Least Square Estimation

(Statistical Modelling I)

Week 1, Lecture 2

Least Square Estimation

Outline

(1) Revision
(2) Estimating Unknown parameters β_{0} and β_{1}

- Least Square Estimation
- Normal Equations
(3) How to calculate β_{0}, β_{1} using R
(4) Exams Style Questions
(5) Next Week targets

The simple linear regression model: Revision

Linear Regression Model: Given observation data $\left(x_{i}, y_{i}\right)$ for $i=1,2, \cdots, n$ we can fit a straight line to describe the response variable Y in terms of the explanatory variable X where

$$
E(Y \mid X=x)=\beta_{0}+\beta_{1} x
$$

where β_{0} denotes the intercept and β_{1} is the slope of the line.
Stochastic Linear Model: The stochastic linear model can be written either as

$$
Y=E\left[Y_{i} \mid X=x_{i}\right]+\epsilon_{i} \text { or as } Y_{i}=\beta_{0}+\beta_{1} X+\epsilon_{i}
$$

for $i=1,2, \cdots, n$. Here ϵ_{i} is the random error.

The random error term is there since there will almost certainly be some variation in Y due strictly to random phenomenon that cannot be predicted or explained.

The simple linear regression model: Revision

The random error: We usually make 3 assumptions about the random error:
(1) $\mathrm{E}\left(\epsilon_{i}\right)=0$ for all i
(2) $\operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2}$ for all i
(3) $\operatorname{cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0$ for all $i \neq j$.

About Y_{i} : Because ϵ_{i} is a random variable, Y_{i} must be a random variable.
(1) $\mathrm{E}\left(Y_{i} \mid X=x_{i}\right)=\mu_{i}=\beta_{0}+\beta_{1} x_{i}$ for all i (the dependence of Y on X is linear)
(2) $\operatorname{var}\left(Y_{i} \mid X=x_{i}=\sigma^{2}\right.$ for all i (the variance of Y at each value of X is constant and does not depend on x_{i})
(3) $\operatorname{cov}\left(Y_{i}\left|X=x_{i}, Y_{j}\right| x=x_{j}\right)=0$ for all $i \neq j$, (Y_{i} and Y_{j} are uncorrelated)

Normal Assumption: We can write this in following 3 ways:
(A) $y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right)$ where $\mu_{i}=\beta_{0}+\beta_{1} x_{i}$
(B) $y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$
(C) $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$ where the ϵ_{i} and iid $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$.

Least Square Estimation

Residuals: $\epsilon_{i}=y_{i}-\hat{y_{i}}$ are the difference between the actual value y_{i} and the predicted value \hat{y}_{i}. Next page shows a hypothetical situation based on six data set points.

The model parameters β_{0}, β_{1} are unknown. With a data we can estimate these parameters. We are interested to find values of the parameters that best explain the data we have observed.
(1) Least Square Estimation
(2) Maximum Likelihood Estimation

Today we will consider Least Square Estimation. You can find Maximum likelihood estimation in Statistics books.

What is Least Square Estimation

As the name suggests β_{0} and β_{1} are chosen to minimize the sum of squared residuals.

This method is also known as RSS (Residual sum of squares).

Least Square Estimation

The least squares estimators of the model parameters β_{0} and β_{1} are the parameter values that minimise the sum of the squares of the errors $S\left(\beta_{0}, \beta_{1}\right)$

$$
S\left(\beta_{0}, \beta_{1}\right)=\sum_{i=0}^{n} \epsilon_{i}^{2}=\sum_{i=0}^{n}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

To find a minimum:

- differentiate $S\left(\beta_{0}, \beta_{1}\right)$ with respect to both β_{0} and β_{1}.
- we set each differential equal to zero
- solve the two simultaneous equations in β_{0} and β_{1}
- the values of β_{0} and β_{1} that satisfy these simultaneous equations are $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$

Normal Equations

$$
\begin{align*}
& \frac{d S}{d \beta_{0}}=-2 \sum_{i=0}^{n}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]=0 \tag{A}\\
& \text { and } \\
& \frac{d S}{d \beta_{1}}=-2 \sum_{i=0}^{n}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right] x_{i}=0 \tag{B}
\end{align*}
$$

Now divide by -2 and separate out the terms in the () brackets

Normal Equations

Rearranging terms in the two equations gives

$$
\begin{align*}
& \sum_{i=0}^{n} y_{i}=n \beta_{0}+\beta_{1} \sum_{i=0}^{n} x_{i} \tag{C}\\
& \sum_{i=0}^{n} x_{i} y_{i}=\beta_{0} \sum_{i=0}^{n} x_{i}+\beta_{1} \sum_{i=0}^{n} x_{i}^{2} \tag{D}
\end{align*}
$$

Finding $\hat{\beta}_{0}$
If we divide the first normal equation by n
$\widehat{\beta_{0}}=\frac{1}{n} \sum_{i=0}^{n} y_{i}-\widehat{\beta_{1}} \frac{1}{n} \sum_{i=0}^{n} x_{i}$
or
$\widehat{\beta_{0}}=\bar{y}-\widehat{\beta_{1}} \bar{x}$
\equiv 三 \quad ac

Finding $\hat{\beta_{1}}$

Substituting for β_{0} in the second normal equation gives
$\widehat{\beta_{1}}=\frac{\sum_{i=0}^{n} x_{i} y_{i}-\frac{1}{n} \sum_{i=0}^{n} x_{i} \sum_{i=0}^{n} y_{i}}{\sum_{i=0}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=0}^{n} x_{i}\right)^{2}}$
or
$\widehat{\beta_{1}}=\frac{\sum_{i=0}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=0}^{n}\left(x_{i}-\bar{x}\right)^{2}}$ often written in shorthand $\widehat{\beta_{1}}=\frac{S_{x y}}{S_{x x}}$

Finding $\hat{\beta}_{1}$

Now in calculus, to check that this is a minimum not a maximum for $S\left(\beta_{0}, \beta_{1}\right)$ at (β_{0}, β_{1}). We need to find all the second derivatives
$\frac{d^{2} S}{d \beta_{0}^{2}}, \frac{d^{2} S}{d \beta_{1}^{2}}, \frac{d^{2} S}{d \beta_{0} \beta_{1}}$ and $\frac{d^{2} S}{d \beta_{1} \beta_{0}}$
and check that the following determinant is >0

$$
\left[\begin{array}{cc}
\frac{d^{2} S}{d^{2} \beta_{0}} & \frac{d^{2} S}{d \beta_{0} d \beta_{1}} \\
\frac{d^{2} S}{d \beta_{0} d \beta_{1}} & \frac{d^{2} S}{d^{2} \beta_{1}}
\end{array}\right]=\left[\begin{array}{cc}
2 n & 2 \sum_{i=0}^{n} x_{i} \\
2 \sum_{i=0}^{n} x_{i} & 2 \sum_{i=1}^{n} x_{i}^{2}
\end{array}\right]
$$

$\operatorname{Det}()=4 \mathrm{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>0$.
The function $S\left(\beta_{0}, \beta_{1}\right)$ attains a minimum at $\left(\hat{\beta_{0}}, \hat{\beta_{1}}\right)$.

Important notes about β_{0} and β_{1}

- In these equations, $\hat{\beta}_{0}$ and $\hat{\beta}_{0}$ are functions of Y as well as of X
- Y is random variable and is generally unknown
- Hence $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$ are also random variables
- Because Y is not known, all we can do is calculate values for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ given a particular set of observations $\left(x_{i}, y_{i}\right)$
- The estimator is the algebraic formula depending on the variables X_{i} and Y_{i}
- The estimate is that formula evaluated for a certain set if observations $\left(x_{i}, y_{i}\right)$
- With a different set of observation data we would expect different values for the estimates

The simple linear regression model

Example: Global average temperature over time

What is the evidence for climate change? How fast are average temperatures rising? NASA Goddard Institute for Space
Studies records average surface temperature each year and compares to a baseline temperature of the average for period 1951-1980

https://climate.nasa.gov/vital-signs/global-temperature/

University of London

The simple linear regression model

Scatterplot of 1980 - 2022 data

Global temperature compared to 1951-1980 baseline

Global Average Temperature data

Using R we can create a vector by $\mathrm{c}(\ldots)$ operator so
$\mathrm{x}=\mathrm{c}(\ldots)$
$y=c(\ldots)$
$\operatorname{sum}(x), \operatorname{sum}(y), \operatorname{mean}(x), m e d i a n(x), \operatorname{sd}(x), \operatorname{var}(x), \operatorname{cor}(x, y), \operatorname{cov}(x, y)$

We can use the "linear model" $\operatorname{Im}()$ function in R to find the least squared estimates of the simple linear regression model parameters
$>$ model $=\operatorname{Im}(y \sim x)$
$>$ summary (model)

Global Average Temperature data, $\hat{\beta}_{0}, \hat{\beta}_{1}$

```
Call:
lm(formula = y ~ x)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-0.153268 & -0.080700 & -0.003953 & 0.080943 & 0.193511
\end{tabular}
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lllll} 
(Intercept) & 0.138404 & 0.028516 & 4.854 & \(1.79 \mathrm{e}-05\) \\
\(\times\) & 0.018836 & 0.001169 & 16.112 & \(<2 e-16\)
\end{tabular}
(Intercept) ***
x
Signif. codes:
0 ****' 0.001 ***' 0.01 **' 0.05 '.' 0.1 v' 1
Residual standard error: 0.09513 on 41 degrees of freedom
Multiple R-squared: 0.8636, Adjusted R-squared: 0.8603
F-statistic: 259.6 on 1 and 41 DF, p-value: < 2.2e-16
```

三 \equiv ac

Global Average Temperature data, $\hat{\beta}_{0}, \hat{\beta}_{1}$

```
Call:
Residuals:
    Min 1Q Median 3Q Max
-0.153268-0.080700-0.003953 0.080943
```

Coefficients:

```
Coefficients:
(Intercept) 0.138404 0.028516 4.854 1.79e-05
(Intercept) 0.138404 0.028516 4.854 1.79e-05
x 0.018836 0.001169 16.112 < 2e-16
x 0.018836 0.001169 16.112 < 2e-16
(Intercept) ***
(Intercept) ***
x
x
Signif. codes:
Signif. codes:
0 `***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
0 `***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.09513 on 41 degrees of freedom
Multiple R-squared: 0.8636, Adjusted R-squared: 0.8603
F-statistic: 259.6 on 1 and 41 DF, p-value: < 2.2e-16
```

\equiv 三 \quad ac

Model fitted to our temperature data, \hat{y}_{i}

Global temperature compared to 1951-80 baselin ϵ

Interpretation of the model result

The simple linear regression model fitted may be interpreted as:

- by the end of the 1951-1980 baseline period, global average surface temperatures were already 0.138 degrees higher than the average for the 30 -year baseline period
- since then annual average surface temperatures have increased by 0.0188 degrees Celsius per year on average based on this NASA GISS data.

Exams Style Question

Question (2022): A baker is interested to find the relationship between the width of the shelf-space for her brand of cookies (x, in feet) and monthly sales (y) of the product in a supermarket. Hence, she fits a model relating monthly sales y to the amount of shelf space \times her cookies receive that month. That is, she is fitting the model in the following way $y=\beta_{0}+\beta_{1} x+\epsilon$ where $\epsilon \sim N\left(0, \sigma^{2}\right)$.

\mathbf{x} (shelf space)	\mathbf{y} (weekly sales)
3	535
2	425
6	575
5	639
3	450
8	630
4	435
2	498
6	534
3	530
2	457
7	559

weekly sales VS shelf space

By looking at the summary output, write down the fitted model.

Exams Style Question

Using the R , we obtained the following output.

```
> mody <- lm(y ~ x)
> summary(mody)
Call:
lm(formula = y ~ x)
Residuals:
    Min 1Q Median 3Q Max
-67.022 -31.346 -0.631 33.654 54.734
Coefficients:
    Estimate Std. Error t value Pr}(>|t|
(Intercept) 429.048 26.519 16.179 1.69e-08 ***
x 18.244 5.643 3.233 0.00898 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 39.2 on 10 degrees of freedom Multiple R-squared: 0.511, Adjusted R-squared: 0.4621
```


Exams Style Question

Question (2021): A life insurance company is examining the force of mortality, μ_{x} of a particular group of policyholders. It is thought that it is related to the age, x of the policyholders by the formula $\mu_{\mathcal{X}}=B c^{\mathcal{X}}$.
It is decided to analyze this assumption by using the linear regression model

$$
Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}, \quad \text { where } \quad \varepsilon_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

The results and summary statistics for eight ages were as follows where

Age, x	30	32	34	36	38	40	42	44
Force of mortality, $\mu_{\mathrm{x}}\left(\times 1 \mathbf{1 0}^{\mathbf{- 4}}\right)$	5.84	6.1	6.48	7.05	7.87	9.03	10.56	12.66
$\ln \mu_{\mathrm{x}}$	-7.45	-7.4	-7.34	-7.26	-7.15	-7.01	-6.85	-6.67

$$
\begin{aligned}
\sum_{i} x_{i} & =296 \quad \sum_{i} x_{i}^{2}=11,120 \quad \sum_{i} \ln \mu_{x_{i}}=-57.129 \\
\sum_{i}\left(\ln \mu_{x_{i}}\right)^{2} & =408.5 \quad \sum_{i} x_{i} \ln \mu_{x_{i}}=-2,104.5
\end{aligned}
$$

Apply a translation to the original formuale, $\mu_{\mathcal{X}}=B c^{\mathcal{X}}$, to make it suitable for analysis by linear regression. Hence write down expressions for Y, α and β in the terms of $\mu_{\mathcal{X}}, B$ and Hence estimate the parameters $\hat{\alpha}$ and $\hat{\beta}$.

Exams Style Question

Taking log of the original expression gives:

$$
\log \mu_{x}=\log B+x \log c
$$

This expression is now linear in x - Comparing the expression with $Y=\alpha+\beta x$ gives:

$$
Y=\log \mu_{\mathrm{x}}, \quad \alpha=\log B, \quad \beta=\log \mathrm{C}
$$

Obtaining the estimates of α and β using

$$
\begin{aligned}
& S_{x x}=\sum x_{i}^{2}-n \bar{x}^{2}=11,120-8\left(\frac{296}{8}\right)^{2}=168 \\
& S_{x y}=\sum x y-n \bar{x} \bar{y}=-2,104.5-8\left(\frac{296}{8}\right)\left(\frac{-57.129}{8}\right)=9.273
\end{aligned}
$$

Thus, the estimates are

$$
\begin{aligned}
& \widehat{\beta}=\frac{S_{x y}}{S_{x x}}=\frac{9.273}{168}=0.055196 \\
& \widehat{\alpha}=\bar{y}-\widehat{\beta} \bar{x}=\frac{-57.129}{8}-0.0055196 \times \frac{296}{8}=-9.1834
\end{aligned}
$$

Next Week Targets

- Watch Weekly videos posted at QMplus page
- Try Questions of Exercise Sheet 1
- Try Questions of Introduction to R
- Attend tutorial session to discuss problems from (1), (2) and (3) above.

