are: 

• Confidence intervals for 𝛽𝑗 

• Tests of hypotheses with 𝐻0: 𝛽𝑗 = 0 versus 𝐻1: 𝛽𝑗 ≠ 0 

In line with the parameter confidence intervals we constructed in the simple linear model, 

our 100(1 – α)% confidence interval for 𝛽𝑗 is 

[𝑎, 𝑏] =  𝛽�̂�  ±  𝑡𝑛−𝑝(𝛼)√𝑆
2𝑐𝑗𝑗  

The test statistic for 𝐻0: 𝛽𝑗 = 0 versus 𝐻1: 𝛽𝑗 ≠ 0 is T where, 

𝑇 =  
𝛽�̂�

√𝑆2𝑐𝑗𝑗

 ~ 𝑡𝑛−𝑝 under H0 

We need to be very careful about the interpretation of these confidence intervals and tests 

of hypotheses. They only apply within the context of the whole p parameter model that is 

being fitted. 
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For example if we cannot reject 𝐻0: 𝛽𝑗 = 0 then: 

• This does not mean that Xj has no explanatory power, rather that it has no additional 

explanatory power compared to the p – 1 parameter model that had all of the other 

betas apart from 𝛽𝑗 

• Also this does not tell us about the model 𝑦𝑖 = 𝛽0 + 𝛽𝑗𝑥𝑗𝑖 + 𝜀𝑖 compared to the 

“null” model  𝑦𝑖 = 𝛽0 + 𝜀𝑖 , rather it tells us about the role of 𝛽𝑗 within the whole p 

parameter model. 

 

4.6 Confidence Intervals for µ in multiple regression 

We might want to estimate the mean response, µ at a certain value of x. 

We already know that �̂� = 𝑬[𝒀]̂ = 𝑿�̂� 

Now say we want to estimate µ0 at 𝑥0 = (1, 𝑥1,0 … 𝑥𝑝−1,0)
𝑇 where 

 𝜇0 = 𝐸[𝑌|𝑋1 = 𝑥1,0 …  𝑋𝑝−1 = 𝑥𝑝−1,0 ] 

Our point estimate is 

�̂�0 = 𝑥0
𝑇�̂�  

With a multiple linear regression model that includes the assumption of a normal 

distribution we can develop a confidence interval for 𝜇0. 

Now, �̂�0 = 𝑥0
𝑇�̂� is a linear combination of the components of �̂� all of which are normally 

distributed therefore �̂�0 must also be normal. 

𝐸[�̂�0] = 𝐸[𝑥0
𝑇�̂� ] =  𝑥0

𝑇𝜷 = 𝜇0 and 

𝑣𝑎𝑟[�̂�0] = 𝑣𝑎𝑟[𝑥0
𝑇�̂� ] =  𝑥0

𝑇𝑣𝑎𝑟(�̂�)𝑥0 = 𝜎
2𝑥0
𝑇 (𝑿𝑻𝑿)−1𝑥0 

And putting all these together we have 

�̂�0 ~ 𝑁(𝜇0, 𝜎
2𝑥0
𝑇  (𝑿𝑻𝑿)−1𝑥0 ) from which it is straightforward to develop a 100(1 – α)% 

confidence interval for 𝜇0 which is 

[𝑎, 𝑏] =  �̂�0  ±  𝑡𝑛−𝑝 (
𝛼

2
)√𝑆2𝑥0

𝑇  (𝑿𝑻𝑿)−1𝑥0 

 

4.7 Prediction Intervals in multiple regression 

Now say we have a new set of x observations 𝑥0 = (1, 𝑥1,0 … 𝑥𝑝−1,0)
𝑇 but we do not yet 

have the corresponding observation for the response y0. When we predict y0 with a 

prediction interval we will need to take into account the random variation that comes with a 

new observation. 

Our point estimate for y0 is �̂�0 which is the same as �̂�0 
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With our Normal distribution assumption for the yi’s we have 

�̂�0 ~ 𝑁(𝜇0, 𝜎
2𝑥0
𝑇  (𝑿𝑻𝑿)−1𝑥0 ) 

�̂�0 − 𝜇0  ~ 𝑁(0, 𝜎
2𝑥0
𝑇  (𝑿𝑻𝑿)−1𝑥0 ) 

�̂�0 − (𝜇0 + 𝜀0)  ~ 𝑁(0, 𝜎
2𝑥0
𝑇 (𝑿𝑻𝑿)−1𝑥0 + 𝜎

2) 

So 

�̂�0 − 𝑦0 ~ 𝑁(0, 𝜎
2(1 + 𝑥0

𝑇 (𝑿𝑻𝑿)−1𝑥0)) 

Standardising gives us 

�̂�0 − 𝑦0 

√𝜎2(1 + 𝑥0
𝑇  (𝑿𝑻𝑿)−1𝑥0)

~ 𝑁(0, 1) 

And replacing the unknown 𝜎2 with our estimate 𝑆2 gives 

�̂�0 − 𝑦0 

√𝑆2(1 + 𝑥0
𝑇  (𝑿𝑻𝑿)−1𝑥0)

~ 𝑡𝑛−𝑝 

Which allows us to develop the 100(1 – α)% prediction interval for 𝑦0 which is 

 

�̂�0  ± 𝑡𝑛−𝑝 (
𝛼

2
)√𝑆2(1 + 𝑥0

𝑇 (𝑿𝑻𝑿)−1𝑥0) 
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5 Model building 

In building a multiple regression model we have two objectives which seem to be in conflict: 

• having a model that describes the data as well as possible 

• having a model that is as simple as possible (the principle of parsimony) 

Selecting a model – or a subset of the potential explanatory variables – that gives a suitable 

balance between these objectives can be more art than science. There is no one correct 

answer. The interaction between the explanatory variables makes this even more complex 

because a combination of say three explanatory variables may explain more, or 

demonstrate better modelling properties (normal distribution, constant variance) than any 

of the three explanatory variables when used in a simple linear regression. 

So in this section we will look at a number of approaches to deciding which explanatory 

variables to keep in a multiple linear regression model. 

 

5.1 Using the F test to delete variables 

Let us say we have a multiple linear regression model with p – 1 explanatory variables and p 

parameters. With an ANOVA table we can carry out a test of the overall model and see that 

not all of the β parameters are zero and hence the multiple linear regression model has 

some significance and some explanatory power. But perhaps we could delete some of the 

explanatory variables to leave a simpler model that still contains explanatory power. 

We do this with a Subset test. We are looking to see whether the p parameter model could 

be reduced to a q parameter model (q < p).  

We are looking to see whether we can keep 𝑥1, … , 𝑥𝑞−1 but remove 𝑥𝑞 , … , 𝑥𝑝−1. Note that 

in practice we will not necessarily be keeping variables in number order. For example in a six 

variable, 7 parameter model where we look to remove 2 variables it is not necessarily the 

case that 𝑥5 and 𝑥6 are the variables to be deleted first, but rather the two that contribute 

least to model significance. We will cover how to identify which variables to consider for 

deletion later. 

More specifically we are interested in whether these variables under consideration for 

deletion significantly increase the sum of squares due to regression or significantly reduce 

the sum of squares due to residuals compared with the simpler model that does not include 

them. This is sometimes referred to as the “extra sum of squares principle”. The idea is that 

we seek models that maximise the proportion of sums of squares that are due to regression 

and minimise the proportion due to residuals. 

We seek the extra sum of squares due to 𝑥𝑞 , … , 𝑥𝑝−1 given that 𝑥1, … , 𝑥𝑞−1 are already in 

the model. This can be written 𝑆𝑆(𝑥𝑞 , … , 𝑥𝑝−1 | 𝑥1, … , 𝑥𝑞−1 )  
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Extra SS = {Regression SS under the full model} – {Regression SS under the reduced model} 

and 

Extra SS = {Residual SS under the reduced model} – {Residual SS under the full model} 

Let 𝜷𝟏
𝑻 = (𝛽0, … , 𝛽𝑞−1) and 𝜷𝟐

𝑻 = (𝛽𝑞, … , 𝛽𝑝−1) 

so that 𝜷 =  (
𝜷𝟏
𝜷𝟐
) 

that is we have split the parameter vector 𝜷 into one vector for the reduced model with q 

parameters and another vector with the additional p – q parameters we are considering for 

deletion. 

similarly we can split up the X matrix into X1 and X2 where X1 contains a columns of 1’s and 

then q – 1 columns with n observations for explanatory variables 𝑥1, … , 𝑥𝑞−1 and X2 contains 

p – q columns with n observations for explanatory variables 𝑥𝑞 , … , 𝑥𝑝−1. 

Then the full model is  

Y = X 𝛃 +  𝜀 

Y = 𝑿𝟏 𝛃𝟏 + 𝑿𝟐 𝛃𝟐 + 𝜀 

and the reduced model is 

Y = 𝑿𝟏 𝛃𝟏 +  𝜀 

 

We can calculate the SSR and SSE for both the full and the reduced models. We will call 

them: 

SSR
Full and SSE

Full 

SSR
Red and SSE

Red 

these use the same formulae that we developed in the previous section for sums of squares 

under multiple linear regression models but with the appropriate vector 𝜷 and matrix X for 

the full / reduced model. 

Then extra sum of squares is 

SSextra  = SSR
Full - SSR

Red = SSE
Red - SSE

Full =  �̂�𝑻𝑿𝑻 𝒀 − 𝜷�̂�
𝑻
𝑿𝟏

𝑻 𝒀 in matrix form. 

Once we have calculated the extra sum of squares we need to test whether that amount is 

significant or not. We do this with a test of hypotheses. 

𝐻0: 𝛽𝑞 = 𝛽𝑞+1 = ⋯ = 𝛽𝑝−1 = 0 

𝐻1: at least one of these parameters is not zero. 

If we reject H0 then there is evidence that at least some of the additional variables 

𝑥𝑞 , … , 𝑥𝑝−1 are significant and should be included in the model. 
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If we cannot reject H0 then we should delete the variables 𝑥𝑞 , … , 𝑥𝑝−1. 

Under H0 the test statistic F* follows a Fisher F distribution 

𝐹∗ = 
(
𝑆𝑆𝑒𝑥𝑡𝑟𝑎
𝑝 − 𝑞 )

𝑠2
 

here 𝑠2 is found from MSE in the full model 

and under H0  𝐹∗ ~ 𝐹𝑛−𝑝
𝑝−𝑞 

so we reject H0 at α significance level if 𝐹∗ > 𝐹𝑛−𝑝
𝑝−𝑞(𝛼) 

We may set out the calculation for this test in a particular form of ANOVA table. 

Source d.f. SS MS VR = F* 

𝑥1, … , 𝑥𝑞−1 

𝑥𝑞 , … , 𝑥𝑝−1| 𝑥1, … , 𝑥𝑞−1 

 

q – 1 
p – q 

𝑆𝑆(𝑥1, … , 𝑥𝑞−1) 

𝑆𝑆𝑒𝑥𝑡𝑟𝑎 

 
𝑆𝑆𝑒𝑥𝑡𝑟𝑎
𝑝 − 𝑞

 

 

(
𝑆𝑆𝑒𝑥𝑡𝑟𝑎
𝑝 − 𝑞 )

𝑠2
 

Overall Regression 
Residual 

p – 1 
n – p 

𝑆𝑆𝑅 
𝑆𝑆𝐸  

 
s2 

 

Total n – 1 𝑆𝑆𝑇    

 

There are two special cases where the F test can be replaced by a t test: 

• where p – q = 1 so only one explanatory variable is being considered for deletion 

• where there is a natural ordering of the explanatory variables X1, X2, X3, … so that we 

naturally consider deleting them one at a time sequentially according to that order. 

For deleting one explanatory variable (in this case we will consider deleting Xp-1 but our one 

variable for deletion does not need to be the one with the highest subscript) our test 

statistic is 

𝑡 =  
�̂�𝑝−1

𝑠𝑒(�̂�𝑝−1)
 

where 𝑠𝑒(�̂�𝑝−1) is the estimated standard error of the relevant beta parameter. The 

summary()function for a lm()linear model in R will include this standard error estimate 

in its output for each coefficient. 

Under 𝐻0: 𝛽𝑝−1 = 0, this t statistic 𝑡 ~ 𝑡𝑛−𝑝 and we complete a two-sided test of t at our 

chosen level of significance. It can be shown that under the null hypothesis F* = t2. 

Where there is a natural ordering of the Xi variables, we can perform a sequence of t tests to 

consider deletion of these variables in reverse order. 
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In this case the full model with p – 1 explanatory variables whose regression has p – 1 d.f. 

can be thought of as the sum of p – 1 consecutive models each of which has one 

explanatory variable and 1 d.f. These are: 

X1 

X2 | X1 

X3 | X1, X2 

… 

Xp-1 | X1, X2 … Xp-2 

We can then test successive βj parameters starting with j = p – 1 and working backwards 

towards j = 1 each with a t test using that parameter estimate and its estimated standard 

error in the presence of prior explanatory variables in the ordering. 

 

5.2 All Subsets Regression 

Usually there will not be a natural order to the explanatory variables. In this case there is 

some advantage to being able to consider all of the possible linear regression models using a 

set of explanatory variables from the largest (the full model with all p – 1 variables and p 

parameters) down to the constant or null model (with no explanatory variables and 1 

parameter β0 plus random error). 

With three explanatory variables the set of all linear regression models is: 

  𝑦𝑖 =  𝛽0 +  𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝜀𝑖 
  𝑦𝑖 =  𝛽0 +  𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖 
  𝑦𝑖 =  𝛽0 +  𝛽1𝑥1𝑖 + 𝛽3𝑥3𝑖 + 𝜀𝑖 
  𝑦𝑖 =  𝛽0 +  𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝜀𝑖 
  𝑦𝑖 =  𝛽0 +  𝛽1𝑥1𝑖 + 𝜀𝑖 
  𝑦𝑖 =  𝛽0 +  𝛽2𝑥2𝑖 + 𝜀𝑖 
  𝑦𝑖 =  𝛽0 +  𝛽3𝑥3𝑖 + 𝜀𝑖 
  𝑦𝑖 =  𝛽0 + 𝜀𝑖 

 

More generally with p – 1 explanatory variables there will be 2p-1 models to consider. This 

means that even with relatively small p a manual comparison of all models becomes difficult 

and time consuming.  

One method for comparing the full set of models is to calculate one or more statistics for 

each model and then compare the models using these statistics. The statistics we consider 

are: 

• variance 

• 𝑠2 = 𝑀𝑆𝐸 

• 𝑅2 

• Adjusted 𝑅2 
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• Mallow’s Statistic 

 

5.2.1 Variance and MSE 

Having the model with the smallest possible variance of residuals σ2 is a natural starting 

point however the true variance is unknown. That leads us quickly to 𝑠2 = 𝑀𝑆𝐸 which we 

know is an unbiased estimator of σ2. However if our method is simply to select the model 

that has lowest 𝑀𝑆𝐸, that will often (although not always) be the full model. Therefore this 

is a very conservative method of model building. Better is to locate the model with the 

smallest number of explanatory variables that keeps its 𝑀𝑆𝐸 close to full model 𝑀𝑆𝐸. 

Definitions of "close” will vary according to modelling scenarios. A useful way to look at this 

in practice is to plot all the model 𝑀𝑆𝐸’s against number of explanatory variables. 

 

5.2.2 R2 and Adjusted R2 

From before we have the Coefficient of Determination or R2 of a model is 

𝑅2 = 100% 
𝑆𝑆𝑅
𝑆𝑆𝑇

= 100%(1 − 
𝑆𝑆𝐸
𝑆𝑆𝑇

) 

Adding additional explanatory variables should always increase R2 therefore once again if 

our model building rule is simply to maximise R2 we will always use the full model. Similar to 

MSE above a more useful approach is to calculate R2 for all the models and then plot R2 

against number of explanatory variables to see where the gain in R2 from adding more 

variables starts to level off. 

R2 does not in itself take any account of the number of explanatory variables in the model 

therefore using R2 to compare say a 2 variable and 5 variable model has disadvantages. 

Adjusted R2 (found alongside R2 in summary()output of lm()in R) seeks to adjust for this. 

Adjusted R2 = 100%(1 − (𝑛 − 1)
𝑀𝑆𝐸

𝑆𝑆𝑇
) 

Adjusted R2 does take account of the number of explanatory variables. Whereas R2 always 

increases when a new variable is added, Adjusted R2 will only increase if the F statistic for 

the parameter associated with that new explanatory variable is greater than 1. Selecting the 

model with largest Adjusted R2 is a method of comparison across models with different 

number of explanatory variables and seeking to maximise Adjusted R2 will not automatically 

lead to the full model. 

 

5.2.3 Mallow’s Statistic 

For a model with k parameters we define Mallow’s Statistic, Ck to be 

𝐶𝑘 = 
𝑆𝑆𝐸

(𝑘)

𝜎2
+ 2𝑘 − 𝑛 
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where 𝑆𝑆𝐸
(𝑘)

is the residual sum of squares for the linear regression model with those k 

parameters. 

If this k parameter model has all the statistically significant explanatory variables available 

then E[𝑆𝑆𝐸
(𝑘)

] = (n – k) σ2 and then Ck becomes (n – k) + 2k – n = k. 

If the model excludes one or more of the statistically significant explanatory variables 

available then E[𝑆𝑆𝐸
(𝑘)

] > (n – k) σ2 and then Ck > k. 

This would suggest choosing the model with Mallow’s Statistic Ck closest to its number of 

parameters k. 

However it can also be shown that Mallow’s Statistic is also an estimator of the mean 

square error of prediction in a linear regression model with k parameters. Therefore there is 

also some utility in minimising Ck. Hence two potential model selection rules using Mallow’s 

Statistic are available: 

• select model with Ck closest to k 

• select model with smallest Ck  

In practice σ2 which is part of the Ck is unknown. We usually replace this with S2 = MSE
full 

from the full model (not the k parameter model). R estimates Ck this way. If full_model 

and say model_k have both been constructed in R with lm() and the appropriate 

explanatory variables then Mallow’s Statistic (sometimes called Mallow’s Cp) is found by 
ols_mallows_cp(model_k, full_model) 

 

 

5.3 Automatic Methods of model selection  

If we have a relatively small number of explanatory variables available then calculating MSE 

or R2 or Adjusted R2 or Mallow’s Statistic Ck for each of the candidate models and then 

making a selection based around some criterion and those statistics is feasible. However, as 

the number of potential explanatory variables grows (and the number of candidate models 

grows exponentially) doing this for all models becomes more challenging. In response to 

this, a number of so-called automatic regression model selection procedures have been 

devised. Each of these has their advantages and disadvantages. They generally involve a 

sequence of statistical tests. 

 

5.3.1 Backwards Elimination 

The process can be summarised as follows: 

• fit the multiple linear regression model that uses all the explanatory variables 
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• as the number of variables increases and we risk including variables that are 

essentially themselves linear combinations of other variables in the model, we run 

into the problem of multicollinearity which we will look at in the section below 

• Calculate the F statistic (or the t statistic) for the exclusion of each variable 

• find the variable with the lowest F statistic and eliminate this if the statistic is smaller 

than some predetermined value 

• This leaves a model with one fewer variable. Now fit this model and re-run the 

process above. 

• Stop when a variable is not omitted (because the smallest F statistic is no longer 

smaller than the predetermined value). 

 

5.3.2 Stepwise Regression 

Stepwise Regression, sometimes called Modified Forward Regression works in the opposite 

direction to Backward Elimination. This process can be summarised as 

• Start with the null model 𝛽0 + 𝜀𝑖  

• fit simple linear regression models for each of the explanatory variables under 

consideration 

• select the explanatory variable whose simple linear regression model has the largest 

F statistic (or t statistic) 

• now add the explanatory variable with the next highest F statistic 

• test (via subset deletion) whether either of the two variables can be omitted 

according to some predetermined F value. [Sometimes the process may have a 

higher value needed for omission of an existing variable than for the newest variable 

just added] 

• continue until no more variables are added or omitted. 

One problem with this approach is the estimation of σ2 in the F tests. By starting with the 

simpler models, the MSE model estimate of σ2 is likely to be higher in the early rounds of 

this process and then fall over time as more variables are added. This distorts early round F 

statistics compared to later ones. A potential way around this is to use the full model MSE as 

the estimator of σ2 in all the F tests beginning with the first explanatory variable to be added 

to the null model. 

Another variation of the stepwise process is one that only has addition and not omission of 

existing variables, that is once an explanatory variable is added it cannot then be omitted 

later in the process. 

 

5.4 Akaike’s Information Criterion 

One of the main issues with automatic selection processes is the risk that we keep or 

include explanatory variables whose parameter values are really zero, that is we fail to 

reject 𝐻0: 𝛽𝑗 = 0 for some j when we should have rejected it [sometimes this is known as a 
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‘false positive’). Akaike’s Information Criterion or AIC can help address this. The AIC uses 

maximum likelihood estimation of parameters that we covered earlier. Akaike’s Information 

Criteria is defined as 

𝐴𝐼𝐶 = 2(𝑝 + 1) − 2𝑙𝑜𝑔𝐿 

where: 

• p = the number of regression parameters (so p – 1 explanatory variables) 

• L is the Likelihood function evaluated at the maximum likelihood estimates of each 

of the parameters 

We seek the regression model that minimises AIC. 

We have already seen in the section on maximum likelihood estimation above that in linear 

regression models the maximum likelihood estimators of the beta parameters are the same 

as the least squares estimators. 

However the MLE of σ2 is not our usual unbiased estimator MSE. Instead the MLE for the 

model variance is �̂�2 =  
𝑆𝑆𝐸

𝑛
. 

Now it can be shown that in a normal linear regression model that 

 −2𝑙𝑜𝑔𝐿 = 𝑛(𝑙𝑜𝑔2𝜋 + 𝑙𝑜𝑔𝜎2 + 1) 

If we seek the model that minimises AIC (which because of the −2𝑙𝑜𝑔𝐿term in the AIC is 

equivalent to the model that maximises likelihood) then once again there are several ways 

we can go about this analogous to backward elimination and forward stepwise regression. 

Backwards, we start with the full model. 

• Construct the full model and calculate its AIC 

• Construct all the possible models that omit one variable and calculate the AIC for 

each of them 

• Compare the AIC of all the models (full and each one with a variable omitted) 

• If the full model has the lowest AIC use that model and stop 

• If one of the other models has the lowest AIC move onto that model and repeat by 

once again considering all models with one less variable and their AIC’s 

• Stop once AIC can no longer be reduced by omitting a variable. 

This process can be automated in R programming using the step()function. If the full 

model is constructed using lm()and stored in R as full_model the backwards route to a 

reduced model is given by 

reduced_model <- step(full_model, direction = “backward”) 

Forwards we start with the null model. In R the null model is found by lm(y~1)If we store 

this as null_model and we have six possible explanatory variables to consider adding, x1 

x2 x3 x4 x5 x6 then this is done in R programming with 
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forward_model <- step(null_model, scope = x1+x2+x3+x4+x5+x6, 

direction = “forward”) 

A third variation is to set direction = “both” in the step() command which has the 

effect of adding additional variables from the null model and then later deleting one or 

more of those variables once others are added. 

Backwards and forwards processes using AIC may lead to different recommended models. 
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6 Problems fitting multiple regression models 

We now turn to some of the potential problems fitting multiple linear regression models. 

We begin with one that is a particular issue when the number of explanatory variables 

becomes large. 

6.1 Singular or near-singular XTX 

We have already seen that for there to be a solution to the normal equations and a unique 

set of least squares estimators for β that we need XTX not to be singular. If it is singular, its 

determinant is zero and there is no unique solution to the normal equations. 

The problem of singularity in XTX occurs when there is linear dependence between the xij 

variables, for example 

• if two or more variables are equal 

• if one variable is a linear combination of other variables 

For example consider a model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖   

In the extreme example where 𝑥1𝑖 = 𝑥2𝑖 = 1 all i =1,2,3 then 

If X = (
1 1 1
1 1 1
1 1 1

) 

and XTX = (
3 3 3
3 3 3
3 3 3

) 

det(XTX) = 0 

Or where 𝑥1𝑖 = 𝑥2𝑖  but the individual observations take different values 

If X = (
1 1 1
1 2 2
1 3 3

) 

then again det(XTX) = 0 

which means that XTX is not invertible and we cannot solve the normal equations. 

Or where 𝑥2𝑖  itself has a linear relationship to 𝑥1𝑖. So if 𝑥2𝑖 =  2𝑥1𝑖  e.g. 

If X = (
1 2 4
1 2 4
1 2 4

) then again det(XTX) = 0 

These cases are generally quite easy to identify and eliminate. In modelling scenarios a more 

common situation is where one explanatory variable’s observation set is very close to that 

of another (or a linear transformation of other variables). Then the determinant of XTX will 

be close to (but not equal to) zero. 

for example 
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If X = (
1 0.95 1.04
1 −0.98 −1.01
1 1.03 0.96

) then det(XTX) = 0.1014 

In this case (XTX)-1 = (
78.23 0.13 −78.04
0.12 0.38 −0.01
−78.04 −0.01 78.23

) 

But we know that 𝑣𝑎𝑟(�̂�𝑗) =  𝜎
2𝑐𝑗𝑗 where the 𝑐𝑗𝑗  are taken from the diagonal of the matrix 

above. Therefore in this example 𝑣𝑎𝑟(�̂�2) =  78.23 𝜎
2 which is very large in comparison to 

𝜎2. 

Parameters with large variances is one of the problems of multicollinearity, where some of 

the columns of X are or are close to linear combinations of other columns. When the 

variance is very high this can even lead to a parameter having the wrong sign. That is a 

parameter that should be positive because when the explanatory variable increases, the 

response should increase as well, is in fact negative (or vice versa). Multicollinearity can also 

lead to issues with selecting a subset of variables in a multiple linear regression model. 

When the number of explanatory variables is relatively small it may well be possible to spot 

multicollinearity by scanning the data. However as the number of variables increases this 

may not be possible and we need to develop statistical techniques for identifying potential 

problems. 

 

6.2 Variance Inflation Factor 

The Variance Inflation Factor or VIF is one way to detect possible multicollinearity. 

Consider a multiple linear regression of yi on p – 1 explanatory variables, such that the 

model is 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝−1𝑥𝑝−1,𝑖 + 𝜀𝑖 

Now the VIF can be calculated for each of the explanatory variables 𝑥𝑗 j = 1, 2, … p – 1 as 

follows. 

• perform a multiple linear regression of 𝑥𝑗 against the other p – 2 explanatory 

variables (so instead of y as the response, 𝑥𝑗 is the response and the remaining x’s 

are explanatory variables with their own set of β parameters different from the 

original regression of y) 

• calculate the coefficient of determination of this regression of 𝑥𝑗 and express it as a 

real number between 0 and 1 not a percentage, called 𝑅𝑗
2. 

then 
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𝑉𝐼𝐹𝑗 = 
1

1 − 𝑅𝑗
2 

 

Large 𝑅𝑗
2 (close to 1) indicates a strong linear relationship between 𝑥𝑗 and other explanatory 

variables and will lead to a high VIF. 

We usually take 𝑉𝐼𝐹𝑗 > 10 as an indication that multicollinearity might cause problems with 

a regression model. Where this is detected, we need to simplify the model by reducing the 

number of explanatory variables so that linear combinations are removed. 

Another indication of multicollinearity can be a model where the overall model shows 

significance with an F test but none of the individual parameters show significance with 

their t tests. 

 

6.3 Residuals and their plots 

We have already defined the residuals in a multiple linear regression using the matrix form 

and stated some of their basic properties. 

𝒆 = 𝒀 − �̂� = (𝑰 − 𝑯)𝒀 

𝐸[𝒆] = 𝟎 

𝑣𝑎𝑟(𝒆) =  𝜎2(𝑰 − 𝑯) 

where H is the hat matrix  

If we denote the (i,j)th element of the hat matrix ℎ𝑖𝑗 so that the diagonal elements are ℎ𝑖𝑖  

then we can re-write the variance of the residuals as 

𝑣𝑎𝑟(𝑒𝑖) = (1 − ℎ𝑖𝑖)𝜎
2 

𝑐𝑜𝑣(𝑒𝑖, 𝑒𝑗) =  −ℎ𝑖𝑗𝜎
2 

Note that in the simple linear regression model we referred to ℎ𝑖𝑖  as 𝑣𝑖  and either notation 

can be used in multiple linear regression. 

The formula for the variance of each residual in a multiple linear regression model gives us 

an additional reason for standardising the residuals. In simple linear regression we 

standardised because the variance of the residuals was different to the 𝜎2 assumed for the 

random error terms in the original model specification. Now in multiple linear regression 

with  

𝑣𝑎𝑟(𝑒𝑖) = (1 − ℎ𝑖𝑖)𝜎
2 

we can see that not only is that still the case but furthermore the variance of each of the 

residuals might be different depending on the hat matrix. This can make detection of 

outliers difficult, so again it is helpful to standardise residuals calculating di where 
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𝑑𝑖 = 
𝑒𝑖

√𝑆2(1 − ℎ𝑖𝑖)
 

If the normal distribution assumption for the residuals is followed, then 𝑑𝑖  ~ 𝑡𝑛−𝑝 

Furthermore for large number of observations n the value of ℎ𝑖𝑗 (i ≠ j) tends to be small and 

therefore asymptotically the standardised residuals 𝑑𝑖 are iid N(0,1). It is this property that 

we rely upon the most for model checking using 𝑑𝑖 and so we do well to remember this 

carries most validity when we have a large sample size of observations data. 

Our four most common checks using the standardised residuals are similar to those for 

simple linear regression models: 

• plot 𝑑𝑖 against each of the explanatory variables 𝑥𝑗 (j = 1, 2, … p – 1) individually to 

check for a linear relationship in that explanatory variable. We seek a plot that does 

not have a clear pattern, in particular one that does not exhibit clear curvature. 

• plot 𝑑𝑖 against the fitted values 𝑦�̂�. This is to check the assumption of a constant 

variance (σ2). Again we seek a plot without a clear pattern. This time the pattern we 

are particularly wary of is a “funnel” shape indicating increasing variance with y. 

• the QQ plot is used to check the assumption of normally distributed residuals. We 

seek a plot close to the straight QQ line. A QQ plot that deviates from the line is 

evidence that a transformation of the response may need to be considered. 

• Any of the above plots can be used to detect outliers, those observations with 

particularly large absolute residuals. 

Where observation data is such that we record time, it is also useful to plot the standardised 

residuals in order against time t. This can be used to detect “autocorrelation” and is covered 

in detail in MTH6139 Time Series. 

 

6.4 Influential observations and leverage 

We previously discussed influential and high leverage observations in simple linear 

regression models. Previously with simple linear regression we calculated the leverage of an 

observation and labelled this vi. Now with the matrix approach to linear regression we can 

relate leverage to the hat matrix H. In fact 𝑣𝑖 = ℎ𝑖𝑖  the leverage of the ith observation set is 

equal to the ith element on the diagonal of the hat matrix. 

The fitted model is �̂� =  �̂� = 𝑿�̂� = 𝑯𝒀 and using the hat matrix in the calculation of fitted 

values given observations of the response leads to the following equation for the ith fitted 

value 

𝑦�̂� = 𝜇�̂� = ∑ℎ𝑖𝑗𝑦𝑗

𝑛

𝑖=1

= ℎ𝑖𝑖𝑦𝑖 + ∑ℎ𝑖𝑗𝑦𝑗
𝑖≠𝑗

 



56 
 

So ℎ𝑖𝑖  indicates the extent to which the observation with 𝑦𝑖contributes to the fitted value 

𝜇�̂�. This is its leverage. When we think of leverage as the ith diagonal element of the hat 

matrix rather than a separate calculation v, a number of properties of ℎ𝑖𝑖  emerge. 

• Previously we noted that 𝑣𝑎𝑟(𝑒𝑖) =  𝜎
2(1 − ℎ𝑖𝑖). Now ℎ𝑖𝑖  < 1. But ℎ𝑖𝑖  close to 1 will 

give 𝑣𝑎𝑟(𝑒𝑖) close to zero, that is a fitted value close to the observed value. 

• In general ℎ𝑖𝑖  is small when 𝑥𝑖  is close to its mean �̅� and gets larger the further 𝑥𝑖  is 

from its mean. 

• 
1

𝑛
< ℎ𝑖𝑖 < 1 and ∑ ℎ𝑖𝑖 = 𝑝

𝑛
𝑖=1  (the number of parameters). In the simple linear 

regression model we had sum of leverage = 2 and now this is the general case for p 

parameters and p – 1 variables. This means that average leverage is 𝑝/𝑛. Thus we 

usually consider leverage > 2𝑝/𝑛 as “high leverage” and > 3𝑝/𝑛 as “very high 

leverage”. There are a number of possible causes of high leverage including the 

method of data collection used or a single non-typical observation. 

We measure leverage and check for high leverage because we are concerned to check 

whether a single observation exerts influence over the model results. A measure of 

influence can be obtained from Cook’s Statistic. For multiple linear regression and the 

matrix approach, generalising the formula for Cook’s Statistic given previously for simple 

linear regression we have 

𝐷𝑖 = 
(�̂� − �̂�(𝒊)) 

𝑻(𝑿𝑻𝑿)(�̂� − �̂�(𝒊))

𝑝 𝑆2
 

where 

�̂� is the vector of least squares parameters 

�̂�(𝒊) is the estimates of the parameters found when the ith observation is omitted. 

Once again, an unusually large value for 𝐷𝑖  can be taken as evidence of an influential 

observation. 
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7 Linear Models 

In this module we have been concerned with linear models, in particular the simple and 

multiple linear regression models. But what about these models is linear? Perhaps not what 

many people might naturally assume. A linear model is one that is linear in the parameters 

(not one that is linear in the explanatory variables). These are all examples of linear models: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2√𝑥2𝑖 
+ 𝜀𝑖 

𝑦𝑖 = 𝛽0 + 𝛽1sin(𝑥1𝑖) + 𝛽2𝑥2𝑖 + 𝜀𝑖  

 

Now sometimes (but not always) a non-linear model can be converted into a linear one 

through a transformation of the response. We say that the model is linearised. For example, 

𝑦𝑖 = 𝜀𝑖 exp(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖) 

is not linear, but can be linearised by taking natural logarithms so that 

ln(𝑦𝑖) =  𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ln(𝜀𝑖) 

Note that if we do this, we need to take care about the assumption we make for the 

distribution of the residuals. To use the techniques we have developed for assessing linear 

regression models in this module we will need to assume ln(𝜀𝑖) ~ 𝑁(0, 𝜎
2) for some 

constant variance 𝜎2 and not that 𝜀𝑖 ~ 𝑁(0, 𝜎
2) as has been the case before now. 

Furthermore other variations of this example such as  

𝑦𝑖 = 𝜀𝑖 exp(𝛽0 + 𝛽1𝑥1𝑖 +
𝛽2
𝑥2𝑖
) 

can also be linearised by a log transformation of the response. 

The non-linear model 

𝑦𝑖 = 𝛼 +  exp(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖) 

where α is a constant, can also be linearised, this time by subtracting the constant and then 

taking logs 

ln(𝑦𝑖 −  𝛼) =  𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖 

Another model not linear in its parameters is 

𝑦𝑖 = 
1

𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖
 

This can be linearised by inverting the response as long as we are prepared to accept the 

condition that 𝑦𝑖 ≠ 0 

Then the linearised model is 
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1

𝑦𝑖
= 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝜀𝑖  

 

A particular set of linear models that can be useful in some contexts are Polynomial 

Regression Models. 

For example the Quadratic Regression Model is written 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽11𝑥𝑖
2 + 𝜀𝑖  

This is a linear model because it is linear in 𝛽1 and 𝛽11 

In some ways it might be better to think of the quadratic model not so much as a multiple 

linear regression model but as an extension of the simple linear regression model  
𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖  

That is because the quadratic model only has one explanatory variable, but that variable 

appears twice as 𝑥𝑖 and 𝑥𝑖
2. 

We can compare the simple linear and quadratic models for a certain set of observations. 

Having fitted 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽11𝑥𝑖
2 + 𝜀𝑖  we can test  

𝐻0 : 𝛽11 = 0 versus 𝐻1: 𝛽11 ≠ 0 

Under H0 a simple linear regression model adequately describes the data whereas if we 

reject H0 then the quadratic component gives a statistically significantly better fit. 

We can extend this to cubic and higher order polynomials in 𝑥𝑖  However for most data sets, 

higher powers of 𝑥𝑖  quickly become very large. Therefore it is often sensible to centre the 

data and model 𝑧𝑖 = 𝑥𝑖 − �̅� instead of 𝑥𝑖. 

We can also have polynomial regression with multiple explanatory variables where each 

explanatory variable appears multiple times in the model with different powers. For 

example with 2 explanatory variables 𝑥1 and 𝑥2, and allowing quadratic terms in each, we 

get the model 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽11𝑥1𝑖
2 + 𝛽22𝑥1𝑖

2 + 𝛽12𝑥1𝑖𝑥2𝑖 + 𝜀𝑖 

If we were considering subset deletions in these types of models it is usual not to remove 

the first order terms 𝑥1𝑖 or 𝑥2𝑖  whilst leaving any of the higher order terms that rely upon 

them still in the model. 

These types of models are important in certain applications and are sometimes called 

Response Surface methods (RSM). This gives a method for statistical modelling of variables 

that are often represented geometrically by a three-dimensional surface. This has proven a 

useful way of analysing results of some experiments in biology and chemistry. 

  


