Least Square Estimation
(statistical Modelling 1)

Week 1, Lecture 2

LY
W




Least Square Estimation
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The simple linear regression model: Revision

Linear Regression Model: Given observation data (x;,y;) for i =1,2,---,n we can
fit a straight line to describe the response variable Y in terms of the explanatory
variable X where

E(Y|X = x) = fo + prx

where 5y denotes the intercept and (31 is the slope of the line .

Stochastic Linear Model: The stochastic linear model can be written either as

Y = E[Yi|[X = x| + € oras Vi = 5o+ f1X + ¢

for i =1,2,---,n. Here ¢; is the random error.

The random error term is there since there will almost certainly be some variation in Y due
strictly to random phenomenon that cannot be predicted or explained.
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The simple linear regression model: Revision

The random error: We usually make 3 assumptions about the random error:
Q E(¢;)=0forall i
@ var(e;) = o2 for all i
© cov(ej, €j) =0 for all i # j.

About Y;: Because ¢; is a random variable, Y; must be a random variable.
Q@ E(Yi|X = x;) = ui = Bo + Paix; for all i (the dependence of Y on X is linear)
@ var(Y;|X = x; = 02 for all i (the variance of Y at each value of X is constant and
does not depend on x;)
@ cov(Yj|X =x;, Yj|x =x;) =0 for all i # j, (Y; and Y] are uncorrelated)

Normal Assumption: We can write this in following 3 ways:

(A) yi ~ N(pi,0%) where pi; = B + B1xi
(B) yi ~ N(Bo + B1xi,02) \!@
(C) yi = Bo + B1xi + €; where the €; and iid €; ~ N(0, 02). s
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Least Square Estimation

Residuals: ¢; = y; — y; are the difference between the actual value y; and the predicted
value y;. Next page shows a hypothetical situation based on six data set points.

The model parameters 8y, 51 are unknown. With a data we can estimate these
parameters. We are interested to find values of the parameters that best explain the
data we have observed.

@ Least Square Estimation

@ Maximum Likelihood Estimation

Today we will consider Least Square Estimation. You can find Maximum likelihood
estimation in Statistics books.
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What is Least Square Estimation

As the name suggests By and (31 are chosen to minimize the sum of squared residuals.
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This method is also known as RSS (Residual sum of squares).



Least Square Estimation

The least squares estimators of the model parameters 5y and 31 are the parameter
values that minimise the sum of the squares of the errors S(fo, 1)

5(Bo, B1) = Ze —Z ~ (o + Bixi))?

To find a minimum:
o differentiate S(5p, /1) with respect to both 5y and f;.
@ we set each differential equal to zero
@ solve the two simultaneous equations in By and 3
@ the values of 5y and (31 that satisfy these simultaneous equations are ﬁo and BAl
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Normal Equations

= ~2EEolvi = (Bo+ Bix)] = 0 (4)

and

drS’ —2%iolyi = (Bo+ Brx)]xi= 0 (B)

Now divide by —2 and separate out the terms in the () brackets
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Normal Equations

Rearranging terms in

the two equations gives
n n
D yi=nBo+hY xi
i=0 i=0
n n n
D xivi=Bo > xi+ by <F
i=0 i=0 i=0
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Finding [
If we divide the first normal equation by n
=~ 1 =1
Bo = - Xiz0¥i— B XizoXi

or

e —

Bo=V— B X




Finding ;
Substituting for B, in the second normal equation gives

n 1lovn n
o~ Lizo XiVi—5 Xi=o Xi Zi=o Vi
ﬁl - n

2_lom N2
i=0%i n(Z;':gx:)

or

F = Tt D)
1 Z?':o{xi_f} 2

Sxy

often written in shorthand ﬁl — S
XX




Finding 5,

Now in calculus, to check that this is a minimum not a maximum for S(/p, 51) at
(Bo, £1). We need to find all the second derivatives

d?S d?S d?S and d?s
dpg’ dpi’ dBobr dB15o

and check that the following determinant is > 0

d?s d?s
a2 5o dBodpr | _ 2n 2> 7 o Xi
d-S d?s 227:0 Xj 227:1 Xi2

dBodBfr  d?f

Det ()= 4n >0, (x — %) > 0.
The function S(fo, 51) attains a minimum at (BAo,ﬁAl).

P
ey




Important notes about 5y and (4

In these equations, Bo and BAO are functions of Y as well as of X

Y is random variable and is generally unknown

Hence By and (37 are also random variables

@ Because Y is not known, all we can do is calculate values for 8y and (51 given a
particular set of observations (x;, y;)

The estimator is the algebraic formula depending on the variables X; and Y;

The estimate is that formula evaluated for a certain set if observations (x;, y;)

e With a different set of observation data we would expect different values for the
estimates
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The simple linear regression model
Example: Global average temperature over time

What is the evidence for climate change?
How fast are average temperatures rising?
NASA Goddard Institute for Space
Studies records average surface
temperature each year and compares to a
baseline temperature of the average for

Vnal Si
period 1951 - 1980 igns

https://climate.nasa.gov/vital-signs/global-temperature/
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The simple linear regression model

Scatterplot of 1980 — 2022 data

Global temperature compared to 1951- 1980 baseline
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Global Average Temperature data

Using R we can create a vector by c(...) operator so
x=c(...)
y=c(...)

sum(x), sum(y), mean(x), median(x), sd(x), var(x), cor(x, y), cov(x, y)

We can use the "linear model” Im() function in R to find the least squared estimates
of the simple linear regression model parameters

> model = Im(y~x)

> summary(model)
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Global Average Temperature data, BAO, 31

¥~ x)

Min 1Q

dian kls} Max

-0.153268 -0.080700 -0.003953 0.080943 0.193511

Coeffic

rror t walue Pri>|t]}

{Intercept) 0.138404

0283518 4.854 1.79%e-05

® 0.01B838 0.00116% 16.112 < 2e-186

(Intercept) ***
« —
Signif. codes:

0 veswr [g.OOL ‘4% Q.01 C*f 0.05 ‘.f 0.1 * * 1

Residual standard error: 0.09513 on 41 degrees of £

. LY
dom \?’Q‘!

Multiple R-sguared: 0.8636, Adjus

statistic: 259.6 on 1 and 41 DF,
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Global Average Temperature data, BAO, 31

lm(formula = y ~ %)

Min 10 ian 30 Max

53268 -0.080700 -0.003953 0.080%43 0.193511

Coefficients:

Estim:

Std. ror t value Prizltl}

{Intercept) 0.138404 0.028516 4.854 1.7%e-05

x 0.018836 0.001162 16.112 < 2e

{Intercept) *==

Signif. codes:

0 Ye«+*r [ Q01 “**" 0.01 “** 0.05 *." 0.1 * " 1

ror: 0.08513 on 41 degrees of £

ared: 0.8603

< 2.2e-18
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Model fitted to our temperature data, y;

Global temperature compared to 1951-80 baseline
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Interpretation of the model result

The simple linear regression model fitted may be interpreted as:
@ by the end of the 1951 — 1980 baseline period, global average surface temperatures
were already 0.138 degrees higher than the average for the 30-year baseline period

@ since then annual average surface temperatures have increased by 0.0188 degrees
Celsius per year on average based on this NASA GISS data.
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Exams Style Question

Question (2022): A baker is interested to find the relationship between the width of
the shelf-space for her brand of cookies (x, in feet) and monthly sales (y) of the
product in a supermarket. Hence, she fits a model relating monthly sales y to the
amount of shelf space x her cookies receive that month. That is, she is fitting the
model in the following way y = By + S1x + € where € ~ N(0, 02).

x (shelf space) y (weekly sales) weekly sales VS shelf space
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Exams Style Question

Using the R, we obtained the following output.

> mody <- lm(y ~ x)
> summary (mody)

Call:
Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-67.022 -31.346 -0.631 33.654 54.734

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 429.048 26.519 16.179 1.69e-08 **x

X 18.244 5.643 3.233 0.00898 *x*
Signif. codes: 0 “#kk’ 0.001 “#%’ 0.01 ‘*’ 0.05 “.” 0.1 “ ’ 1

&
Residual standard error: 39.2 on 10 degrees of freedom \;‘_Q‘;’
Multiple R-squared: 0.511, Adjusted R-squared: 0.4621 Queen Mary
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Exams Style Question

Question (2021): A life insurance company is examining the force of mortality, 11, of a
particular group of policyholders. It is thought that it is related to the age , x of the
policyholders by the formula py = Bc®
It is decided to analyze this assumption by using the linear regression model

Yi= o+ Bxi + €y where £ H N(0,0%)

The results and summary statistics for eight ages were as follows where

Age, x 30 32 34 36 38 40 42 44
Force of mortality, j, (x107*) | 5.84 6.1 648 7.05 7.87 903 10.56 12.66
In p, -745 -74 -734 -7.26 -715 -7.01 -6.85 -6.67

D x=29% 3 x{=11,120 ) Inp, =-57.129
i i i

D () =4085 Y xilnp, =-2,1045
Apply a translation to the original formuale, juxy = Bc?, to make it suitable for analysis by \.Q.)l
linear regression. Hence write down expressmns for Y, o and 3 in the terms of uy, B and qeremncs
Hence estimate the parameters & and 3. -




Exams Style Question

Taking log of the original expression gives:
log n, = log B +xlogc

This expression is now linear in x- Comparing the expression with Y = « + px

gives:

Y = log L, o = log B, B =logc

Obtaining the estimates of o and 3 using

296\*
sxx:fofmzZ:n,lzofs(?) =168

Swy=) xy—nxy=-2,1045-8 (2%6) (_578']29) =9.273

Thus, the estimates are

Se  9.273

B:SXX:W:O.osm% \‘4'4
- -~ —57.129 296 )
&=7-Ppx= —0.0055196 x 0 = —9.1834 (s
’ 5 Queen Mary
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Next Week Targets

@ Watch Weekly videos posted at QMplus page
@ Try Questions of Exercise Sheet 1
@ Try Questions of Introduction to R

0 Attend tutorial session to discuss problems from (1), (2) and
(3) above.
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