METRIC SPACES AND TOPOLOGY

MICHAEL FARBER

Topics:

- (1) The notion of a metric space, axioms M1, M2, M3.
- (2) Examples of metrics: Euclidean metric, d_p for $p \in [1, \infty)$.
- (3) Cauchy inequality $a \cdot b \leq ||a|| \cdot ||b||$.
- (4) Metric d_p on \mathbf{R}^m .
- (5) Young inequality $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$ where $\frac{1}{p} + \frac{1}{q} = 1$ and its proof.
- (6) Hölder inequality $a \cdot b \leq ||a||_p \cdot ||b||_q$ and its proof.
- (7) Revision: the notions related to supremum and infimum, bounded and unbounded subsets of **R**.
- (8) Minkowski inequality $||a+b||_p \le ||a||_p + ||b||_p$ and its proof.
- (9) Metric d_{∞} on \mathbf{R}^m and $\lim d_p = d_{\infty}$ when $p \to \infty$.
- (10) Balls and spheres in metric spaces.
- (11) Example: the ball in d_1 metric.
- (12) Example: the ball in d_{∞} metric.
- (13) Continuous maps between metric spaces, homeomorphism.
- (14) Isometry. Isometries of the plane: reflections, rotations, parallel translations.
- (15) Open sets in metric spaces
- (16) Closed sets in metric spaces; closure of a set, limit points.
- (17) Convergent sequences
- (18) Dense subsets; examples
- (19) Characterisation of open subsets of **R**.
- (20) The Cantor set.
- (21) Infinite dimensional metric spaces: $C[a, b], l_2, l_p$ (where $p \in [1, \infty)$), l_{∞} .
- (22) Cauchy sequences. Any convergent sequence is Cauchy.
- (23) Complete metric spaces.
- (24) The spaces C[a, b], l_p (with $1 \le p < \infty$), and l_∞ are complete (with proofs).
- (25) Completion of a metric space.
- (26) Contraction mappings.
- (27) Fixed point theorem.
- (28) Applications of the Fixed point theorem.
- (29) Topological spaces, axioms T1, T2, T3.

- (30) Closed sets, closure, limit points, continuous maps, homeomorphism.
- (31) Convergent sequences and limit points in general topological spaces.
- (32) Hausdorff spaces, T_1 -axiom.
- (33) Quotient topology and its universal property.
- (34) Examples of quotient spaces: the Möbius band, torus, Klein bottle and real projective plane.
- (35) Compact spaces.
- (36) Connected spaces.
- (37) Path-connected spaces.
- (38) Existence of solutions of differential equations (an application of the Contraction Mapping Theorem).