
Week 1

Introduction and Basics

1.1 Introduction

This module concerns a particular branch of operational research involving linear
optimisation problems. In these problems, we want to find the “best possible” plan,
policy, allocation, etc. subject to a set of constraints that describe which plans,
policies, etc. can actually be implemented. For historical reasons, the resulting
optimisation problem is called a linear program and the process of formulating and
solving the problem is called linear programming. Despite the terminology, this
process does not involve what you and I would consider “computer programming.”
This module will not involve writing computer code or learning a programming
language. Instead, the term is more similar to what we mean we say something
like a “programme for production,” in which we mean a plan, scheme, or schedule.

1.1.1 Linear Programming

In order to make this discussion more concrete, let’s consider an example of a
problem arising in the real world that we might want to solve:
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Example 1.1. A university student is planning her daily food budget. Based
on the British Nutrition Foundation’s guidelines for an average female of her
age she should consume the following daily amounts of vitamins:

Vitamin mg/day
Thiamin 0.8

Riboflavin 1.1
Niacin 13

Vitamin C 35

After doing some research, she finds the following cost, calories, and vitamins
(in mg) per serving of several basic foods:

Food Cost Thiamin Riboflavin Niacin Vitamin C
Bread £0.25 0.1 0.1 1.3 0.0
Beans £0.60 0.2 0.1 1.1 0.0
Cheese £0.85 0.0 0.5 0.1 0.0
Eggs £1.00 0.2 1.2 0.2 0.0

Oranges £0.80 0.2 0.1 0.5 95.8
Potatoes £0.50 0.2 0.1 4.2 28.7

How can the student meet her daily requirements as cheaply as possible?

In the interest of simplicity, our example does not consider the requirements for
several Vitamins like B6, B12, Folate, A, and D, as well as limits on calories,
protein, fats, and sugars. However, this approach could easily be extended to the
full case; one early application of linear programming did exactly this.

To model this problem, we introduce six variables x1, x2, x3, x4, x5, and x6 to
express, respectively, the number of servings of bread, beans, cheese, eggs, oranges,
and potatoes the student purchases daily. Then, the total daily cost can be written
as:

0.25x1 + 0.60x2 + 0.85x3 + 1.00x4 + 0.80x5 + 0.50x6 . (1.1)

Now, we need to make sure that we eat enough of each of the 4 vitamins in our
example. If we look at the nutritional table, the number of milligrams of Thiamin
in the student’s daily diet can be expressed as:

0.1x1 + 0.2x2 + 0.0x3 + 0.2x4 + 0.2x5 + 0.2x6

We want to make sure that this is at least 0.8. In other words, we want to choose
x1, x2, x3, x4, x5, and x6 so that:

0.1x1 + 0.2x2 + 0.0x3 + 0.2x4 + 0.2x5 + 0.2x6 ≥ 0.8 . (1.2)
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We can do the same thing for each of the other three vitamins, to get the following
3 inequalities:

0.1x1 + 0.1x2 + 0.53 + 1.2x4 + 0.1x5 + 0.1x6 ≥ 1.1 (1.3)

1.3x1 + 1.1x2 + 0.1x3 + 0.2x4 + 0.5x5 + 4.2x6 ≥ 13 (1.4)

0.0x1 + 0.0x2 + 0.0x3 + 0.0x4 + 95.8x5 + 28.7x6 ≥ 35 . (1.5)

So, we want to select some non-negative values x1, x2, x3, x4, x5, and x6so that (1.1)
is minimised, under the constraint that our values must satisfy inequalities (1.2),
(1.3), (1.4), and (1.5). We write this formally as follows:

minimize 0.25x1 + 0.60x2 + 0.85x3 + 1.00x4 + 0.80x5 + 0.50x6

subject to 0.1x1 + 0.2x2 + 0.0x3 + 0.2x4 + 0.2x5 + 0.2x6 ≥ 0.8

0.1x1 + 0.1x2 + 0.5x3 + 1.2x4 + 0.1x5 + 0.1x6 ≥ 1.1

1.3x1 + 1.1x2 + 0.1x3 + 0.2x4 + 0.5x5 + 4.2x6 ≥ 13

0.0x1 + 0.0x2 + 0.0x3 + 0.0x4 + 95.8x5 + 28.7x6 ≥ 35

x1, x2, x3, x4, x5, x6 ≥ 0

(1.6)

This is an example of what we call a mathematical program. Let’s look at the parts
in more detail:

Definition 1.1 (Mathematical Program). A mathematical program represents
an optimisation problem. It consists of 4 components:

1. A set of decision variables which may have sign restrictions. We give
these as a list at the bottom of the program, and say which variables
are non-negative (≥ 0), which variables are non-positive (≤ 0), and
which variables can be either positive or negative (we say these last are
unrestricted).

2. An objective function, that represents some function of the decision vari-
ables that we are trying to optimise. This appears in the first line of the
program, together with the next component...

3. A goal, which specifies whether we are trying to maximise or minimise
the objective function—that is, do we want to set the variables to make
this function as large as possible or do we want to set them to make it
as small as possible?

4. A set of constraints, given by equations and inequalities relating the
decision variables. We are only allowed to choose values for our variables
that make all of these inequalities and equations true. These appear
after the phrase “subject to.”.
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Of course, the set of restrictions are also inequalities, so we could consider them as
part of the constraints, but it will be convenient to treat these separately later on.
When we say that a variable is unrestricted, we just mean that we don’t care about
whether it takes positive or negative values; it does not mean that it is allowed to
take any arbitrary value, since the constraints of the program will probably rule
some of these out.

NOTE: You should always list all variables at the end of your linear programs,
and explicitly say whether they are ≥ 0, ≤ 0, or unrestricted.

You should think of a mathematical program as an optimisation problem that
we want to solve. The goal of this problem is to assign values to the decision
variables in order to make the objective function as large or as small as possible,
depending on the stated goal. In calculus, you learned how to find maxima or
minima of a given function by considering its derivative. Here, however, we have
an extra complication, which is that we are only allowed to choose values for the
decision variables that together satisfy all of the given constraints and restrictions.

We can represent the decision variables x1, . . . , xn as a vector x. Then, when
considering a mathematical program, we call a particular choice x of values a fea-
sible solution to this mathematical program if and only if these values satisfy all
of the variables’ sign restriction and all of the constraints of the program (we will
make this completely formal later). We can restate any mathematical optimisa-
tion problem written as above in plain English as “find a feasible solution x that
optimises (i.e. maximises or minimises, depending on our goal) the objective func-
tion”. We call a feasible solution that optimises the objective an optimal solution.
Note that a problem may have no optimal solutions, a single optimal solution, or
even more than one optimal solution.

The definition of a general mathematical program that we have given is very
general: we could use any function as our objective and inequalities involving
arbitrary functions of the variables as constraints. In this module, we consider
only mathematical optimisation programs and problems that at are linear. We
call these linear programs (they will be defined formally a bit later). We will see
that the example problem we have considered is in fact a linear program. This
means that the objective and constraints have a special structure that allows us
to solve them efficiently: in this case, we can show that the best daily diet costs
about £2.27, and consists of approximately 2.03 servings of bread, 0.54 servings
of eggs, and 2.44 potatoes per day. This can be done by using a simple algorithm
called the Simplex Algorithm.

1.1.2 Duality and Game Theory

After studying the Simplex Algorithm, we will move on to the notion of duality
which will ultimately lead us to theories of 2-player games from economics. Let’s
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consider another example:

Example 1.2. Suppose you run a company that sells dietary supplements.
You make four kinds of tablets for, respectively, Thiamin, Riboflavin, Niacin,
and Vitamin C. You decide to market them to poor university students as a
cheaper way to meet their daily vitamin requirements. How should you price
your supplements to maximise the revenue you can obtain for one day’s worth
of supplements?

We can use a set of 4 variables y1, y2, y3, and y4 to represent the price you charge
(in £) for 1mg of Thiamin, Riboflavin, Niacin, and Vitamin C, respectively. We
know from the previous example, that each day a student will need to consume
0.8 mg of Thiamin, 1.1 mg of Riboflavin, 13mg of Niacin, and 35 mg of Vitamin
C. So, we can write our overall revenue for one day’s worth of tablets as:

0.8y1 + 1.1y2 + 13y3 + 35y4 (1.7)

However, we need to be careful: we want to make sure that our supplements are
no more costly than a regular diet, or else no one will buy them! We know from
the previous example that a single serving of bread contains 0.1mg of Thiamin
and Riboflavin, 1.3mg of Niacin and 0mg of Vitamin C, but costs only £0.25. So,
we should make sure that this mixture of supplements is no more expensive than
£0.25. In other words we want to set our prices so that:

0.1y1 + 0.1y2 + 1.3y3 + 0.0y4 ≤ 0.25 . (1.8)

Similarly, we obtain an inequality for each of the remaining 4 foods in Example 1.1.
Proceeding as before, we can write the problem as the following linear program:

maximize 0.8y1 + 1.1y2 + 13y3 + 35y4

subject to 0.1y1 + 0.1y2 + 1.3y3 + 0.0y4 ≤ 0.25

0.2y1 + 0.1y2 + 1.1y3 + 0.0y4 ≤ 0.60

0.0y1 + 0.5y2 + 0.1y3 + 0.0y4 ≤ 0.85

0.2y1 + 1.2y2 + 0.2y3 + 0.0y4 ≤ 1.00

0.2y1 + 0.1y2 + 0.5y3 + 95.8y4 ≤ 0.80

0.2y1 + 0.1y2 + 4.2y3 + 28.7y4 ≤ 0.50

y1, y2, y3, y4 ≥ 0

(1.9)

If we solve this LP, we find that the best set of prices give a total value of £2.27.
This is exactly the same answer as our previous example! This is not a coincidence,
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but a rather a consequence of duality. We will see that every minimisation LP has
an associated maximisation LP called its dual and that their optimal solutions
always have the same value. It turns out that (1.9) is the dual of problem (1.6),
and so they must have the same optimal value.

We can think of this whole situation as a competition between our student and
our vitamin salesman. Then the result is perhaps not so surprising: the daily cost
of vitamins cannot be larger than the price of the diet we already found, or our
student would not buy anything! Similarly, if the cost was much smaller than the
diet, then we might expect to be able to increase the cost of some vitamin to make
more money.

Building on these ideas, we will turn to the study of 2-player games. Here,
we have 2 different agents and each can take some action from a given set. Both
agents are trying to maximise their profit, but, in general the profit depends on
the actions taken by both agents. Here is a concrete example of the sort of game
we will study:

Example 1.3. At the end of the “Golden Balls” game show, two players com-
pete for a prize pool of money. Each player has 2 options: they can choose
to split the prize or steal the prize. Both select their choices in secret and
then reveal them. If both players chose to split, then the prize is split equally
between them. If both players chose to steal, then neither gets any money.
However, if one player chose to split and the other to steal, then the player
that chose steal gets all of the money (and the player that chose to split gets
none).

You may recognise this as a variant of the classic “Prisoner’s Dilemma.” What
do you think the optimal strategy is? It’s not so clear for this game! In the
last part of the module we will develop mathematical tools for dealing with such
games and see precisely what makes this game so tricky. In general the study of
these decision-making problems constitutes the basis for game theory. The study
of game theory has led to 11 Nobel prizes in Economics and can be used to guide
planning and decision-making in competitive settings.

1.2 Background on Linear Algebra and Notation

Before beginning our formal discussion of linear programming, let us review some
basic notions from linear algebra and establish some conventions for notation when
talking about matrices and vectors. You should be familiar with the material in
this section, although some of the conventions may be slightly different than you
are used to.
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1.2.1 Vectors, Matrices, and Linear Combinations

We will denote vectors by using lower-case letters in bold and matrices by CAP-
ITAL letters. All of our vectors and matrices will contain real numbers as their
elements. We adopt the convention that all vectors are column vectors belonging
to the Euclidean space Rn for some specified dimension n (usually n will be clear
from our context). For example, x denotes a vector, which is given by:

x =


x1

x2
...

xn .

 (1.10)

Note that the 1st entry of x is denoted x1, the second x2, and so on. So, as another

example, if y =

2
4
1

 then y1 = 2, y2 = 4, and y3 = 1. We will use 0 to denote

the all-zero vector, which is simply a vector whose entries are all zero. The exact
dimension (i.e. number of entries) of 0 will depend on the context in which it
appears, but should always be clear.1

We denote the transpose of a matrix A by AT. If A is an n ×m matrix then
AT is an m × n matrix obtained by exchanging the rows and columns of A. For
example, if

A =

(
2 3 1
1 4 5

)
then AT=

2 1
3 4
1 5


Note that we regard n-dimensional vectors as n×1 matrices. Then, transposing

a (column) vector gives us a corresponding row column vector. For example if x
is given by (1.10), then xT is a 1× n matrix given by:

xT= (x1, x2, . . . , xn) .

Using this notation, we can denote the standard dot-product2 of two n-dimensional
vectors x and y as

xTy = (x1, x2, . . . , xn)


y1
y2
...
yn

 = x1y1 + x2y2 + · · ·+ xnyn =
n∑

i=1

xiyi

1Note that a similar problem happens with the identity matrix, which we usually just denote
as I, even though there is a different n× n identity matrix for each value of n.

2In other contexts, this is also sometimes called a “scalar product” or “inner product.”
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In other books or modules, you may have seen this operation denoted x·y or ⟨x,y⟩.
Here, we use xTy since this agrees exactly with the standard rule for multiplying 2
matrices: specifically we can think of this operation as multiplying a 1× n matrix
xT by a n × 1 matrix y, as above, to obtain a 1 × 1 matrix, which we regard
as a value in R. We will use · to denote standard scalar multiplication (that is,
multiplication of 2 numbers).

This leads us to the following general notion:

Definition 1.2 (Linear Combination). A linear combination of x1, x2, . . . , xn is
an expression of the form

a1x1 + a2x2 + · · ·+ anxn ,

where a1, a2, . . . , an are each real numbers.

Note that we did not specified what types of mathematical objects x1, . . . , xn

are in Definition 1.2. When x1, . . . , xn are all numbers, we can write linear combi-
nations succinctly as aTx, where:

x =


x1

x2
...
xn

 a =


a1
a2
...

an .


However, the definition applies also in the case where each xi in {x1, x2, . . . , xn}

is a vector in Rm. Switching to our standard (bold) notation for vectors, we have
that a linear combination of x1,x2, . . . ,xn is given by:

a1x1 + a2x2 + · · · anxn,

where, again, each of the ai in {a1, a2, . . . , an} is a real number. Note that the linear
combination a1x1+a2x2+· · ·+anxn is now a new vector in Rm. In this case, we can
again represent the linear combination succinctly, as follows: as above, let a be an
n×1 vector given by aT= (a1, a2, . . . , an) but now let X be an m×n matrix whose
jth column is given by xj. Then, the linear combination a1x1 + a2x2 + · · ·+ anxn

can be written as Xa.

1.2.2 Linear Equations and Inequalities
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Definition 1.3 (Linear Equations and Inequalities). We call an expression of the
form:

a1x1 + a2x2 + · · · anxn = b,

where each ai ∈ R and b ∈ R are constants a linear equality over x1, x2, . . . , xn.
If instead of = we have≤, or≥ above, we call the expression a linear inequality.

Note that a linear equation or inequality simply relates a linear combination or
variables x1, x2, . . . , xn to some constant b. If we write the variables xi and con-
stants ai in Definition 1.3 as vectors x and a then we can succinctly express linear
equations as:

aTx = b .

You may be wondering why we don’t allow equations or inequalities with linear
combinations on both sides of the sign, such as:

x1 + 3x2 ≥ 4x3 + 5x4 .

The reason is that we can easily rearrange any such expression to obtain an equiv-
alent inequality or equation that has only variables on the left and constants on
the right. In this example, subtracting 4x3 + 5x4 from both sides gives:

x1 + 3x2 − 4x3 − 5x4 ≥ 0 ,

which has the desired form, with aT = (1, 3,−4,−5) and b = 0. It will ease our
definitions if we assume that all of our linear equations and inequalities have been
rearranged so that there is only a constant on the right-hand side. Of course,
we are free to rearrange these if it helps to make the formulation of a particular
program clearer.

Given 2 vectors x and y, both in Rn, we say x = y if and only if xi = yi for
all 1 ≤ i ≤ n (so, 2 vectors are equal if and only if all of their entries are equal;
note that we have already used this convention above when considering linear
combinations of vectors). Extending this idea, we will write x ≤ y to mean that
xi ≤ yi for all 1 ≤ i ≤ n, and adopt a similar convention for ≥, <, and >. Notice
that one consequence of this decision is that if x ≤ y is false, we do not necessarily

have x > y. Indeed, consider the vectors x =

(
1
0

)
and y =

(
0
1

)
. Then none

of the following hold: x = y, x ≤ y, x ≥ y, x < y, or x > y. Formally, this
means that the operations (<) and (>) give us a partial order over vectors—for
example, the two vectors x and y defined above are incomparable with respect to
this ordering.
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Using this convention, we can rewrite entire systems of inequalities succinctly.
For example, the set of m inequalities:

a1,1x1 + a1,2x2 + · · · a1,nxn ≤ b1

a2,1x1 + a2,2x2 + · · · a2,nxn ≤ b2
...

am,1x1 + am,2x2 + · · · am,nxn ≤ bm
...

can be written as Ax ≤ b, where

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 x =


x1

x2
...
xn

 b =


b1
b2
...

bm .


1.2.3 Linear Independence and Rank

We say that a set of vectors a1, . . . , am ∈ Rn is linearly dependent if there is some
non-trivial linear combination of a1, . . . , am that is equal to the all zero vector.
That is, x1a1 + x2a2 + · · · + xmam = 0 for some set of values x1, . . . , xm that are
not all equal to zero.

If a set of vectors is not linearly dependent, we say that it is linearly inde-
pendent. Thus, a1, . . . , am are linearly independent if and only if x1a1 + x2a2 +
· · ·xmam = 0 holds only when x1 = x2 = · · · = xm = 0. We can state this more
succinctly using matrices: let A is matrix whose ith column is given by ai. Then
the vectors a1, . . . , am are linearly independent if and only if Ax = 0 has a unique
solution x = 0.

Note that we can regard either the columns or the rows of any matrix as vectors.
Given an m × n matrix A, we can ask what is the maximum number 1 ≤ r ≤ n
so that some set of r columns of A is linearly independent. We can also ask what
is the maximum number 1 ≤ r ≤ m so that some set of r rows of A is linearly
independent. The answer to both of these questions is always the same! This
number r is called the rank of the matrix A: it is the maximum number of rows
of A that are linearly independent and also the maximum number of columns of
A that are linearly independent.

As a consequence, if m < n, we know that the rank of A is at most m, so any
set of more than m columns of A must be linearly dependent. Suppose that A is
a square matrix, so m = n. Then, if the rank of A is m, this means that all the
columns and all the rows of A are linearly independent. If this is true, then for
any b ∈ Rm, there is a single, unique solution x to the equation Ax = b.
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1.3 Linear Programs

Let’s look at the programs (1.6) and (1.9) from Examples 1.1 and 1.2 in more
detail. They are certainly both mathematical programs, but they have a special
form. First, the decision variables represent continuous quantities (specifically, real
numbers). In both cases, the objective function we are trying to optimise is a linear
combination of the decision variables x1, . . . , xn. Additionally, each constraint in
both programs is given by a linear inequality over the decision variables. Whenever
this is the case, we say that a mathematical program is a linear program.

Definition 1.4 (Linear Program). A linear program is a mathematical program
in which:

• the variables are continuous, real quantities.

• the objective is a linear combination of these variables, and

• each constraint is either a linear inequality or a linear equation over
these variables.

We will typically refer to any particular choice of values for the decision variables
of a linear program as a solution of that program. Note that (contrary to the usual
meaning of the word solution) for us, a solution is not the best possible choice of
values for the decision variables, and nor does a solution need to satisfy all the
constraints of the program! We say that a solution that satisfies all the constraints
of the problem is a feasible solution and a solution that is the best possible is an
optimal solution. We will make these notions completely formal shortly, but first
let’s make things a bit easier by coming up with a standard form for writing linear
programs:

Definition 1.5 (Standard Inequality Form). We say that a linear program is in
standard inequality form if it is written as:

maximize cTx

subject to Ax ≤ b

x ≥ 0

where A is an m× n matrix of real numbers, c ∈ Rn, and b ∈ Rm.

Note that we have used the all-zero vector to concisely capture all of the non-
negativity constraints in the last line. We could equivalently have written some-
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thing like:
xi ≥ 0, (i = 1, . . . , n) .

It is possible to transform every linear program into an equivalent program in this
standard inequality form. Writing LPs in standard inequality form will be useful
mainly because it makes it easy to talk about an arbitrary linear program without
considering a huge number of possible cases.

Note: some textbooks will call this “canonical form,” and refer to a completely
different form (that we will see later) as “standard form”! In the definition, we
have chosen to use the term “standard inequality form” to be as unambiguous as
possible.

Let’s see how an arbitrary linear program can be rewritten in this standard
inequality form. There are 3 issues we need to consider:

1. We need to make sure all variables are restricted to be non-negative.

2. We need make sure our problem is a maximisation problem.

3. We need to express all of our constraints as a single vector inequality Ax ≤ b.

First, let us consider the sign restrictions placed on each single variable of the
linear program. We will transform our linear program so that all variables must
be non-negative. In general, however, we might have variables in our model that
always need to be non-positive or variables that can be either positive or negative
(i.e. variables that are unrestricted). We can handle this as follows:

• If a variable xi is restricted to be non-positive (i.e. xi ≤ 0) we can introduce
a new variable (call it x̄i for now) that represents −xi. Then, since xi = −x̄i,
we can replace xi with −x̄i everywhere in the program without changing its
meaning. In particular, we then get the constraint that −x̄i ≤ 0, which is
equivalent to x̄i ≥ 0, which is of the desired form.

• If a variable xi does not appear in any restriction, then we introduce 2 new
variables (call them x+

i and x−
i for now). We replace xi by x

+
i −x−

i everywhere
in our program and then add the restrictions x+

i ≥ 0 and x−
i ≥ 0. Notice that

indeed we can represent any number as the difference of 2 non-negative terms,
so this allows any value to appear in all of the places where xi originally was,
and it requires that the same value appear in each place.

After carrying out the above operations, we have a new linear program in which
each variable is constrained to be non-negative. Suppose that we carrying out
all of the above operations we get a set of n variables. Let’s re-label these as
x1, x2, . . . , xn. Then, we can put all our decision variables together into a vectors
x ∈ Rn.
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Next, let’s look at the goal of the linear program. If it is a minimisation
program, we can simply negate the objective function to turn it into a maximisation
problem. That is, if the first line is:

min cTx ,

we replace it with:
max−cTx ,

leaving the constraints unchanged. Again, notice that this should not affect the
problem that we are solving.

Finally, we handle our constraints. We begin by changing each constraint into
one or more linear inequalities of the form aTx ≤ b, where a ∈ Rn and b ∈ R. To do
this, we first rearrange each constraint so that all terms involving variables are on
the left-hand side, and all constant terms are on the right-hand side. After doing
this and simplifying, the left-hand side can be written as aTx for some a ∈ Rn

and the left hand side as b for some b ∈ R. Next, we examine the operator in the
constraint:

• If we have aTx ≤ b, we leave it as is.

• If we have aTx ≥ b, we multiply both sides by −1 to obtain an equivalent
inequality of the form:

−aTx ≤ −b .

• If we have aTx = b, we replace it by 2 new constraints:

aTx ≤ b

−aTx ≤ −b

Notice that the second inequality is equivalent to requiring that aTx ≥ b.
In particular, a solution x satisfies both of these inequalities if and only if
aTx = b.

This process gives us a set of constraints (say, m of them), all of the same
general form. That is, for each j = 1, . . . ,m we have a constraint of the form3

aj
Tx ≤ bj. Let A be an m × n matrix, whose jth row is given by aj

T, and let b
be a 1×m vector whose jth entry is bj. Then, we can write the entire system of
constraints as:

Ax ≤ b .

Notice that each column of the matrix A corresponds to a decision variable and
each row of A corresponds to (the left-hand side of) a constraint.

Let’s see an example of how this works.

3Notice that aj here represents the jth vector in our collection, and not the jth element of
vector a, which we would have written as aj .
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Example 1.4. Rewrite the following linear program in standard inequality
form.

minimize 3x1 − x2

subject to −x1 + 6x2 + x3 + x4 ≥ −3

7x2 + x4 = 5

x1 + x2 + x3 = 1

x3 + x4 ≤ 2

x2, x3 ≥ 0

x4 ≤ 0

x1 unrestricted

(1.11)

Solution. We go through the steps in order. First, let’s look at the restrictions
on our 4 variables. We have x4 ≤ 0, so we replace x4 by x̄4 = −x4 in all of our
constraints to get:

minimize 3x1 − x2

subject to −x1 + 6x2 + x3 − x̄4 ≥ −3

7x2 − x̄4 = 5

x1 + x2 + x3 = 1

x3 − x̄4 ≤ 2

x2, x3, x̄4 ≥ 0

x1 unrestricted

Next, we see that x1 is unrestricted. So, we replace it by the difference of two new
non-negative variables, namely x+

1 − x−
1 , to get:

minimize 3(x+
1 − x−

1 )− x2

subject to −(x+
1 − x−

1 ) + 6x2 + x3 − x̄4 ≥ −3

7x2 − x̄4 = 5

(x+
1 − x−

1 ) + x2 + x3 = 1

x3 − x̄4 ≤ 2

x+
1 , x

−
1 , x2, x3, x̄4 ≥ 0
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Now, we can expand some multiplications to get:

minimize 3x+
1 − 3x−

1 − x2

subject to −x+
1 + x−

1 + 6x2 + x3 − x̄4 ≥ −3

7x2 − x̄4 = 5

x+
1 − x−

1 + x2 + x3 = 1

x3 − x̄4 ≤ 2

x+
1 , x

−
1 , x2, x3, x̄4 ≥ 0

That takes care of our restrictions. Now, we change minimisation into maximisa-
tion by negating the objective function:

maximize − 3x+
1 + 3x−

1 + x2

subject to −x+
1 + x−

1 + 6x2 + x3 − x̄4 ≥ −3

7x2 − x̄4 = 5

x+
1 − x−

1 + x2 + x3 = 1

x3 − x̄4 ≤ 2

x+
1 , x

−
1 , x2, x3, x̄4 ≥ 0

Last, we need to handle the constraints. We first replace each equation with 2
inequalities:

maximize − 3x+
1 + 3x−

1 + x2

subject to −x+
1 + x−

1 + 6x2 + x3 − x̄4 ≥ −3

7x2 − x̄4 ≥ 5

7x2 − x̄4 ≤ 5

x+
1 − x−

1 + x2 + x3 ≥ 1

x+
1 − x−

1 + x2 + x3 ≤ 1

x3 − x̄4 ≤ 2

x+
1 , x

−
1 , x2, x3, x̄4 ≥ 0

Finally, we multiply each side of the (≥) inequalities by −1 to write them as (≤)
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inequalities:

maximize − 3x+
1 + 3x−

1 + x2

subject to x+
1 − x−

1 − 6x2 − x3 + x̄4 ≤ 3

−7x2 + x̄4 ≤ −5

7x2 − x̄4 ≤ 5

−x+
1 + x−

1 − x2 − x3 ≤ −1

x+
1 − x−

1 + x2 + x3 ≤ 1

x3 − x̄4 ≤ 2

x+
1 , x

−
1 , x2, x3, x̄4 ≥ 0

We now have a linear program in standard inequality form with 5 variables. Let’s
list the variables in the order as the vector xT = (x+

1 , x
−
1 , x2, x3, x̄4). We can

rearrange the objective and every inequality so that the variables appear in this
order and make sure every variable appears in every constraint by adding some of
them with 0 coefficients. This will make it easier to identify c, A and b. then we
get:

maximize − 3x+
1 + 3x−

1 + 1x2 + 0x3 + 0x̄4

subject to x+
1 − x−

1 − 6x2 − x3 + x̄4 ≤ 3

0x+
1 + 0x−

1 − 7x2 + 0x3 + x̄4 ≤ −5

0x+
1 + 0x−

1 + 7x2 + 0x3 − x̄4 ≤ 5

−x+
1 + x−

1 − x2 − x3 + 0x4 ≤ −1

x+
1 − x−

1 + x2 + x3 + 0x4 ≤ 1

0x+
1 − 0x−

1 + 0x2 + x3 − x̄4 ≤ 2

x+
1 , x

−
1 , x2, x3, x̄4 ≥ 0

So, our program in standard inequality form is:

maximize cTx

subject to Ax ≤ b

x ≥ 0
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where:

c =


−3
3
1
0
0

 A =


1 −1 −6 −1 1
0 0 −7 0 1
0 0 7 0 −1

−1 1 −1 −1 0
1 −1 1 1 0
0 0 0 1 −1

 b =


3

−5
5

−1
1
2


Notice that there is some ambiguity here, since in general we might get different
c, b and A if we decide to list our variables in a different order in x. Of course,
any order would be okay, since it just amounts to choosing what order we write
our linear combinations and inequalities in. However, to make things clearer, from
now on we will always order our variables as follows: We form x so that variables
are listed, top to bottom, in alphabetical order. In this ordering, we treat suppose
that xi before xj whenever i < j, x̄i is treated exactly like xi (notice we will never
have both xi and x̄i in the same program), and x+

i comes before x−
i . Notice that

the ordering we just used in our example satisfies these properties.

Note: We did not have time to cover the material below in week 1, so will cover
it in week 2.

Consider now an arbitrary LP, and suppose that we have rewritten it into our
standard inequality form:

maximize cTx

subject to Ax ≤ b

x ≥ 0.

Recall that x is our vector of decision variables. Any choice of values for the
decision variables (i.e. any specific choice of x) is called a solution of the linear
program (rather confusingly). What we are actually interested in is finding feasible
solutions and optimal solutions as defined below.

Definition 1.6 (Feasible Solution of a Linear Program). A solution x ∈ Rn is a
feasible solution to a linear program (in standard inequality form) if and only
if Ax ≤ b and x ≥ 0.

Note that here we saved ourselves a lot of tedious cases (one for each possible type
of constraint) by placing the program in standard inequality form

Definition 1.7 (Optimal Solution of a Linear Program). We say that a feasible
solution x is an optimal solution to a linear program in standard inequality
form if and only if cTx ≥ cTx′ for any other feasible solution x′ of this program.
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Here we assume that the program is in standard inequality form, and so is a
maximisation problem. We could also define optimal solutions x for minimisation
problems directly, in which case we should have cTx ≤ cTx′ for any other feasible
solution x′ of this program. Intuitively, all of the above definitions just say that a
feasible solution is optimal if and only if there is no other feasible solution that is
“better” than it, where we measure “better” according to the problem’s objective
and goal. Notice that it is easy to determine if a given solution is feasible: we
just check if it satisfies each constraint. One of the main questions we will concern
ourselves with is how to determine if a given solution is optimal and how to find
such a solution.

18



Week 2

Modelling With Linear Programs

Here, we will discuss the notions of feasibility and optimality in linear program-
ming, and start modelling some common kinds of problems using linear programs.

Note: We did not have time to cover the material below in week 1, so we covered
it in week 2.

Consider now an arbitrary LP in n variables. Informally, a solution to our
LP is (somewhat confusingly) any assignment of real values to the variables. A
feasible solution to our LP is any solution that satisfies all the constraints and sign
restrictions in our LP. An optimal solution to the LP is any feasible solution that
achieves the goal of the LP.

In order to give the more formal definitions, assume that we have rewritten our
LP into our standard inequality form:

maximize cTx

subject to Ax ≤ b

x ≥ 0.

Recall that x is our vector of variables. Any choice of values for the variables
(i.e. any specific choice of x) is called a solution of the linear program (rather
confusingly). What we are actually interested in is finding feasible solutions and
optimal solutions as defined below.

Definition 2.1 (Feasible Solution of a Linear Program). A solution x ∈ Rn is a
feasible solution to a linear program (in standard inequality form) if and only
if Ax ≤ b and x ≥ 0.

Note that here we saved ourselves a lot of tedious cases (one for each possible type
of constraint) by placing the program in standard inequality form
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Definition 2.2 (Optimal Solution of a Linear Program). We say that a feasible
solution x is an optimal solution to a linear program in standard inequality
form if and only if cTx ≥ cTx′ for any other feasible solution x′ of this program.

Here we assume that the program is in standard inequality form, and so is a
maximisation problem. We could also define optimal solutions x for minimisation
problems directly, in which case we should have cTx ≤ cTx′ for any other feasible
solution x′ of this program. Intuitively, all of the above definitions just say that a
feasible solution is optimal if and only if there is no other feasible solution that is
“better” than it, where we measure “better” according to the problem’s objective
and goal. Notice that it is easy to determine if a given solution is feasible: we
just check if it satisfies each constraint. One of the main questions we will concern
ourselves with is how to determine if a given solution is optimal and how to find
such a solution.

2.1 Production Problems

We have already seen some examples ofmixture problems that can be formulated as
linear programs. There, our decision variables represented the amounts of various
ingredients to include. Now, we discuss more complex production problems that
can also be modelled as linear programs. In these problems, we have a set of
different processes, each converting input materials into output products. The
goal is to do this in the best way possible. Depending on the context, we might
want to either:

• Maximise the value of the products we produce, given constraints on number
of resources available

• Minimise the cost of the resources we use, given constraints on what we must
produce

We can also model various combinations of these two approaches by, for example,
considering the profits or values minus costs as our objective.

For these problems, it is best to introduce one decision variable for each process
or activity. The value of this variable will tell us the level or extent to which we
make use of this process in our production. Exactly what this means will depend
on the exact problem considered and the units chosen to measure things. Let’s see
an example to clarify things:
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Example 2.1. A factory makes 2 different parts (say, part X and part Y ).
Their plant has 4 separate processes in place: there are two older processes
(say, process 1 and 2) that produce parts X and Y directly, as well as two
different integrated processes for producing both X and Y simultaneously.
The 4 processes can be run simultaneously, but require labour, raw metal,
and electricity. The hourly inputs and outputs for each process are as follows:

Outputs Inputs
Process X Y Metal Electricity Labour

1 4 0 100 kg 800 kWh 16 hrs
2 0 1 70 kg 600 kWh 16 hrs
3 3 1 120 kg 2000 kWh 50 hrs
4 6 3 270 kg 4000 kWh 48 hrs

In a typical day, the plant has an available stock of 6000 kg of metal, and
the has budgeted 100000 kWh of power usage, 1000 hours of labour. Suppose
that each part X sells for £1000 and each part Y sells for £1800. How should
production be scheduled to maximise daily revenue?

To model this as a linear program, we need to assume that all quantities are
continuous. If this schedule is going to be implemented over a long period, this
is reasonable: if tomorrow we can “pick up” production of a partial X or Y part
where we left off, we might as well count the fraction of each such part produced
into a typical current day’s revenue.

We want to maximise revenue in this question, which will ultimately involve
deciding how many parts X and Y to make in a day. However, notice that these
are not the only decisions we need to make! We need to know how to produce
them, as well. Thinking more carefully, we see that the activities here are Processes
1,2,3, and 4, and we need to decide how many hours (or fractions thereof) we run
each one for. Once we know this, we will actually know how many X and Y we
produce. So, let’s introduce 4 variables, p1, p2, p3, and p4, to represent how many
hours we run the respective processes for. Immediately, we see that these variables
must be non-negative.

Now, let’s see if we can formulate the objective. Looking at process 1, for
example, we see that running for a single hour produces 4 X and 0 Y , which gives
revenue 4 · 1000 + 0 · 1800. Thus, if we execute it for p1 hours, we will have total
revenue 4000p1. Doing this for each process and adding the results, we get:

(4 · 1000)p1 + (1 · 1800)p2 + (3 · 1000 + 1 · 1800)p3 + (6 · 1000 + 3 · 1800)p4
= 4000p1 + 1800p2 + 4800p3 + 11400p4
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This, then is our objective function, which we want to maximise.
Now, we need to incorporate our resource constraints. Again, we can look at

the resources needed to run process 1 for a single hour requires 100kg metal. So, if
we run for p1 hours, we will consume 100p1 kg of metal. We can do the same thing
for each process and add up the results to find that the total metal consumed will
be:

100p1 + 70p2 + 120p3 + 270p4

We only have 6000kg of metal on hand for a day so we need to add a constraint,
ensuring that:

100p1 + 70p2 + 120p3 + 270p4 ≤ 6000 .

If we do the same thing for electricity and labour we get the additional constraints:

800p1 + 600p2 + 2000p3 + 4000p4 ≤ 100000

16p1 + 16p2 + 50p3 + 48p4 ≤ 1000

Altogether, we get the following linear program:

maximize 4000p1 + 1800p2 + 4800p3 + 11400p4

subject to 100p1 + 70p2 + 120p3 + 270p4 ≤ 6000

800p1 + 600p2 + 2000p3 + 4000p4 ≤ 100000

16p1 + 16p2 + 50p3 + 48p4 ≤ 1000

pi ≥ 0, for each i = 1, 2, 3, 4

If we wanted to know how many of X and Y the optimal schedule produced,
we could of course use our table together with p1, p2, p3, and p4 to calculate the
answer. Another approach (that will be useful shortly) is to model the input-
output relationship explicitly. Let’s introduce 2 new variables x and y, which
represent how much of X and Y , respectively, we will produce and 3 new variables
m, e, l representing how much metal, electricity and labour we consume. Then, we
have:

x = 4p1 + 3p3 + 6p4

y = p2 + p3 + 3p4

m = 100p1 + 70p2 + 120p3 + 270p4

e = 800p1 + 600p2 + 2000p3 + 4000p4

l = 16p1 + 16p2 + 50p3 + 48p4
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We can add these constraints to the linear program, and then reformulate our
program easily as:

maximize 1000x+ 1800y

subject to x = 4p1 + 3p3 + 6p4

y = p2 + p3 + 3p4

m = 100p1 + 70p2 + 120p3 + 270p4

e = 800p1 + 600p2 + 2000p3 + 4000p4

l = 16p1 + 16p2 + 50p3 + 48p4

m ≤ 6000

e ≤ 100000

l ≤ 1000

p1, p2, p3, p4 ≥ 0

x, y unrestricted

m, e, l unrestricted

(2.1)

Note that this makes it a lot easier to see what’s going on. However, we have more
than doubled the number of variables in the linear program! However, notice that
all we’ve really done is introduce “names” or “shorthands” for the quantities we
are interested in and defined them using equations.

You may be wondering why we declared x, y,m, e, l as unrestricted variables.
We did this to make sure we weren’t introducing any additional constraints when
we introduced our names. For example, if we declared that variable x ≥ 0 then
(since x = 4p1+3p3+6p4) we would be adding a constraint that 4p1+3p3+6p4 ≥ 0.
It could be complicated to determine whether or not this changes the program’s
optimal value, so the safest thing to do is to leave all of our “shorthand” variables
unrestricted. Furthermore, we will see in later lectures that unrestricted variables
in equations can be eliminated before solving a program, so leaving these variables
as unrestricted will allow us (or a computer) to eliminate them from the problem
before solving it.

Let’s look at an example of a production problems from the other direction:

Example 2.2. Suppose that our factory in Example 2.1 wants to determine its
daily operating budget. It has determined that there is daily demand for 120
parts X and 50 parts Y . Suppose now that there is an unlimited amount of
metal, electricity, and labour available, but the cost of metal is £5 per kg, the
cost of electricity is £0.15 per kWh, and the cost of labour is £20 per hour.
How can it schedule production to meet its demand as cheaply as possible?
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In this problem, our decision variables will remain the same, since we are still
trying to work out a schedule of activities. However, now the amount of each
part produced gives us a constraint and the raw materials lead us to the objective.
Let’s adopt an explicit input-output approach from before. Then, we will have the
same equations relating the i, o and x variables. We need to formulate our new
objective. It is simply:

5m+ 0.15e+ 20l

Moreover, our constraints on the number of X and Y produced give us 2 inequal-
ities for x and y:

x ≥ 120 y ≥ 50

Thus, our final program is given by:

minimize 5m+ 0.15e+ 20l

subject to x = 4p1 + 3p3 + 6p4

y = p2 + p3 + 3p4

m = 100p1 + 70p2 + 120p3 + 270p4

e = 800p1 + 600p2 + 2000p3 + 4000p4

l = 16p1 + 16p2 + 50p3 + 48p4

x ≥ 120

y ≥ 50

p1, p2, p3, p4 ≥ 0

x, y unrestricted

m, e, l unrestricted

(2.2)

Using a similar method we can actually perform both of these optimisations
to determine how to maximise profits, which are simply given by revenue minus
costs.

Example 2.3. Suppose that our factory in the previous 2 examples now wants
to find a production schedule that maximises its daily profits defined as rev-
enue minus costs. How can this be done? You should assume that any amount
of resources are available, and that any number of parts can be sold (where
the prices are given as in the previous 2 examples).

We have the same equations relating inputs to outputs as in the previous example.
Now, however, we will have no constraints on inputs or outputs. We introduce
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positive terms in the objective for revenue, as in Example 2.1 and negative terms
for costs, which are calculated as in Example 2.2. Altogether, we get:

maximize 1000x+ 1800y − 5m− 0.15e− 20l

subject to x = 4p1 + 3p3 + 6p4

y = p2 + p3 + 3p4

m = 100p1 + 70p2 + 120p3 + 270p4

e = 800p1 + 600p2 + 2000p3 + 4000p4

l = 16p1 + 16p2 + 50p3 + 48p4

p1, p2, p3, p4 ≥ 0

x, y unrestricted

m, e, l unrestricted

Finally, let’s see an example of a more complicated situation:
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Example 2.4. A medical testing company is making diagnostic tests. Each
test requires a combination of 3 different reagents:

Test
Reagents Needed

1 2 3

Standard 0.9 ml 1.2 ml
Rapid 1.5 ml 1.0 ml

Each reagent can be synthesised from a combination of more basic chemicals
(let’s call them chemical A, B, and C), which requires some amount of labora-
tory time. The relevant materials and costs are summarised in the following
table:

Reagent
Chemicals Needed Lab time

Price
A B C to synthesise

1 1.0 ml 0.3 ml 1.5 ml 0.02 hrs/ml £2.40/ml
2 0.5 ml 0.2 ml 1.0 ml 0.04 hrs/ml £1.60/ml
3 0.2 ml 1.8 ml 0.6 ml 0.05 hrs/ml £1.50/ml

The company has taken on a contract to produce 1000 standard tests and
2300 rapid tests. It has 100 hours of laboratory time available at a cost of
£150 per hour, 1100ml of chemical A, 1250ml of chemical B, and 1800ml
of chemical C available. Additionally, it can purchase and sell an unlimited
amount of each reagent for the specified price. Find a production plan that
fulfils the contract at the lowest net cost, taking into account any money
recovered by the sale of excess reagents.

Solution. This is a complex multi-stage production problem, but the same general
approach we used before works. As our first step, we should think about what
decisions need to be made. Here, a production schedule must decide how much
of reagents 1, 2, and 3 to synthesise and how much to purchase or sell. Let’s
focus first on how much of each reagent to produce: we let r1, r2, r3 be a variable
representing how many ml of each to produce. Then, r1, r2, r3 ≥ 0. Given values
for r1, r2, r3, we can work out how much of each chemical will be required, and
how much lab time will be needed. In order to make things easier to read, we can
introduce unrestricted variables a, b, c, and l to name these quantities. Then, we
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have:

a = 1.0r1 + 0.5r2 + 0.2r3

b = 0.3r1 + 0.2r2 + 1.8r3

c = 1.5r1 + 1.0r2 + 0.6r3

l = 0.02r1 + 0.04r2 + 0.05r3

We also know that we must produce 1000 standard tests, which will require
1000 · 0.9 ml of reagent 1 and 1000 · 1.2 ml of reagent 2, and 2300 rapid tests,
requiring 2300 · 1.5 ml of reagent 1 and 2300 · 1.0 ml of reagent 3. If we produce
less than the required amount of any reagent, we must pay a cost to purchase
the difference, and if we produce more than the required amount, we can sell the
excess. Thus, the total contribution to our net costs can be written as:

2.40((1000 · 0.9 + 2300 · 1.5)− r1) + 1.60(1000 · 1.2− r2) + 1.50(2300 · 1.0− r3)

Our laboratory time also factors into the cost as 150l, and we have constraints
on the total amount of laboratory time and each chemical available. Putting
everything together, we have:

minimize 150l + 2.40((1000 · 0.9 + 2300 · 1.5)− r1)

+ 1.60(1000 · 1.2− r2) + 1.50(2300 · 1.0− r3)

subject to a = 1.0r1 + 0.5r2 + 0.2r3

b = 0.3r1 + 0.2r2 + 1.8r3

c = 1.5r1 + 1.0r2 + 0.6r3

l = 0.02r1 + 0.04r2 + 0.05r3

a ≤ 1100

b ≤ 1250

c ≤ 1800

l ≤ 100

r1, r2, r3 ≥ 0

a, b, c, l unrestricted

If desired, we could eliminate a, b, c, and l (by substituting the right-hand side of
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the constraint equation for each of them) to arrive at:

minimize 150(0.02r1 + 0.04r2 + 0.05r3) + 2.40((1000 · 0.9 + 2300 · 1.5)− r1)

+ 1.60(1000 · 1.2− r2) + 1.50(2300 · 1.0− r3)

subject to 1.0r1 + 0.5r2 + 0.2r3 ≤ 1100

0.3r1 + 0.2r2 + 1.8r3 ≤ 1250

1.5r1 + 1.0r2 + 0.6r3 ≤ 1800

0.02r1 + 0.04r2 + 0.05r3 ≤ 100

r1, r2, r3 ≥ 0

Note that this type of simplification is only valid because each of these variables is
unrestricted. Otherwise, we would also have to make sure that the corresponding
right-hand sides remained non-negative or non-positive (according to the restric-
tions on the left-hand side).

Going the other direction, we could introduce additional variables to make the
objective easier to read. For example, we could let s1 be the amount of reagent 1
that we have to purchase or sell. Then, we would have a constraint:

r1 + s1 = 1000 · 0.9 + 2300 · 1.5

saying that the total amount of reagent 1 produced together with that purchased
or sold must exactly equal the amount required to make the tests. Then, we can
replace the term 2.40((1000 · 0.9 + 2300 · 1.5) − r1) in the objective with 2.40s1.
We could do this for each of the reagents separately, introducing s1, s2, and s3.
Notice that here we again need to be careful to make s1 unrestricted—if we say
that s1, s2, s3 ≥ 0 we will introduce an extra constraint into the problem saying
that we can only purchase reagents.

2.2 Transportation Problems

Next, we consider another class of problems that we can solve with linear program-
ming, called transportation problems. These involve moving or assigning goods,
materials, or resources from one set of locations to another.
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Example 2.5. A mining company has 2 mines, where ore is extracted, and
3 warehouses, where ore is stored. Currently, there is 45Mg of ore divided
amongst the mining locations. In order to prepare it for sale, this ore needs to
be distributed to the warehouses. The amount of ore available at each mine,
and the amount of ore required at each warehouse is as follows:

Ore Available
Mine 1 19
Mine 2 26

Ore Required
Warehouse 1 14
Warehouse 2 11
Warehouse 3 20

Due to different distances and shipping methods, the cost (in thousands of
pounds) to ship 1 Mg depends on where it is being shipped from and where
it is being shipped to, as follows:

Warehouse 1 Warehouse 2 Warehouse 3
Mine 1 10 5 12
Mine 2 9 7 13

Suppose that these costs scale up linearly in the amount of ore that is shipped
(for example, it costs 3 · 10 to ship 3Mg of ore from Mine 1 to Warehouse 1.
How should we send the ore from the mines to the warehouses to minimise
the overall transportation cost?

In this example, our decision variables should allow us to decide how much
ore is routed between each mine and each warehouse. We can think of sending a
shipment from Mine i to Warehouse j as an activity, and then, as usual, introduce a
decision variable to describe the extent to which this activity is carried out. That
is, we will introduce a variable xi,j for each Mine i = 1, 2 and each Warehouse
j = 1, 2, 3 representing how many Mg of ore we send from Mine i to Warehouse
j. It doesn’t make sense for this to be negative in our setting (since we can’t ship
less than 0 Mg). Altogether, we will then have 6 non-negative decision variables
x1,1, x1,2, x1,3, x2,1, x2,2, x2,3 (note that we could also have named them x1, . . . , x6,
but using a pair of numbers as an index will help us remember what they represent).
The total cost of a proposed shipping schedule will be given by multiplying each
xi,j by the appropriate entry in the table for costs. For example, we will incur a
total cost of 5x1,2 due to shipping x1,2 Mg of ore from Mine 1 to Warehouse 2.
Combining all of these costs, we obtain the following as the total cost:

10x1,1 + 5x1,2 + 12x1,3 + 9x2,1 + 7x2,2 + 13x2,3

What should our constraints be? We know that there are only 19Mg of ore
available at Mine 1, so the total amount of ore sent from this mine should be at
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most 19Mg:
x1,1 + x1,2 + x1,3 ≤ 19 ,

or, more succinctly,
3∑

j=1

x1,j ≤ 19. (2.3)

We get a similar constraint for every mine.
Similarly, we know that Warehouse 1 must receive 14Mg of ore, from all of the

shipments it receives, so we should have:

2∑
i=1

xi,1 = x1,1 + x2,1 ≥ 14 . (2.4)

We get a similar constraint for every warehouse.
Altogether, our program looks like:

minimize 10x1,1 + 5x1,2 + 12x1,3 + 9x2,1 + 7x2,2 + 13x2,3

subject to
3∑

j=1

x1,j ≤ 19

3∑
j=1

x2,j ≤ 26

2∑
i=1

xi,1 ≥ 14

2∑
i=1

xi,2 ≥ 11

2∑
i=1

xi,3 ≥ 20

In general, a transportation problem involves shipping some amounts available
at one set of locations i to satisfy some needs at another set of locations j. We
will get one constraint for each source location i, of the form:∑

j

xi,j ≤ si

where si is the supply available at location i. Similarly, we will get one constraint
for each destination location j of the form:∑

i

xi,j ≥ dj
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where dj is the demand at the location j. In our example, the mines were sources,
each with a supply si representing how much ore was available, and the warehouses
were destinations, each with a demand dj representing how much ore was required.

Note that if the total supply at all source locations is less than the total demand
at all destinations, we cannot expect to solve the problem at all. This leads us to
the notion of infeasible linear programs, which we will discuss shortly.

2.3 Integer vs Fractional Solutions

Finally, let us discuss an important implication of Definition 1.4 for modelling
problems. The first property means that we need to be careful when modelling or
interpreting some problems as linear programs. In the diet problem (Example 1.1)
we had to assume that it was okay to purchase and consume any fraction of a
single serving and, indeed, this is what happens in the optimal solution. However,
if a problem involves inherently discrete quantities (say, cars or people) the answer
we get may not make sense: for example, what does it mean to sell 1.4 cars or to
hire 0.3 people? The following example illustrates some of related issues that can
arise:

Example 2.6. You are assembling an investment portfolio. You have £10000
to invest and want to divide it between the following options: there are 10
shares available in Company A, each costing £500 and 1 share available in
Company B, costing £10000. Your financial modelling predicts that in 5 years,
each share of company A will be worth £700, and each share of Company
B will be worth £13000. Which shares should you buy to maximise your
predicted profit?

Let’s let a be the number of shares in Company A that we purchase and b be the
number of shares in Company B that we purchase. Then, we have the following
optimisation problem:

maximize 200a+ 3000b

subject to 500a+ 10000b ≤ 10000

a ≤ 10

b ≤ 1

a, b ≥ 0

(2.5)

Here, our objective and our constraints are linear, so if we let a, b ∈ R, then this
is a linear program, with solution a = 10, b = 0.5 with value 200 · 10+ 3000 · 0.5 =
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3500. However, if we can’t buy part of a share in company B then this doesn’t make
sense. In that case, we want to consider only solutions a, b ∈ Z. We could look
at our previous solution and just round everything down (notice this guarantees
we will stay feasible). We set a = 10, b = 0, which gives us a profit of 2000. But,
if we set a = 0, b = 1, we get a profit of 3000. This the optimal (i.e. the best
possible) integer solution to the problem. Notice that this is structurally quite
different than the optimal fractional solution, and also worth a lot more than our
naive rounded solution!

In general, obtaining an integer solution to a linear program is a very difficult
problem, which is beyond the scope of this module. For the remainder of this
module, we will largely ignore issues of integrality, and assume that a fractional
solution to a problem makes sense. In practice it is important to keep them in
mind.
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Week 3

Geometry of Linear Programming

So far, we have thought of linear programs as algebraic objects that we can ma-
nipulate to obtain a standard form, or as tools for modelling problems. Now, we
will see that they can also be viewed goemetrically. We will focus on intuition for
2 dimensions first, since this is easy to draw. We will look at programs with 2
variables, and use one axis for each variable. Note that if we consider the vector

x =

(
x1

x2

)
starting from the origin, then it’s endpoint is (x1, x2). Thus, we can

treat x as either a vector (that is, a direction and magnitude starting from the
origin) or a point in 2 dimensional Euclidean space.

We know that any linear program in n variables (x1, . . . , xn) = xT can be
written as a maximisation problem with an objective function of the form cTx
and a set of constraints, each of the form aTx ≤ b, where c, a ∈ Rn and b ∈ R.
So, the objective and the left-hand side of each constraints is a linear function
f(x) = a1x1+a2x2+· · ·+anxn of the variables. Just as with functions of 2 variables
in Calculus 2, we can find the direction in which this function is increasing most
rapidly by considering its gradient, which here will be a vector:

( ∂f
dx1

, ∂f
dx2

, . . . , ∂f
dxn

)

whose ith component is the partial derivative off with respect to xi. Note that
since f is a linear combination, these partial derivatives are easy to compute—we
have:

df

∂xi

= ai,

for every i. Thus, our gradient at any point x will always be given by aT and so
at any point x in space, the function f(x) = aTx is increasing the most rapidly in
the direction a.

We can also ask for the level curves of such a combination—given some fixed
value z, what does the set of all solutions x that have objective value z look like?
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For any value z, this set will be given by a curve (or, in higher dimensions, a
surface) that has a tangent perpendicular to the gradient that every point. Since
our gradient is always c at all points, our level curves will always simply be the set
of all points at right angles to c. In 2 dimensions, this is just a line perpendicular
to c and in 3 dimensions, this is a plane that is perpendicular to c. In higher
dimensions, we call this set a hyperplane. In all cases call c the normal vector of
this line (or plane, or hyperplane).

To summarise, the set of all points attaining an objective value of z (that is,
satisfying the equation cTx = z), is just a set of points that lies on a line or plane
lying at a right angle to a normal vector in the direction c. The value of z will
govern how far away from the origin this line or plane is: the larger z is, the farther
from the origin we have to move the plane.

We can also see this without using calculus. Recall that the dot product of 2
vectors a and x in n-dimensional Euclidean space satisfies:

aTx = a1x1 + · · ·+ anxn = ∥a∥∥x∥ cos(θ)

where θ is the angle between the vectors a and x. If we divide both sides of this
equation by ∥a∥, and recall that the length of any side of a right triangle is given
by the hypotenuse times the cosine of the adjacent angle, we can draw a picture
that looks like this:

0

a

x

θ

aTx
∥a∥ = ∥x∥ cos(θ)

A solution of aTx = z is then a vector x that together with the origin, forms a
right triangle with one side of length z/∥a∥ lying along the vector a. Again, we
can think of a as giving us a direction in space, and then the set of points with
aTx = z can all be obtained by walking exactly the distance z/∥a∥ from the origin
in the direction given by the vector a, and then any distance in perpendicular to
a, as shown below:
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a

z
∥a∥

Again, we find that the set of level curves of aTx will always be given by a line
perpendicular to a. This line crosses the ray passing through a at some point that
depends on how big z is: as z grows larger, we need to move our line further in
the direction of a to make sure the labelled distance is z/∥a∥. Note that if z < 0,
then we simply need to walk in the opposite direction pointed to by a from the
origin.

Returning now to linear programs, consider the set of solutions that satisfy a
constraint of the form aTx ≤ b. The boundary of this region is simply a line of
the form aTx = b. As we have seen this is a line perpendicular to a. The region
contains this boundary as well as all solutions with aTx < b, which will lie on
one side of the boundary. In order to figure out which side they lie on, we simply
consider the normal vector a of the boundary. As we have seen, this vector points
in the direction in which aTx is increasing. Thus, if we choose any solution on the
line and draw the a vector starting at this solution and pointing in the direction
of a, then all solutions x on the same side of the line aTx = b as this vector will
have aTx larger than b. It follows that all x with aTx < b then lie on the side of
the line opposite this vector.

Altogether each constraint aTx ≤ b gives us a half-plane, with a boundary
given by the line aTx = b. Our linear program will have several such constraints,
and our feasible solutions must satisfy all of them at once. So, what we really want
is a solution lying in the common intersection of all of the half-planes defined by
the constraints, as well as our sign restrictions.

Using this we can easily sketch the region of linear programs with 2 variables.
As an example, suppose we want to sketch the set of feasible solutions to a linear
program given by:
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maximize x1 + 2x2

subject to x2 ≤ 5

x1 + x2 ≤ 8

2x1 +
1

2
x2 ≤ 12

x1, x2 ≥ 0

(3.1)

If we sketch the constraints and shade the feasible region, we get something like
this:

§§

x
1 +

x
2 =

8
x2 = 5

2x
1
+

12 x
2
=

12

x1

x2

In our diagram, for each constraint of the form aTx ≤ b, we have drawn the
boundary given by the associated equation aTx = b, and we have also drawn
a normal vector for each boundary corresponding to a: the first constraint has
aT = (0, 1), the next has aT = (1, 1), and the last has aT = (2, 1

2
). This vector

shows us in which direction the left hand side of the corresponding constraint is
increasing, and so we shade the opposite side of the line as the feasible region.
Finally, notice that we also must remember to included the restrictions x1 ≥ 0 and
x2 ≥ 0, which give the left and lower boundaries of the feasible region, respectively.
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x
1 +

x
2 =

8
x2 = 5

2x
1
+

12 x
2
=

12

x1

x2

Our goal is then to find a solution in the shaded region that makes the dot-
product cTx as large as possible. This is again, just a linear combination, so we
know that for any constant z, the set of all solutions for which cTx = z will be
a line perpendicular to c. Recalling the definition of an optimal solution, x is
optimal if and only if x lies in the feasible region and no other feasible solution x′

has cTx′ ≥ cTx. In terms of the value z of the objective function, we want to find a
line perpendicular to c that intersects at least one solution of the feasible region so
that no other part of the feasible region lies on the side of this line corresponding
c—any such solution x′ would correspond to a feasible solution making cTx′ larger.
Graphically, we imagine increasing our value z slowly, sweeping our perpendicular
line along in the direction that c solutions. We continue as long as this line
intersects the feasible region in at least 1 solution. We stop when sweeping the
line any further out causes it to no longer intersect the feasible region. Then, any
solution that lies the line w

The picture above shows the vector c, together with dotted red lines corre-
sponding to those solutions x with cTx = 1, 2, . . . , 13.1 Once we reach the line
cTx = 13, we find that if we sweep it even a tiny amount further, then no solution
along it lies inside the feasible region. This line is depicted by the solid red line
(we have also shown here again the vector indicating the direction c). The red
point xT= (3, 5) is the only point in the feasible region lying on this final line, so

1Here, we have plotted only the integer values, but you should always imagine this happening
continuously. It just so happens that here our optimal objective takes an integer value 13, but
this will not always be the case.
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it is our optimal solution, and has value cTx = 13. Going back to the definition
of an optimal solution, notice that indeed every solution x′ in the feasible region
of our program lies the side of the line through x opposite the direction c, and so
has cTx′ ≤ z = cTx.

Recall that we say a general inequality of the form aTx ≤ b is tight if in fact
aTx = b. Graphically, if some solution x makes an inequality tight, then it must
lie on the boundary line for that constraint. In our picture, our feasible solution is
a point x at which 2 constraints are tight—in particular x1 + x2 = 8 and x2 = 5.
In general, it seems reasonable to expect that our solutions will always lie at some
corner point of the feasible region, and because we are in 2 dimensions, it will take
2 lines to uniquely identify any such point.

A potential issue may occur, though, if our vector c points in exactly the
same direction as some constraint’s vector a. For example, suppose we change our
objective function to be:

2x1 + 2x2

Then, cT = (1, 1) and our picture changes as follows (again, we draw lines for
points with objective value 1, 2, . . .).

x
1 +

x
2 =

8
x2 = 5

2x
1
+

12 x
2
=

12

x1

x2

Because our objective was exactly perpendicular to the line of some constraint,
any point along the relevant segment of this constraint will be optimal. However,
each endpoint of this line will be a corner point, so we might as well return one of
those. Thus, our intuition that we only need to worry about corner points ends
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up being okay, as long as we keep in mind that, when situations like this arise, the
corner point we look at might not be a unique optimal solution.

There are a few other subtleties that we now consider. First, notice that some
constraint might be redundant, and not actually affect the feasible region at all!
Suppose we add one more constraint to our linear program to obtain:

maximize x1 + 2x2

subject to x1 +
3

2
x2 ≤

21

2
x2 ≤ 5

x1 + x2 ≤ 8

2x1 +
1

2
x2 ≤ 12

x1, x2 ≥ 0

Our sketch will now look like this:

x
1 +

x
2 =

8
x2 = 5

2x
1
+

12 x
2
=

12

x
1 + 3

2 x
2 = 21

2

x1

x2

Notice that the extra constraint didn’t actually change the feasible region,
because everything was already on the correct side of this line anyway. However,
it happened that the line for this constraint went right through a corner of the
feasible region. Thus, this point will now have more than 2 tight constraints. We
know, however, that one of them isn’t really needed. We’ll see next week that this
situation is called degeneracy.
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Next, note that we need to be careful when we deal with lower bound con-
straints. Let’s start again with program 3.1, but let’s add a constraint of the
form:

−1

6
x1 + x2 ≥ 0 .

We get:

maximize x1 + 2x2

subject to −1

6
x1 + x2 ≥ 0

x2 ≤ 5

x1 + x2 ≤ 8

2x1 +
1

2
x2 ≤ 12

x1, x2 ≥ 0

We need to be careful that we shade the correct side of the line corresponding
to this new constraint! The easiest way to avoid mistakes is to always convert
your program to standard inequality form. This will turn all constraints into ≤
constraints. Then, if you draw the normal vector a from each plane, you should
always shade the side opposite the direction that a is pointing. In this case, we
rewrite our program, multiplying the first constraint by −1 to get:

maximize x1 + 2x2

subject to
1

6
x1 − x2 ≤ 0

x2 ≤ 5

x1 + x2 ≤ 8

2x1 +
1

2
x2 ≤ 12

x1, x2 ≥ 0

Now, notice that the first constraint has aT = (1/6,−1). When we sketch this
region, we will get:
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x
1 +

x
2 =

8
x2 = 5

2x
1
+

12 x
2
=

12

x2 −
1
6
x1 = 0

x1

x2

3.1 Infeasible and Unbounded Linear Programs

Now, we note that there are some cases in which an optimal solution may not
exist. Intuitively, Definition 2.2 can fail for one of two reasons: (1) there are no
feasible solutions to our program at all, or (2) for any feasible solution x, we can
always find a feasible solution y that is better. In these 2 cases, we call the linear
program infeasible or unbounded, respectively.

Definition 3.1 (Infeasible). We say that a linear program is infeasible if it has
no feasible solutions.

Definition 3.2 (Unbounded). We say that a linear program in standard in-
equality form is unbounded if for every k ∈ R, we can find a feasible solution
x to the program for which cTx ≥ k.

You can intuitively think of an unbounded linear program as having an “infinite”
possible objective value. Indeed, Definition 3.2 says that no matter how big we
choose k, there is always a feasible solution better.
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Example 3.1. The following linear program is infeasible:

maximize x1 + x2

subject to −x1 − x2 ≤ −3

x1 ≤ 1

x2 ≤ 1

x1, x2 ≥ 0

When we try to sketch the constraints for this linear program we get something
like this:

−
x
1 −

x
2 =

−
3

x2 = 1

x
1
=

1

x1

x2

Each constraint is a ≤, so as before we want to shade the region opposite the
normal vector of each line. Notice that there is no point that is on the correct side
of all three constraints at once! So, the feasible region is empty, which means our
program is infeasible.

42



3.1. Infeasible and Unbounded Linear Programs MTH5114 (Spring 2023)

Example 3.2. The following linear program is unbounded, since we can make
the objective arbitrarily large: for any proposed “bound” k ≥ 0 we can set
x1 = 1 and x2 = k. Then, x1−x2 = 1− k ≤ 1, so this solution is feasible, but
it has objective value of k + 1.

maximize x1 + x2

subject to x1 − x2 ≤ 1

x1, x2 ≥ 0

We can see this easily by sketching the linear program and its objective:

x 1
−
x 2
=
1

x1

x2

Clearly, if we keep moving in the direction of the objective, we will never stop.
Notice that the issue of whether or not a linear program is feasible or infeasible
is purely a question about its constraints. However, to decide if a program is
unbounded, we also need to take its objective into account.
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Example 3.3. Although it has exactly the same constraints as the previous
program, the following linear program is neither unbounded nor infeasible.

maximize
1

2
x1 − x2

subject to x1 − x2 ≤ 1

x1, x2 ≥ 0

Again, this becomes clear when we sketch the program. We find that the optimal
solution is the point farthest in the direction of the red vector, which is the corner
point (1, 0). Here, we moved in a downwards direction, because that’s where the
objective pointed.

x 1
−
x 2
=
1

x1

x2

3.2 Three Dimensions

Everything we have just discussed carries over into higher dimensions as well.
However, our intuition needs to be generalised slightly. An equation like aTx = b
still describes all the points x that we can reach by “walking along” in the direction
a until we reach a distance of b

∥a∥ , and then walking any distance at right angles
to a. However, in three dimensions, we can move in several different directions
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Figure 3.1: Constraints (3.2)–(3.5) in 3-dimensional space.

and still be at a right-angle to a. Thus, the solutions to aTx = b will be an entire
2-dimensional plane that intersects a at right angles. As before, we call the vector
a the normal vector of this plane.

This means that now our systems of constraints are given by planes, and fea-
sibly solutions are just those points that are on the correct side of all of them at
once. For example, here is a set of linear constraints in 3 variables:

x1 + x2 + x3 ≤ 1.5 (3.2)

x1 ≤ 1 (3.3)

x2 ≤ 1 (3.4)

x3 ≤ 1 (3.5)

If we draw the boundary each constraint separately in space, together with its nor-
mal vector, we get the pictures shown in Figure 3.2. Notice that each constraint’s
boundary, given by the solutions to aTx = b, is a plane of all points x that are
perpendicular (in some direction) to the vector a.

As before, since our program is in standard form, our feasible region lies on
the opposite side of each plane’s normal vector. Here are 2 drawings of all 4
constraints together, and a drawing of the resulting feasible region (which is now
a 3-dimensional region) from 2 different viewpoints:
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Figure 3.2: A views of all constraints (3.2)–(3.5) and two different views of the
feasible region, together with each constraint’s normal vector.
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3.3 Convex Combinations and Extreme Point So-

lutions

We argued intuitively that in 2 and 3 dimensions, a feasible, bounded linear pro-
gram would always have an optimal solution at a corner point of the feasible region.
Now, our goal is to generalise these concepts to linear programs with more than 3
variables. Of course, a major difficulty is that it is difficult to think geometrically
in more than 3 dimensions! In order to deal with this, we need to move past our
intuition to more precise definitions.

We begin with the following notion, which defines a special kind of linear
combination:

Definition 3.3 (Convex Combination). We call a linear combination a1x1 +
a2x2 + · · ·+ anxn a convex combination of x1, x2, . . . , xn if and only if:

• ai ≥ 0 for all i = 1, 2, . . . , n.

• a1 + a2 + · · ·+ an = 1.

Note that, as with linear combinations, our definition of convex combinations
applies to vectors, as well. We can think of linear combinations of weighted sums.
Then, convex combinations are just weighted averages, since their weights sum up
to 1.

Typically, we will talk about convex combinations of a pair of vectors. In this
case, our definition can be restated as follows:

Definition 3.4 (Convex Combination of 2 Vectors). We say that x is a convex
combination of two vectors y and z if and only if x = λy+ (1− λ)z for some
λ ∈ [0, 1].

Notice that we only needed to give the coefficient λ of the first vector y, since we
knew that the second one had to be (1− λ) in order to make our coefficients sum
to 1 (as required by Definition 3.3).

Geometrically, if we view the vectors y and z as points in space, then a convex
combination of the form λy+(1− λ)z is a point lying on the line segment joining
y and z. To see this, we can expand the equation x = λy + (1− λ)z to obtain

x = λy + z− λz = z+ λ(y − z) .

Thus, the point x can be obtained by starting at the point z and then moving a
λ fraction along the vector (y − z) that goes from z to y. If λ = 0, we will stay
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at the point z and if λ = 1, we will arrive at the point y. For all other values of
λ ∈ (0, 1), we will arrive at some point on a line segment in between y and z. This
is shown in the following figure in which we have set λ = 3/4:

z

y

x = z+ λ(y − z) = λy + (1− λ)z

y
−
z

λ
· ∥
y
−
z∥

Definition 3.5. We say that a feasible solution x is an extreme point solution
of a linear program if and only if it cannot be written as a convex combination
λy+ (1− λ)z of two distinct feasible solutions y and z with y ̸= x and z ̸= x
and λ ∈ (0, 1).

This definition is about the geometry of our solution space: it says that extreme
point solutions are precisely those that do not lie on any line segment joining two
other solutions. This agrees with our intuition that optimal solutions of an LP
will lie at the “corner points” of the feasible region, since we cannot draw a line
segment from one point in the feasible region through a corner to some other point
unless this other point is outside the feasible region. Thus, a corner point cannot
be a convex combination of any pair of feasible solutions.
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Week 4

Extreme Point and Basic Feasible
Solutions

Last week, we investigated optimal solutions to linear programs by visualising the
geometry of the problem, and we noticed that if a linear program has an optimal
solution, then one of the “corners” of the feasible region is also an optimal solution.
We formalised the idea of “corners” by defining extreme point solutions.

Unfortunately, it’s not clear how we go about finding extreme points. First,
we need a way to think algebraically about solutions to linear programs. In order
to do this, we first show how to put any linear program into another useful form,
which we call standard equation form.

Definition 4.1 (Standard Equation Form). We say that a linear program is in
standard equation form if it is written as:

maximize cTx

subject to Ax = b

x ≥ 0

where A is an m′ × n′ matrix A of real numbers, c ∈ Rn′
and b ∈ Rm′

.

We already know that any linear program can be written in standard inequality
form, so it suffices to show how to transform such a linear program into equation
form. Here, since we want to have equations, it makes sense to leave any equations
in the original program as they are, rather than converting them to a pair of
inequalities. If we carry out all of the other steps, making sure that the goal is
maximise, the variables are all non-negative, and any inequalities are of the form
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aTx ≤ b, we will get a program that looks like:

maximize cTx

subject to Ax ≤ b

Px = d

x ≥ 0 .

(4.1)

where here Ax ≤ b is a system of inequality constraints, and Px = d is a system
of equations, which remain since we did not convert them to inequalities. Consider
any such linear program and let m be the number of inequality constraints (that is,
the number of rows of A) and ℓ be the number of equations (that is, the number of
rows of P ). We need to convert our m inequalities to equations. The ith inequality
constraint is given by:

Ai,1x1 + Ai,2x2 + · · ·+ Ai,nxn ≤ bi . (4.2)

Let’s introduce a new variable si to represent how much “slack” there is in this
constraint. That is, si represents how far below bi the right-hand side of (4.2) is:

si = bi − (Ai,1x1 + Ai,2x2 + · · ·+ Ai,nxn) (4.3)

Notice now that (4.2) is true if and only if si ≥ 0. In other words, our ith inequality
can be rewritten as an equation

Ai,1x1 + Ai,2x2 + · · ·+ Ai,nxn + si = bi (4.4)

together with a new non-negativity restriction si ≥ 0. If we do this for each of our
m constraints, introducing a new slack variable for each one, we get a new set of
constraints that looks like:

A1,1x1 + A1,2x2 + · · · + A1,nxn + s1 = b1
A2,1x1 + A2,2x2 + · · · + A2,nxn + s2 = b2

...
...

...
. . .

...
Am,1x1 + Am,2x2 + · · · + Am,nxn + sm = bm

(4.5)

So, we obtain a new linear program with n+m variables. If we define:

Q =



A1,1 A1,2 · · · A1,n 1 0 · · · 0
A2,1 A2,2 · · · A2,n 0 1 · · · 0
...

...
...

...
...

. . .

Am,1 Am,2 · · · Am,n 0 0 · · · 1
P1,1 P1,2 · · · P1,n 0 0 · · · 0
P2,1 P2,2 · · · P2,n 0 0 · · · 0
...

...
...

...
...

...
Pℓ,1 Pℓ,2 · · · Pℓ,n 0 0 · · · 0


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x′ =



x1

x2
...
xn

s1
s2
...
sm


b′ =



b1
b2
...
bm
d1
d2
...
dℓ


c′ =



c1
c2
...
cn
0
0
...
0


then our constraints (4.5) can be written as Qx′ = b′. Here, notice we obtained
Q by placing an m × m identity matrix to the right of A, then placing an ℓ × ℓ
all zero matrix to the right of P and then placing the first resulting matrix above
the second. We can also write our problem’s objective as c′Tx′, which is simply
equal to our original object cTx, since we added zeros to c for each of the new
slack variables. Thus, we can formulate our program as:

maximize c′Tx′

subject to Qx′ = b′

x′ ≥ 0 ,

which is in the form required. Our new linear program has n′ = n +m variables
(m more than the original program) and m′ = m+ℓ constraints (the same number
as the original program). Given a feasible solution x′T = (xT; sT) of our new LP,
consisting of values for both the original LP’s decision variables x and our new
slack variables s, it is now easy to figure out which constraints of the original
LP are made tight by x: they are exactly those constraints whose corresponding
slack variables are set to zero. From here on, when referring to a solution of a
standard equation form LP, we will use the term “decision variable” to refer to
those variables that were in the original LP, as opposed to “slack variables” which
we have added to convert the LP into standard equation form.

The advantage of the standard equation form of a linear program is that it
allows us to use methods for reasoning about and manipulating systems of linear
equations, many of which you already know from linear algebra. (The advantage
of the standard inequality form is that it usually has fewer variables for real-life
problems and can be visualised more easily.) From now on, let’s consider an
arbitrary linear program that has been put into standard equation form:

maximize cTx

subject to Ax = b

x ≥ 0 .

(4.6)
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Let’s suppose that this linear program has m constraints, and that none of these
constraints can be written as a linear combination of the others. This last assump-
tion means that the rank of A is m, and can be made without loss of generality:
if any constraint is a linear combination of the others, then removing it does not
change the set of solutions of the equations (and hence the set of feasible solutions
of the linear program).

4.1 Optimal Solutions and Extreme Points

Our first major theorem shows that, indeed, it is sufficient to check only extreme
point solutions if we want to find an optimal solution to a linear program. This
confirms our intuition about only needing to check “corner points” in 2 dimensions.

Theorem 4.1. If a linear program (in standard equation form) has an optimal
solution, then it has an optimal solution that is also an extreme point solution.

Proof. Consider a linear program in standard equation form and suppose that it
has at least one optimal solution. We will show how to obtain an optimal solution
that is also an extreme point solution. The main idea is as follows: if a solution x
is not an extreme point solution, we claim that it is possible to construct a feasible
solution x′ from x such that cTx′ ≥ cTx but x′ has one additional entry xi set to 0.
Intuitively, if xi is a slack variable, then this makes an extra constraint tight, and
if xi is a decision variables, then this means we made an extra restriction xi ≥ 0
tight. In either case, we get a feasible solution x′ that is just as good as x but lies
on the boundary of (at least) one more inequality than x. Eventually this should
give us enough tight constraints to uniquely define a single corner point, and then
we will have an extreme point.

Formally, we begin by showing the claim:

Claim 4.2. Suppose that x is an optimal solution of some linear program in
standard equation form. Then if x is not an extreme point, there must exist
some x′ such that: (1) cTx′ = cTx, (2) x′ is also feasible solution to the LP,
and (3) in x′, at least one more variable is set to 0 than in x.

Proof. Since x is not an extreme point there must be some λ ∈ (0, 1) and two
feasible solutions y and z with y ̸= z so that x = λy + (1− λ)z.

Since x is optimal, cTx ≥ cTy and cTx ≥ cTz. If cTx > cTy then:

cTx = λcTy + (1− λ)cTz < λcTx+ (1− λ)cTz ≤ λcTx+ (1− λ)cTx,

52



4.1. Optimal Solutions and Extreme Points MTH5114 (Spring 2023)

and so cTx < cTx; a contradiction. Thus cTx = cTy. Similarly, if cTx > cTz then

cTx = λcTy + (1− λ)cTz < λcTy + (1− λ)cTx ≤ λcTx+ (1− λ)cTx,

and again we would have a contradiction cTx < cTx. Thus, cTx = cTz as well.
This shows that both y and z must be optimal solutions.

We now consider the line passing through x, y, and z. We can represent any
solution x′ on this line as x′ = x+ θ(y − z) for θ ∈ R. For any such solution:

cTx′ = cT(x+ θ(y − z)) = cTx+ θcTy − θcTz = cTx+ θcTx− θcTx = cTx,

where the third equation follows from the fact that cTx = cTy = cTz, as we
showed above. Thus, we know that every solution x′ = x + θ(y − z) on our line
has the same objective value as x and so satisfies part (1) of the claim.

For part (2), we need to set θ so that x′ satisfies Ax′ = b and x′ ≥ 0. of our
linear program. First, we note that for any choice of θ:

Ax′ = A(x+ θ(y − z)) = Ax+ θAy − θAz = b+ θb− θb = b,

where the third equation follows from the fact that x,y, and z are all feasible
solutions. Now we just need to choose θ so that the x′ ≥ 0 (so part (2) of the
claim is true) and x′ has at least one more 0 entry than x (so part (3) of the claim
is true).

First, let’s show that for any coordinate i with xi = 0, we have x′
i = 0 for every

possible choice of θ. Note that for any such xi, since x is a convex combination of
feasible solutions y and z, we must have

xi = λyi + (1− λ)zi,

and yi ≥ 0 and zi ≥ 0. If either yi > 0 or zi > 0, we can see that we would have
xi > 0 as well. Thus, for any i with xi = 0, we also have yi = 0 and zi = 0, and
so:

x′
i = xi + θ(yi − zi) = 0 + θ(0− 0) = 0

for any choice of θ. This shows that changing θ cannot cause the number of
coordinates set to 0 to decrease. We now need to show that we can choose θ so
that one of the non-0 coordinates of x′ becomes 0, but all the others stay non-
negative. This will imply both that x′ ≥ 0 (and so x is feasible) and part 3 of the
claim.

Intuitively, we can just find a the point where this line passes through the
boundary of an extra constraint. Let’s consider how the coordinates of x′

i change
as we vary θ. We have:

d

dθ
x′
i =

d

dθ
(xi + θ(yi − zi)) = yi − zi.
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Note that this is independent of θ, so every coordinate xi will change at some
constant rate as we change θ. Note that if zi > yi, then

d
dθ
x′
i = yi − zi < 0 and

so x′
i will decrease as we increase θ. Similarly, if zi < yi then xi will decrease as

we increase θ. We can thus choose a direction to change θ (i.e. choose to either
increase or decrease θ) so that at least 1 coordinate x′

i is decreasing. Then, we
change θ in this direction until the first moment at which some coordinate x′

i

becomes 0. For this value of θ, an extra coordinate (namely, x′
i) has become 0 and

no other non-0 coordinate has yet become 0 (since we stopped changing θ at the
first moment that this happened for any coordinate). This is exactly what was
needed to complete the proof of parts 2 and 3 of the claim.

The proof of Theorem 4.1 now follows inductively from the claim, as follows.
Suppose that x is an optimal solution that is not an extreme point. Then, the
claim implies that we can find a x′ that is also feasible and optimal, but has 1
more variable set to 0. If x′ is still not an extreme point, we can apply the claim
again to it to set another variable to 0, continuing in this fashion until either we
end up with some solution that is an extreme point, or every variable has been set
to 0. In the latter case, we can also use the claim to show that we must in fact be
at an extreme point. Indeed, suppose for the sake of contradiction that we were
not at an extreme point but all variables had been set to 0; then, the claim says
it must be able to set an additional variable to 0. But this is clearly not possible,
since they are all 0 already.

4.2 Basic Feasible Solutions

Theorem 4.1 suggests a way to reduce the continuous optimisation problem given
by any linear program to a discrete optimisation problem—for linear programs
that are not unbounded or infeasible, we can simply check all of the extreme
points of a linear program and see which one gives the largest objective value.
To do this, we need some method of finding extreme point solutions easily. The
next definition will allow us to link the geometric notion of an extreme point to a
precise algebraic notion. We will focus on solutions of 4.6 that have the following
specific form.

Definition 4.2 (Basic Feasible Solution). We say that x is a basic feasible so-
lution of a linear program in standard equation form 4.6 if and only if x is
feasible and the columns of A corresponding to the non-zero entries of x are
linearly independent.

Note that since A has rankm, any set of more thanm columns of Amust be linearly
dependent. Thus, a basic feasible solution can have at most m non-zero variables.
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We will see that basic feasible solutions with fewer than m non-zero variables can
cause problems. We call such basic feasible solutions degenerate:

Definition 4.3. We say that a basic feasible solution of a linear program in
standard equation form is non-degenerate if it has exactly m non-zero vari-
ables, and degenerate if it has fewer than m non-zero variables (where, as
usual, m is the number of constraints in the linear program).

We will call the m variables xj corresponding to linearly independent columns of
A basic variables, and the other variables non-basic variables. Note that non-basic
variables will always be set to zero in the corresponding basic feasible solution.

The notion of a basic feasible solution will be useful to work with because it
is algebraic rather than geometric. However, we can show that, in fact, it agrees
with the geometric notion of an extreme point.

Theorem 4.3. A feasible solution x of a linear program in standard equation
form 4.6 is a basic feasible solution if and only if it is an extreme point solution.

Proof. First, let’s prove that every basic feasible solution x must be an extreme
point solution. Let x be a basic feasible solution and let B(x) be the set of
columns of A corresponding to the non-zero entries of x. Suppose, for the sake of
contradiction, that x is not an extreme point; then, we can write x = λy+(1−λ)z
for feasible solutions y and z with y ̸= z and some λ ∈ (0, 1). Since y and z are
both feasible solutions, we must have Ay = b and Az = b, and so:

A(z− y) = 0

The expression A(z − y) is a linear combination of some of the columns of A,
specifically those corresponding to the non-zero entries of z − y. But, recall that
xi = λyi + (1 − λ)zi, and yi ≥ 0, zi ≥ 0. Thus, as we noted in the proof of
Theorem 4.1, the only way we can have xi = 0 is if yi = 0 and zi = 0 as well. This
in turn means that zi − yi = 0 and so the only columns of A that appear with
non-zero coefficients in the linear combination A(z − y) must be those columns
of B(x). It follows that A(z − y) can be viewed as a linear combination of the
columns in B(x) and since y ̸= z, we have z−y ̸= 0, so this is a non-trivial linear
combination. But this means we have found a non-trivial linear combination of
the columns corresponding to B(x) that is equal to zero. In other words, these
columns are linearly dependent, contradicting our assumption that x was a basic
feasible solution. Altogether, we have shown that if x is a basic feasible solution
then x must be an extreme point solution.
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For the other direction, suppose that x is not a basic feasible solution. We
shall show that x is also not an extreme point solution. As in the previous case,
let B(x) be the set of columns of A corresponding to the non-zero entries of x.
Let’s suppose these columns have indices {i1, . . . , ir}. Then since x is not a basic
feasible solution, the columns in B(x) must be linearly dependent. That is, there
must be some vector of constants di1 , di2 , . . . , dir (one for each column of B(x))
not all equal to zero such that:

di1ai1 + di2ai2 + · · ·+ dirair = 0 ,

We can extend the vector d to a vector in Rn by simply setting di = 0 for each
index i corresponding to a column that is not in B(x). Then, we have:

Ad = di1ai1 + di2ai2 + · · ·+ dirair = 0 .

It follows that for any constant θ ∈ R:

Ax+ θAd = Ax+ 0 = Ax = b

Ax− θAd = Ax− 0 = Ax = b,

and so both x+ θd and x− θd satisfy our problem’s constraints. If we set θ > 0
small enough, we can make sure that x+ θd ≥ 0 and x− θd ≥ 0, as well. To see

this, consider the non-zero entry di of d for which
∣∣∣xi

di

∣∣∣ is the smallest (note that

such an entry must exist, since there is at least one value di ̸= 0). We set θ to

this value
∣∣∣xi

di

∣∣∣. Then, for any coordinate j with dj ̸= 0, we have θ ≤
∣∣∣xj

dj

∣∣∣ and so

−xj ≤ θdj ≤ xj. It follows that for every coordinate j, either dj = 0, in which
case xj + θdj = xj + θ · 0 = xj ≥ 0 and xj − θdj = xx − θ · 0 = xj ≥ 0 (since x is
feasible), or

xj + θdj ≥ xj − xj = 0

xj − θdj ≥ xj − xj = 0 .

Thus, x+θd ≥ 0 and x−θd ≥ 0 and so both are feasible solutions to our program.
Moreover, we can write x as a convex combination x = 1

2
(x + θd) + 1

2
(x − θd).

Thus, x is not an extreme point solution. Altogether, we have shown that if x is
not a basic feasible solution then it must also not be an extreme point solution.

In order to gain some intuition about Theorem 4.3, let’s return to our 2-
dimensional setting. There, we saw that, for a linear program in standard in-
equality form, we had n = 2 variables and the “corner points” of the feasible
region were those where at least 2 of our constraints (of the form either aTx ≤ b or
xi ≥ 0) were tight. When we convert such a linear program to standard equation
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form, we will introduce m new slack variables (one for each constraint aTx ≤ b).
After doing this, we have that a constraint is tight if and only if some variable
corresponding to the constraint is 0: for constraints of the form aTx ≤ b in the
original linear program to be tight, the corresponding slack variable in the equa-
tion form linear program must be 0, and for constraints of the form xj ≥ 0 in the
original program to be tight, we must have xj = 0. The standard equation form
linear program has n +m = 2 +m variables and if we have m linear constraints
in our matrix A, at most m of the columns of A can be linearly independent. So,
indeed any basic feasible solution must have at most m non-zero variables, and set
the remaining 2 +m−m = 2 variables to be zero. These 2 zero-valued variables
then give us exactly our 2 tight constraints! Also, note that if our solution has
fewer than m non-zero variables, it must be the case that more than 2 constraints
are tight at the corresponding point in our feasible region. This gives us some
intuition for what degenerate solutions look like.

In 2-dimensions, we saw that if our objective function was exactly perpendicular
to some line defining a boundary of the feasible region, then we could have optimal
solutions anywhere along this line. In that case, we noted that both the left and
right corner point of the feasible region could be chosen, so we were still guaranteed
to have a corner point that was optimal. The following corollary, which follows
immediately from combining Theorems 4.1 and 4.3, extends this intuition into
arbitrary finite dimensions, and allows us to restrict our attention to basic feasible
solutions when searching for an optimal solution.

Corollary 4.4. If a linear program has an optimal feasible solution, then it has
an optimal solution that is also a basic feasible solution.

4.3 Geometry and Basic Feasible Solutions

In the last few lectures, we developed geometric intuition that allowed us to find
the optimal solution of linear programs with 2 and 3 variables. Then, we moved
to higher dimensions by introducing definitions for extreme points. We saw that
one of these extreme points will always be an optimal solution to a linear program,
provided that the program is not infeasible or unbounded, and gave an algebraic
characterisation of extreme points by introducing the notion of a basic feasible
solution. At this point, we have reduced the problem of solving a linear program
to the problem of finding the best basic feasible solution of that program. Before
going further, let’s see an example bringing together some of these principles.
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Let’s consider the following linear program in 2 variables:

maximize 4x1 +
1

2
x2

subject to x1 + x2 ≤ 3

1

2
x1 + x2 ≤ 2

−1

2
x1 + x2 ≥ −1

x1, x2 ≥ 0

Notice that the last constraint that is a ≥ constraint instead of a ≤. Before
sketching, we should always convert all of our constraints to ≤ constraints, so we
multiply both sides by −1. We get the following equivalent linear program in
standard inequality form:

maximize 4x1 +
1

2
x2

subject to x1 + x2 ≤ 3

1

2
x1 + x2 ≤ 2

1

2
x1 − x2 ≤ 1

x1, x2 ≥ 0

(4.7)

We want to see what the feasible region looks like, so we plot the boundary of each
constraint. That is, we plot the lines we get when we change the ≤ signs into =
signs. We get the following:
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x
1 +

x
2 =

3
1
2 x1 + x

2 = 2

1
2
x1

− x2
= 1

x1

x2

Which part of the picture corresponds to the feasible region? We need to figure
out which side of each line the feasible region lies on. One easy way is to pick
any point we want on each line and then draw the normal vector for our line.
For example, line 1

2
x1 + x2 = 2 is a linear equation of the form aTx = 2, where

aT = (1
2
, 1) and x =

(
(x1, x2)

)
. So, we pick any point on this line and draw a

vector starting at the point and moving 1/2 unit to right (corresponding to the
1/2 in the first coordinate of a) and 1 up (corresponding to the 1 in the second
coordinate of a). Intuitively, the vector we have just drawn indicates the direction
in (x1, x2) plane that corresponds to making the expression aTx = 1

2
x1+x2 larger.

Our line shows us the values for which this expression is equal to 2. Because we
want to also include values that are smaller than 2, our feasible solutions must all
lie on the opposite side of our normal vector a.

If we repeat the same process for each different line, and consider the intersec-
tion of all these regions, together with the non-negativity restrictions on x1 and
x2, we get a picture that looks like this:
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x
1 +

x
2 =

3
1
2 x1 + x

2 = 2

1
2
x1

− x2
= 1

x1

x2

Normally, we would finish by sketching the direction c corresponding to the ob-
jective function (here, cT = (4, 1/2)) and use it to solve our program. Instead,
let’s see how this might be done using calculation and our notion of basic feasible
solutions. We saw in the last lecture that any linear program that has an optimal
solution must have an optimal solution that is also a basic feasible solution. But,
what do these basic feasible solutions look like? We saw that they correspond to
extreme points, which are like corners of our feasible region. Let’s see in more
detail exactly how this correspondence works.

In order to talk about basic feasible solutions, we need to rewrite our program
into standard equation form. We have 3 inequalities in 4.7. We introduce a new
slack variable for each of them to get the following program:

maximize 4x1 +
1

2
x2

subject to x1 + x2 + s1 = 3

1

2
x1 + x2 + s2 = 2

1

2
x1 − x2 + s3 = 1

x1, x2, s1, s2, s3 ≥ 0

(4.8)

We used to have n = 2 variables and m = 3 constraints. Now, we have n+m = 5
variables: 2 original variables plus one new slack variable corresponding to each
constraint. We can write our system of equations more succinctly in matrix form
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as: 
1 1 1 0 0
1
2

1 0 1 0
1
2

−1 0 0 1




x1

x2

s1

s2

s3


=


3

2

1

 .

Remember that in a basic feasible solution, we require that all the variables
that take non-zero values correspond to a linearly independent set of columns in
the matrix above. Since our matrix has m = 3 rows, at most m = 3 columns can
be linearly independent, and we should expect that any basic feasible solution will
select at most 3 variables to be set to non-zero values, or, equivalently, selecting 3
linearly independent columns of our matrix. Suppose that we select columns 1, 2,
and 5 (note that these are indeed linearly independent). Then, in a corresponding
basic feasible solution we are allowing x1, x2 and s3 to take non-zero values, and
requiring that s1 and s2 be set to zero. We say that x1, x2, and s3 are the basic
variables in this solution, and that s1 and s2 are the non-basic variables.

Let’s now see what the effect of this choice is. Since we have s1 = 0, then the
first equation in 4.8 reads:

x1 + x2 = 3

This is exactly the same as saying that the constraint corresponding to slack
variable s1 is tight in our original program (4.7). Similarly, since we have s2 = 0,
then we must have

1

2
x1 + x2 = 2

and so our second constraint in (4.7) is tight. Consider the following picture, in
which we have drawn (in red) the equations corresponding to each of these tight
constraints:
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1
2
x1

− x2
= 1

x
1 +

x
2 =

3
1
2 x1 + x

2 = 2

x1

x2

If we set s1 and s2 to zero and write out the system of constraints for our standard
equation form program (4.8), we get:

x1 + x2 = 3

1

2
x1 + x2 = 2

1

2
x1 − x2 + s3 = 1

We find that this set of equations has a unique solution, namely x1 = 2, x2 = 1,
s3 = 1. This, then is our basic feasible solution, which was obtained by selecting
a linearly independent set of columns 1,2, and 5 and then letting x1, x2, s3 be
our basic variables. If we plot just the x1 and x2 values for this solution on our
picture, we get exactly the intersection point of these 2 red lines, which is also an
extreme point of the feasible region. We showed in the last lecture that this will
always happen—basic feasible solutions correspond exactly to extreme points of
our feasible region.

So, we see that whenever a slack variable in our standard equation form pro-
gram (4.8) is non-basic (that is, set to zero), it means that its corresponding
constraint in our original program (4.7) is tight, and that this means that x1 and
x2 must lie on this constraint’s boundary line. What if one of x1 or x2 is set to
zero? Remember that we actually have 2 extra boundaries in our feasible region,
corresponding to the restrictions x1 ≥ 0 and x2 ≥ 0 in both of our programs. If,
for example x1 = 0, then one of these is tight. Indeed, suppose that we choose
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columns 2,3, and 5 in our matrix to be basic. Then, in any corresponding basic
feasible solution, we must have x1 = 0 and s2 = 0 (so 1

2
x1 + x2 = 2). If we draw

these tight restrictions/constraints, we see:

x
1 +

x
2 =

3

1
2
x1

− x2
= 1

1
2 x1 + x

2 = 2

x
1
=

0

x1

x2

Again, we see that this gives us an extreme point of our feasible region. If we set
x1 and s1 to zero our constraint equations become:

x2 + s1 = 3

x2 = 2

−x2 + s3 = 1

which has a unique solution x2 = 2, s1 = 1, s3 = 3. Looking at the variables x1

and x2 from the original problem (4.7), we find x1 = 0, x2 = 2. So, again, our
basic feasible solution lies at the intersection of 2 lines, which is an extreme point
of the feasible region.

As a last example, let’s suppose we choose columns 1, 4 and 5 of our matrix.
This will give us basic variables x1, s2, s3 and non-basic variables x2, s1. As before,
we will have 1 tight constraint, giving us x1 + x2 = 3, and one tight restriction,
giving us x2 = 0. When we draw these get:
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1
2 x1 + x

2 = 2

1
2
x1

− x2
= 1

x
1 +

x
2 =

3

x2 = 0

x1

x2

Now, we find that our intersection point is strictly outside the feasible region. How
could this be? Let’s check our equations. If we set x2 and s1 to zero, we get:

x1 = 3

1

2
x1 + s2 = 2

1

2
x1 + s3 = 1

These equations have a unique solution x1 = 3, s2 = 1
2
, s3 = −1

2
. Indeed, if we

check, the point x1 = 3, x2 = 0 corresponds to the intersection in our picture.
However, notice that we can tell right away that this solution is not feasible, since
it sets s3 = −1

2
, but (4.8) required that all variables were non-negative. The

constraint in (4.7) that corresponds to the slack variable s3 is 1
2
x1 − x2 ≤ 1, and

this is exactly the constraint that we are on the wrong side of!
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Week 5

The Simplex Algorithm (I)

5.1 Intuition behind the Simplex Algorithm

Using the theorems from last week, we could attempt to solve a linear program
as follows: try every possible way of choosing m basic variables, then solve the
associated system of equations and check to make sure our solution is feasible. If
we keep track of the best feasible solution we find (with respect to the objective
cTx), we could figure out which one was optimal. Unfortunately, there are up to(
n
m

)
= n!

(n−m)!m!
different such solutions, which grows extremely fast with n and m.

Next we will see that it is possible to search for the best basic feasible solution in
a more systematic way. This approach is called the Simplex Algorithm.

Eventually, we will see that there is a nice shorthand that can be used to im-
plement the Simplex algorithm. Unfortunately, that shorthand gives little insight
into how and why the algorithm works. Before introducing it, then, let’s proceed
in a more careful and “elementary” way, by looking at a specific example.

Consider our example linear program (4.8) from last week in standard equation
form (note that here the distinction between slack variables and r we have just
named the slacks as s1, s2, and s3 instead of s1, s2, s3):

maximize 4x1 +
1

2
x2

subject to x1 + x2 + s1 = 3

1

2
x1 + x2 + s2 = 2

1

2
x1 − x2 + s3 = 1

x1, x2, s1, s2, s3 ≥ 0

The simplex algorithm works by moving from one basic feasible solution to
another, so we will need to find some basic feasible solution to start off with. One
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obvious set of linearly independent columns in our matrix is 3,4, and 5 (corre-
sponding to the slack variables). If we set x1 and x2 to zero (corresponding to the
origin of our picture from the previous lecture) and solve our equations for the
remaining variables:

s1 = 3

s2 = 2

s3 = 1 ,

which is feasible, since we have selected values that make the equations true, and
all of these values were non-negative.

In general: if the right hand side of all of our equations is non-negative, we can
always start by selecting our slack variables to be basic and find a feasible solution
(we will see next week how to handle cases in which this doesn’t work).

We obtained our values for s1, s2, and s3 by solving equations, so instead of
thinking about the solutions directly, we can instead think about the set of equa-
tions that lead us to them. From now on, let’s use z to denote the value of our
objective function, and write down an extra equation to remind us how to find
the value of z. In our example, z = 4x1 +

1
2
x2. Then, let’s rewrite our system of

equations and our expression for z so that only basic variables (currently, s1, s2.s3)
are on the right-hand side and only constants and non-basic variables (currently,
x1, x2) are on the left-hand side. If we use a line to separate the expression from
z from the other equations, we get:

s1 = 3 − x1 − x2

s2 = 2 − 1

2
x1 − x2

s3 = 1 − 1

2
x1 + x2

z = 4x1 +
1

2
x2

(5.1)

Then, since x1 and x2 are non-basic, we are thinking about a solution that sets
them to zero. The we rewrote our equations then makes it easy to see that then
s1 = 3, s2 = 2, s3 = 1 and z = 0. Note, however, that we are not going to
substitute zero for our non-basic variables in each step of our algorithm. Instead,
we are going to keep a full, general set of equations relating all of the basic and
non-basic variables. We will simply keep in mind that if we assign the non-basic
variables (appearing on the right of our equations) a value of zero, then our current
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set of equations will immediately tell us how the currently chosen basic variables
(appearing on the left of the equations) should be set.

The key idea of the simplex algorithm is to perform a series of steps, each of
which changes one variable from basic to non-basic and one variable from non-basic
to basic. This exchange is done so that the objective function is always increasing
(or, at least, never decreasing). Returning to our example, suppose we allowed
one of x1, x2 to be basic, and increased its value. We see that if we increase x1 or
x2, z will increase, since both of these variables has a positive coefficient in our
expression for z. Let’s pick x1, since it has the largest coefficient and so will make
z increase the fastest, and leave x2 set to 0. In order to find a feasible solution,
however, we need to make sure that: (1) our equations are satisfied (recall that
these are just re-arranged versions of the original problem’s equation constraints)
and (2) no variable is assigned a negative value. The first equation in (5.1) reads:

s1 = 3− x1 − x2 .

In order to satisfy this equation as the value of x1 increases, we must decrease the
value of s1 (recall that we are leaving x2 = 0). Once the value of x1 is larger than
3, we will have s1 < 0. Thus, our first equation implies that if we keep x2 = 0, we
can increase the value of x1 to at most 3 before our solution becomes infeasible.

Similarly, the next 2 equations say that the value of x1 can be at most 4 (since
if it were larger we would have s2 < 0), and at most 2 (since if it were larger we
would s3 < 0). Altogether, we obtained 3 different bounds on how much we can
increase the value of x1. Of these, the strictest (that is, the smallest) bound is 2,
corresponding to the last equation, so this is as far as we can increase x1 while
leaving x2 set to zero. Since we want to increase z as much as possible, let’s go
ahead and set x1 = 2. Notice that then the value of s3 will become 0.

What we have done, then, is made one non-basic variable (x1) take non-zero
value, and one basic variable (s3) take a zero value. We can think of this as
constructing a new feasible solution in which x1 has turned into a basic variable,
and s3 into a non-basic variable. In fact, this solution is also a basic feasible
solution—you can check that the columns of our constraint matrix corresponding
s1, s2 and x2 are linearly independent.

Before, we had all of our basic variables on the left side of the equations and all
of our non-basic variables on the right. Let’s rearrange them again, so this is true
for our new basic feasible solution. We start with the equation for the variable
that has become non-basic (namely, s3). Rearranging so that x1 is on the right
will give:

x1 = 2 + 2x2 − 2s3 .

We can use this equation to rewrite the other 2, and the value for z, by simply
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substituting its right hand side for x1 everywhere. Our first equation becomes:

s1 = 3− (2 + 2x2 − 2s3)− x2

= 1− 3x2 + 2s3

Our second equation becomes:

s2 = 2− 1

2
(2 + 2x2 − 2s3)− x2

= 1− 2x2 + s3

Finally, our equation for z becomes:

z = 4 (2 + 2x2 − 2s3) +
1

2
x2

= 8 +
17

2
x2 − 8s3

Altogether, we can now write our new system of equations as:

s1 = 1 − 3x2 + 2s3

s2 = 1 − 2x2 + s3

x1 = 2 + 2x2 − 2s3

z = 8 +
17

2
x2 − 8s3

(5.2)

Notice that if we set the value of our non-basic variables (now x2 and s3) to zero,
then z = 8 (as can easily be checked by the last equation). Thus, we have indeed
found a better solution. Now, let’s see if we can improve it again using the same
idea. If we increase the value of either s3 we will make z smaller, since it has a
negative coefficient in our expression for z. However, we see that x2 has a positive
coefficient, so increasing the value of x2 should make z larger.

As before, we keep the values of the other non-basic variables (here, s3) set to
zero, and see how much we can increase x2 until the values for x1, s1, or s2 become
negative. The first equation doesn’t give us any upper bound, since increasing x2

only increases the right side. The second equation gives us an upper bound of 1
3
,

and the last equation gives us an upper bound of 1
2
. Of these, 1

3
is the strictest

bound, corresponding to the second equation. So, we set the value of x2 to
1
3
, turn

s1 into a non-basic variable. As before, we can rewrite the equation for s1 get:

x2 =
1

3
− 1

3
s1 +

2

3
s3 .
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Substituting the right side of this for x2 in each of our other expressions as before,
and simplifying we arrive at:

x2 =
1

3
− 1

3
s1 +

2

3
s3

s2 =
1

3
+

2

3
s1 − 1

3
s3

x1 =
8

3
− 2

3
s1 − 2

3
s3

z =
65

6
− 17

6
s1 − 7

3
s3

(5.3)

Notice that if we set the values of s1 and s3 zero, then we get z = 65
6
, which is

again better than before. If we try to keep improving, we now see that increasing
any of our non-basic variables x2, s3 will make z worse. It seems that we are stuck.
Happily, this means that we have actually found the optimal solution for z.

Notice that we moved from (5.1) to (5.2) to (5.3) by simply rewriting equations.
Thus, each of these systems of equations have exactly the same set of solutions.
Moreover, the set of solutions to any of these systems of equations that also have
x1, . . . , s3 non-negative is exactly the same as the set of feasible solutions to (4.8).
The equation for z in each case gives us a valid expression for the objective in
terms of some of the variables—note we have more variables than equations, so
it should make sense that there must be several ways to express this last line.
In our last set of equations, we find that any solution of these equations with
non-negative values for x1, . . . , s3 must have z ≤ 65

6
. In other words, any feasible

solution of (4.8) has objective value at most 65
6
. It follows that our solution xT=

(8/3, 1/3, 0, 1/3, 0) (which actually attains the objective value 65
5
) is an optimal

solution to our problem.
Notice that at each step, we had a set of basic variables appearing on the

left side of our equations, and a set of non-basic variables appearing on the right
side of our equations. The operation that we performed in each step is called a
pivot. As part of each pivot, we turned one non-basic variable into a basic variable.
We call this the entering variable (since it enters the set of basic variables). We
also turned one basic variable into a non-basic variable. This is called the leaving
variable (since it leaves the set of basic variables).

5.2 The Simplex Algorithm in Tableau Form

The discussion in the previous section shows how tedious rewriting and keeping
track of equations can be. It ends up that we can write all of the necessary
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information for the simplex algorithm down in a concise form called a tableau.
Suppose we want to solve a program in standard equation form:

maximize cTx

subject to Ax = b

x ≥ 0

Our tableau will contain one row for each constraint, and an extra row for the
objective function. Each row has a column for each variable, and then at the end
we have a column for the the entries of A, the entries of c and the entries of b in
one large table with general form:

A b
c −z

For example, the tableau for (4.8) looks like this:

1 1 1 0 0 3
1
2

1 0 1 0 2
1
2

−1 0 0 1 1

4 1
2

0 0 0 0

You have probably used something similar called an “augmented matrix” to per-
form Gaussian elimination. Each constraint of the form a1x1+ · · ·+ anxn = b cor-
responds to one row of the tableau. In this row, we list only the values a1, . . . , an,
and then the value for b. We use a vertical line to keep our constants b separate
from the rest of the tableau. Additionally, we add an extra row corresponding to
the objective functionc1x1 + c2x2 + · · · + cnxn. We list the coefficients c1, . . . , cn
on this row, and separate it from the rest of the tableau by a line. The bottom
right corner will always contain the value −z, (that is minus the current objective
value). Each variable will correspond to a column of the tableau to the right of
the vertical line. How do we find the basic variables in our tableau? They are the
ones whose columns have exactly one entry that is 1 and all the rest 0’s. That is,
if we combine these columns in an appropriate order, we get an identity matrix.
In our previous example, we chose our slack variables s1, s2, s3 to be the first set
of basic variables. Here, we have the same thing: notice that columns 3,4, and
5 can be combined to form an identity matrix. This means that x1 and x2 will
be non-basic, and so we can see that our initial objective will have value z = 0
(remember, the slack variables do not contribute to the objective, which is why we
put 0 in the bottom left corner. In order to help keep track of our basic variables,
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let’s introduce an extra column on the left. In this column, we will list the basic
variable whose column has a 1 in that row. We also put a −z in the last row, to
remind us that the value on the right-hand side is the negated objective value of
the current solution. Finally, let’s label each main column in the tableau by the
corresponding variable in the program. Here is what we get:

x1 x2 s1 s2 s3

s1 1 1 1 0 0 3

s2
1
2

1 0 1 0 2

s3
1
2

−1 0 0 1 1

−z 4 1
2

0 0 0 0

The algorithm now works as follows: we pick the entry with the largest positive
coefficient in the last row of the tableau, and highlight its column, like so:

x1 x2 s1 s2 s3

s1 1 1 1 0 0 3

s2
1
2

1 0 1 0 2

s3
1
2

−1 0 0 1 1

−z 4 1
2

0 0 0 0

This tells us that x1 will be our entering variable for this pivot operation. To find
the leaving variable we go through the rows of the tableau (except for the last one
below the line) one by one and examine the entry in the highlighted column. If
this entry is positive, we divide the entry in the rightmost column (to the right of
the vertical line) by it and record the answer. We get:

x1 x2 s1 s2 s3

s1 1 1 1 0 0 3 3

s2
1
2

1 0 1 0 2 4

s3
1
2

−1 0 0 1 1 2

−z 4 1
2

0 0 0 0

71



5.2. The Simplex Algorithm in Tableau Form MTH5114 (Spring 2023)

Now, we highlight the row for which we recorded the smallest value, like so:

x1 x2 s1 s2 s3

s1 1 1 1 0 0 3 3

s2
1
2

1 0 1 0 2 4

s3
1
2

−1 0 0 1 1 2

−z 4 1
2

0 0 0 0

This tells us that s3 will be our leaving variable. We can now generate a new
tableau. Since s3 is leaving and x1 is entering, we will replace s3 by x1 in our
new tableau. Then, we perform a series of elementary row operations on our
existing tableau in order to transform the blue column into a column with a 1 in
the highlighted row and a zero everywhere else. Each such operation will either
multiplies a row by a constant or adds a constant multiple of a row to another
row.

If we multiply the third row by 2 we get:

x1 x2 s1 s2 s3

s1 1 1 1 0 0 3

s2
1
2

1 0 1 0 2

x1 1 −2 0 0 2 2

−z 4 1
2

0 0 0 0

Adding −1 times our new third row to the first row then gives:

x1 x2 s1 s2 s3

s1 0 3 1 0 −2 1

s2
1
2

1 0 1 0 2

x1 1 −2 0 0 2 2

−z 4 1
2

0 0 0 0

Adding −1
2
times our new third row to the second row then gives:

x1 x2 s1 s2 s3

s1 0 3 1 0 −2 1

s2 0 2 0 1 −1 1

x1 1 −2 0 0 2 2

−z 4 1
2

0 0 0 0
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Finally, adding −4 times our new third row to the last row (corresponding to the
objective), gives:

x1 x2 s1 s2 s3

s1 0 3 1 0 −2 1

s2 0 2 0 1 −1 1

x1 1 −2 0 0 2 2

−z 0 17
2

0 0 −8 −8

This is our next tableau. We can think of each row i in the middle part as an
equation:

ai,1x1 + ai,2x2 + ai,3s1 + ai,4s2 + ai,5s3 = bi ,

where coefficients ai,1, . . . , ai,5 are listed in the middle part, and the constant bi is
listed in right part. For example, the first row says that 3x2+ s1−2s3 = 1. Notice
that this is equivalent to the equation we got using the previous method! You can
check that in fact, the 3 equations corresponding to our tableau are exactly the
same as the second set of equations we got when using the equation form of the
simplex algorithm. The last row corresponds to an equation that says:

−z + c1x1 + c2x2 + · · ·+ cnxn = d,

where z represents our objective value, each cj is the entry in the jth column of
this row, and d is the entry in the lower right of the tableau. Notice that when we
rearrange, we get:

z = c1x1 + c2x2 + · · ·+ cnxn − d,

which is why the entry on the last row corresponds to the negated value of the
objective.

Now, let’s continue. The only positive row coefficient in the last row is in
column 2, so x2 will be our entering variable. For each row above the line, we
examine the entry in the highlighted column and, if this entry is positive, we
divide the entry in the right-most column by it. Then, we highlight the row for
which this gives the smallest value. We get:

x1 x2 s1 s2 s3

s1 0 3 1 0 −2 1 1
3

s2 0 2 0 1 −1 1 1
2

x1 1 −2 0 0 2 2

−z 0 17
2

0 0 −8 −8
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So, x2 is our entering variable and s1 is our leaving variable. We now use elementary
row operations to transform the highlighted column so that it has a 1 in the
highlighted row, and a 0 everywhere else. We get:

x1 x2 s1 s2 s3

x2 0 1 1
3

0 −2
3

1
3

s2 0 0 −2
3

1 1
3

1
3

x1 1 0 2
3

0 2
3

8
3

−z 0 0 −17
6

0 −7
3

−65
6

At this step, there is no positive entries in the bottom part of our tableau.
This means we have found an optimal solution. The solution sets each vari-
able on the left-most side of the tableau to the value on the right-most side of
the tableau, and sets all other variables to 0. Thus, as before, our solution is
xT= (8/3, 1/3, 0, 1/3, 0). We can ignore our slack variables to get the optimal so-
lution to the original linear program (4.7). This is the solution x1 = 8/3, x2 = 1/3.
The objective value of this solution is given by −1 times the lower-right corner of
the tableau. So, our optimal solution has objective value 65/6.

Hopefully the simplex algorithm is clear from the above example. However,
here is a long and precise general description of it (just in case):
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Algorithm 5.1 (Simplex Algorithm for Problems with a Feasible Origin). Suppose
we are given a linear program in standard inequality form, with n variables
and m constraints:

maximize cTx

subject to Ax ≤ b

x ≥ 0

This simplified version will only handle problems for which b ≥ 0 (we will see
how to handle general problems later).

1. Translate the program to standard equation form by introducing a new,
non-negative slack variable for each constraint. This will have the effect
of introducing m new variables and appending an m×m identity matrix
onto the right of A. Call the resulting m× (m+ n) matrix A′.

2. Form the initial tableau from A′, c, and b.

3. Repeatedly perform pivot operations, until the last row of the tableau
has no positive entry.

4. When the last row of the tableau has no positive entry, stop. You have
found an optimal solution. It sets each recorded variable on the far left
to the value on the far right, and all other variables to 0. The objective
value for this solution is given by −1 times the value in the bottom right
corner of the tableau.

All that remains is to discuss how to form the initial tableau and how to carry
out each pivot operation. We now give a general description of how to do both of
these tasks.

Forming an Initial Tableau

1. Write down the matrix A′ as the centre of the tableau. Draw lines to the
left, right, and below this matrix.

2. To the right, write the column vector b. We call this the right part of the
tableau.

3. Below, write the vector c. Add m zeros to the end of this vector (one for
each slack variable). We call this the bottom part of the tableau.

4. To the left, write down the initial basic variables. They should be the slack
variables, listed from top to bottom as xn+1, xn+2, . . . , xn+m. We call this
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the left part of the tableau.

5. Place a 0 in the bottom left corner, since the initial solution has objective
value 0.

Performing a Pivot Operation Suppose that we have a current tableau with
at least one positive entry in the bottom row. Then, the simplex algorithm requires
that we carry out a pivot operation to produce a new tableau. We do this as follows:

1. Find the largest positive entry in the bottom part of the tableau (if there is
a tie, choose the one furthest to the left). Circle or highlight the column of
the tableau containing this entry. The variable corresponding to this row is
the entering variable.

2. If all entries in the highlighted column are negative or zero, then stop. The
linear program is unbounded. Otherwise, for each positive entry a in the
highlighted column, divide each the entry in the right part of the tableau by
a and record this value to the side.

3. Find the row for which you recorded the smallest entry (if there is a tie,
choose the one closest to the top). Circle or highlight this row. The variable
name in the left part of the tableau for this row is the leaving variable.

4. Form a new tableau. First, copy the names of the basic variables from the
left part of your existing tableau to the left part of the new tableau, but
write down the name of the entering variable in place of the name of the
entering variable.

5. Multiply all entries the highlighted row of your existing tableau by a suitable
value so that the element in both the highlighted row and highlighted column
becomes 1. Copy the resulting row into the new tableau. Let’s call this new
row T .

6. For each other row R in your existing tableau, add to R a suitable multiple
of T so that the element in the highlighted column of R 0. Copy the resulting
row into your new tableau. Remember: you should include the value for
the right part of the tableau in all of your row operations and you should
also carry out this step for the row in the bottom part of the tableau!

Important: You should only be adding some multiple of the pivot row to each
other row. In particular, you should never combine two non-pivot rows! This
is a perfectly fine thing to do for Gaussian elimination but not for the simplex
algorithm.
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Example 5.1. Suppose we want to find an optimal solution of the following
linear program:

maximize 2x1 − x2 + 8x3

subject to 2x3 ≤ 1

2x1 − 4x2 + 6x3 ≤ 3

−x1 + 3x2 + 4x3 ≤ 2

x1, x2, x3 ≥ 0

Solution. We first reformulate our problem in standard inequality form, by in-
troducing a slack variable for each constraint. This gives us the following linear
program:

maximize 2x1 − x2 + 8x3

subject to 2x3 + s1 = 1

2x1 − 4x2 + 6x3 + s2 = 3

−x1 + 3x2 + 4x3 + s3 = 2

x1, x2, x3, s1, s2, s3 ≥ 0

We can write our constraints in matrix form as:

 0 0 2 1 0 0
2 −4 6 0 1 0
−1 3 4 0 0 1



x1

x2

x3

s1
s2
s3

 =

1
3
2



All the entries in our vector b (on the right of the =) are non-negative. Thus, we
can take the slack variables s1, s2, s3 corresponding to the last 3 columns of A as
our initial basic solution. We form our simplex tableau as shown on the right, and
compute the entering and leaving variables as shown on the left:

x1 x2 x3 s1 s2 s3

s1 0 0 2 1 0 0 1

s2 2 −4 6 0 1 0 3

s3 −1 3 4 0 0 1 2

2 −1 8 0 0 0 0

x1 x2 x3 s1 s2 s3

s1 0 0 2 1 0 0 1 1
2

s2 2 −4 6 0 1 0 3 1
2

s3 −1 3 4 0 0 1 2 1
2

−z 2 −1 8 0 0 0 0
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The remaining pivot steps are as follows (again, we show how the entering and
leaving variables are found on the right-hand side):

x1 x2 x3 s1 s2 s3

x3 0 0 1 1
2

0 0 1
2

s2 2 −4 0 −3 1 0 0

s3 −1 3 0 −2 0 1 0

2 −1 0 −4 0 0 −4

x1 x2 x3 s1 s2 s3

x3 0 0 1 1
2

0 0 1
2

s2 2 −4 0 −3 1 0 0 0

s3 −1 3 0 −2 0 1 0

−z 2 −1 0 −4 0 0 −4

x1 x2 x3 s1 s2 s3

x3 0 0 1 1
2

0 0 1
2

x1 1 −2 0 −3
2

1
2

0 0

s3 0 1 0 −7
2

1
2

1 0

−z 0 3 0 −1 −1 0 −4

x1 x2 x3 s1 s2 s3

x3 0 0 1 1
2

0 0 1
2

x1 1 −2 0 −3
2

1
2

0 0

s3 0 1 0 −7
2

1
2

1 0 0

−z 0 3 0 −1 −1 0 −4

x1 x2 x3 s1 s2 s3

x3 0 0 1 1
2

0 0 1
2

x1 1 0 0 −17
2

3
2

0 0

x2 0 1 0 −7
2

1
2

1 0

−z 0 0 0 19
2

−5
2

−3 −4

x1 x2 x3 s1 s2 s3

x3 0 0 1 1
2

0 0 1
2

1

x1 1 0 0 −17
2

3
2

2 0

x2 0 1 0 −7
2

1
2

1 0

−z 0 0 0 19
2

−5
2

−3 −4

x1 x2 x3 s1 s2 s3

s1 0 0 2 1 0 0 1

x1 1 0 17 0 3
2

2 17
2

x2 0 1 7 0 1
2

1 7
2

−z 0 0 −19 0 −5
2

−3 −27
2

So, our optimal solution is xT = (17/2, 7/2, 0, 1, 0, 0). In terms of our original
linear program, our solution sets x1 = 17/2, x2 = 7/2 and x3 = 0. This solution
has objective value 27/2.

Notice that in the last problem, we had several pivot steps in which we recorded
a 0 to the right when computing the leaving variable. When we finished pivoting
in these steps, the objective did not increase! These are called degenerate steps in
the simplex algorithm, and we will talk more about them later.
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5.3 Unbounded Linear Programs

Now, let’s talk about some things that might go wrong in our algorithm. We have
seen that if cj ≤ 0 for every entry in the bottom row, then there is no choice for
our entering variable and this means our solution must be optimal. What if there
is no way to choose our leaving variable?

Recall that once we have decided that our entering variable is xe, we choose the
leaving variable as follows: for each row i above the line in our tableau, if ai,e > 0,
we compute a bound bi/ai,e and write it to the right of the tableau. Then, we
choose a row with the smallest bound. The leaving variable is the variable that
we have labelled that row with on the left. If ai,e ≤ 0 for every row i, we get no
bounds at all and cannot choose a leaving variable! In this case, it ends up that
the linear program is unbounded. Let us prove that this must be the case.

Suppose that the simplex algorithm stops with no way to choose a leaving
variable it some step. We will show that in this case we can obtain a feasible
solution x′ with cTx′ at least k larger than our current feasible solution, for any
value k.

Since we chose xe is our entering variable we must have had ce > 0. Consider
any value k > 0, and set x′

e = k/ce. Note that we will have x′
e > 0 since ce > 0.

Then, as usual, set x′
j = 0 for every other non-basic variable j ̸= e. We set

the remaining basic variables according to the equations in our tableau. The ith
equation in our tableau will now be given by:

x′
i + ai,e

k

ce
= bi , (5.4)

since for every non-basic variable xj we still have x
′
j = 0, with the exception of xe,

which now has x′
e = k/ce. Let’s set the value of each basic variable xi so that its

corresponding equation is satisfied. Then, to show that we get a feasible solution,
we need only argue that x′

i ≥ 0 for every basic variable x′
i (note that our non-

basic variables are all set to zero by construction). As we saw before, the simplex
algorithm makes sure that always bi ≥ 0. We have just seen that xe ≥ 0 and since
we couldn’t compute a bound we must have had ai,e ≤ 0. Thus, ai,exe ≤ 0 and so
we will set:

x′
i = bi − ai,exe ≥ bi = xi . (5.5)

Here, the first equation came from rearranging (5.4), the inequality from the fact
that ai,exe ≤ 0 (as discussed above), and the final equation from the fact that
xi = bi in the solution represented by our initial tableau. Then, since x was
feasible, we must have x′

i ≥ xi ≥ 0 for every basic variable in our initial tableau.
Thus, the solution is indeed feasible.
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Let us now consider the objective value z′ corresponding to our new solution.
In the original simplex tableau, the objective function z satisfies the equation:

z = c1x1 + · · ·+ cnxn − d (5.6)

where d is the entry in the bottom-right corner. In the tableau for x, we had ci = 0
for all basic variables xi in this row, and for all non-basic variables xj, we have
xj = 0. Thus, the equation (5.6) simply reads: z = −d, and so the objective value
for x is −d. All of this remains true for x′, except that we have set x′

e = k/ce.
Thus, the equation for z′ will read:

z′ = ce
k

ce
− d

Note that ce
k
ce

= k, and so we now have z′ = −d + k = z + k. In summary, we
have shown how to construct a feasible solution with objective value k larger than
our current tableau’s basic feasible solution for any number k. It follows that our
linear program must be unbounded.
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Week 6

The Simplex Algorithm (II)

Last week, we introduced the simplex algorithm, which gave us a general tool for
solving linear programs that is more systematic than sketching (and scales easily
to more than 3 variables). There, we focused on presenting the main ideas of
the algorithm, first in terms of rewriting equations, and later in a concise tableau
format. This week, we first review the algorithm from a geometric perspective.

6.1 Geometry of the Simplex Algorithm

First, let’s return to our running example, which is the linear program:

maximize 4x1 +
1

2
x2

subject to x1 + x2 ≤ 3

1

2
x1 + x2 ≤ 2

1

2
x1 − x2 ≤ 1

x1, x2 ≥ 0
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We saw that after adding slack variables and carrying out the simplex algorithm,
we obtained the following sequence of tableaux:

x1 x2 s1 s2 s3

s1 1 1 1 0 0 3

s2
1
2

1 0 1 0 2

s3
1
2

−1 0 0 1 1

−z 4 1
2

0 0 0 0

x1 x2 s1 s2 s3

s1 0 3 1 0 −2 1

s2 0 2 0 1 −1 1

x1 1 −2 0 0 2 2

−z 0 17
2

0 0 −8 −8

x1 x2 s1 s2 s3

x2 0 1 1
3

0 −2
3

1
3

s2 0 0 −2
3

1 1
3

1
3

x1 1 0 2
3

0 2
3

8
3

−z 0 0 −17
6

0 −7
3

−65
6

Notice that the way we do our pivot operations ensures that for each basic variable,
the corresponding column of the tableau will have a 0 in every row except for one,
which has entry 1. This row is precisely the one we have labelled with that basic
variable. Thus, each row of our tableau represents an equation relating a single
basic variable to the non-basic variables. If B is the set of all indices of basic
variables (so that i ∈ B if and only if xi is basic) then for each i ∈ B, we will get
a single row of our tableau, given an equation of the general form:

xi +
∑
j ̸∈B

ai,jxj = bi , (6.1)

where ai,j is the entry in the jth column of the row labelled by xi and bi is the
entry on the right side of the tableau for this row. Also, the last line gives us an
expression for our objective function, formulated in terms of only the non-basic
variables :

z = −d+
∑
j ̸∈B

cjxj , (6.2)

82



6.1. Geometry of the Simplex Algorithm MTH5114 (Spring 2023)

where cj is the entry in the jth column of the bottom part of the tableau and d is
the value in the lower-right corner.

Just like before, when all non-basic variables are set to zero, these equations say
that xi = bi for each i ∈ B and z = d. Each pivot will increase a single non-basic
variable (corresponding to a column with cj > 0), keeping the other non-basic
variables set to zero. We adjust the current basic variables to keep the equations
satisfied. Notice that our right-hand side is always non-negative, so each solution
will be feasible.1 This is ensured by the way we do our pivots: the numbers that
we compute and write to the right of the tableau tell us how large the entering
variable can grow before some basic variable must be adjusted to a negative value.
When we pick the smallest such bound to choose the leaving variable, we ensure
sure that all basic variables stay non-negative. If you are performing simplex pivots
and find a negative number on the right-hand side, then you have made a mistake
somewhere!

If we look at the tableaux, we see that each gives us a solution (x1, x2) to our
original program. Remembering that any variables not listed on the left have value
zero, we obtain the sequence of solutions

(0, 0), (2, 0),

(
8

3
,
1

3

)
.

Each non-basic variables in one of our tableaux will correspond to a set of tight
constraints or restrictions:

• In our first tableau, we have x1 and x2 non-basic, so the restrictions x1 ≥ 0
and x2 ≥ 0 should be tight.

• In our second tableau, we have x2 and s3 non-basic, so the restriction x2 ≥ 0
and the constraint 1

2
x1 − x2 ≤ 1 corresponding to the slack variable s3 will

be tight.

• In our final tableau, we have s1 and s3 non-basic, so the constraints x1+x2 ≤
3 and 1

2
x1 − x2 ≤ 1 corresponding to these slack variables will be tight.

Plotting the points and tight constraints, we find the following sequence of pictures:

1In fact, it can be shown (but here we will take for granted) that the algorithm always gives us
a set of basic variables whose columns are linearly independent, so these will all be basic feasible
solutions.
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1
2
x1

− x2
=

1

x
1
+
x
2
=
3

1
2 x

1 +
x
2 =

2

x1

x2

1
2
x1

− x2
=

1

x
1
+
x
2
=
3

1
2 x

1 +
x
2 =

2

x1

x2

1
2
x1

− x2
=

1

x
1
+
x
2
=
3

1
2 x

1 +
x
2 =

2

x1

x2

We see that, indeed, all of the points are feasible solutions. Each pivot adjusts
the set of tight constraints defining the solution: we drop one tight constraint
(corresponding to the leaving variable) and replace it with another tight constraint
(corresponding to the entering variable). This has the effect of moving our solution
along some “edge” of the feasible region. Each such move will be along an edge that
increases the objective. Here, our objective points in the direction cT = (4, 1/2)
and we can see that we move along edges that increase our projection onto this
vector.

6.2 Finding an Initial Feasible Solution

So far, we have only applied the simplex algorithm to a problems of a very specific
type, where we could simply take all of our slack variables as basic variables to
construct the initial tableau. For this to work we needed 2 things to be true when
we rewrote our problem into standard equation form. First, every equation needed
to have a slack variable. Second, the right-hand side of all these equations had
to be non-negative. If the first condition did not hold, we would not obtain a
full set of m linearly independent columns from our slack variables. If the second
condition did not hold, our initial basic feasible solution would set a basic variable
to some negative value bi (if we set all non-basic variables to zero, as usual). We
now show how to handle both of these problems together. Along the way, we will
also see how to detect infeasible linear programs.

As usual, let’s adopt the convention that our slack variables are named s1, s2, . . ..
Of course, the simplex algorithm does not care whether a variable is a slack vari-
able or not, so this is just a naming convention to help us keep things clear when
thinking about it and doing calculations by hand. Let’s see an example of a (small)
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linear program that we cannot handle with our existing simplex algorithm:

maximize 10x1 + 15x2 + 8x3

subject to 8x1 + 6x2 + 12x3 ≤ 24

4x1 + 6x2 + 6x3 ≥ 6

6x1 + 4x2 + 8x3 = 12

x1, x2, x3 ≥ 0

Converting directly to standard equation form, we get:

maximize 10x1 + 15x2 + 8x3

subject to 8x1 + 6x2 + 12x3 + s1 = 24

−4x1 − 6x2 − 6x3 + s2 = −6

6x1 + 4x2 + 8x3 = 12

x1, x2, x3, s1, s2 ≥ 0

Here, we first flipped our ≥ inequality to be ≤ (multiplying both sides by -1)
then added slack variables to each inequality. Now, we have a linear program in
standard equation form. If we could just find an initial basi feasible solution, we
could apply the simplex algorithm. However, it’s not so clear how to do this. We
need to find a set of 3 variables, corresponding to linearly independent columns,
so that when we set all of our other variables to zero and solve we get a solution
that has no basic variable taking a negative value. Notice that this is probably
not that much easier than just solving the problem, unfortunately.

Before, we were just starting by taking each slack variable as a basic variable.
The system of equations was then easy to solve: each slack variable occurred in
exactly one equation, and so it’s value in the corresponding basic feasible solution
was equal to the right-hand side. Now, we cannot do this: the second equation
would set s2 = −6, which is not a feasible solution, and the third equation doesn’t
even have a slack variable! How should we find an initial basic feasible solution to
start the algorithm? The answer is that we can run the Simplex algorithm on a
slightly modified problem to find a feasible solution, then start our regular Simplex
algorithm from there.

In order to solve the above problem, we will (temporarily) introduce new ar-
tificial variables into the linear program. Our goal is that each equation should
have either a slack variable or an artificial variable that can be chosen to get a
initial basic feasible solution. This is already the case for the first equation, so
let’s leave it alone. We solve our problem with the second equation by subtracting
a non-negative artificial variable a1 from the right hand side. Then, if we select a1
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as a basic variable and leave all other variables in this equation non-basic, we will
get −a1 = −6 which is the same as setting a1 = 6. For the last equation, we don’t
have a slack variable so, again, let’s introduce a non-negative artificial variable a2.
Since the right-hand side is positive, we add a2 to the left hand side. Again, if all
the other variables in this equation are non-basic, we will get a2 = 12, which is a
feasible solution. Our final system of equations looks like:

8x1 + 6x2 + 12x3 + s1 = 24
−4x1 − 6x2 − 6x3 + s2 − a1 = −6
6x1 + 4x2 + 8x3 + a2 = 12

Now, it is relatively clear that we can select s1, a1, a2 as a valid basic feasible
solution. But obviously this is not going to model our original set of constraints!
If a2 > 0, then we will have:

6x1 + 4x2 + 8x3 < 12

but the original linear program asked for:

6x1 + 4x2 + 8x3 = 12 .

Similarly, if a1 > 0, then we will have:

−4x1 − 6x2 − 6x3 + s2 > −6 .

If we set s2 to 0 as well, we end up violating our constraint, since then:

−4x1 − 6x2 − 6x3 ≤ −6 .

Intuitively a1 and a2 now represent how much we violate each constraint they
appear in. If a1 and a2 were both set to 0, we would recover our original standard
equation form program. One way to do this is to make a1+a2 as small as possible:
since a1 and a2 are both restricted to be non-negative, we can have a1 + a2 = 0
if and only if both a1 = 0 and a2 = 0. We can formulate this goal as a linear
program:

minimize a1 + a2

subject to 8x1 + 6x2 + 12x3 + s1 = 24

−4x1 − 6x2 − 6x3 + s2 − a1 = −6

6x1 + 4x2 + 8x3 + a2 = 12

x1, x2, x3, s1, s2, a1, a2 ≥ 0
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We can rewrite this as a maximisation problem by simply negating the objective
as usual:

maximize − a1 − a2

subject to 8x1 + 6x2 + 12x3 + s1 = 24

−4x1 − 6x2 − 6x3 + s2 − a1 = −6

6x1 + 4x2 + 8x3 + a2 = 12

x1, x2, x3, s1, s2, a1, a2 ≥ 0

Now, as we have seen, we can easily construct an initial basic feasible solution to
our set of constraints: for each equation with a positive right-hand side and a slack
variable, we take the slack variable as basic. For each other equation, we use the
artificial variable that we introduced. In tableau form, we get something like this:

x1 x2 x3 s1 s2 a1 a2

s1 8 6 12 1 0 0 0 24

a1 −4 −6 −6 0 1 −1 0 −6

a2 6 4 8 0 0 0 1 12

0 0 0 0 0 −1 −1 0

Notice that here our objective is to maximise −a1−a2. Let’s call this new objective
w to distinguish it from the original problem’s objective. It will be convenient to
carry along the original problem’s objective, as well, so let’s list it below the line,
too. We will write −w and −z to the left of our tableau to remind ourselves which
is which (this minus sign is to help us remember that the right-hand side is −1
times the current value of these objectives). We will ignore the row for z when
choosing our pivot elements, but we will update it in each pivot step as usual
(that is, we will always update the z row so that its non-zero coefficients are all
non-basic variables). Let’s also add a row at the top of the tableau to remind us
of which column goes with which variable. Altogether we get:

x1 x2 x3 s1 s2 a1 a2

s1 8 6 12 1 0 0 0 24

a1 −4 −6 −6 0 1 −1 0 −6

a2 6 4 8 0 0 0 1 12

−w 0 0 0 0 0 −1 −1 0

−z 10 15 8 0 0 0 0 0
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We are not quite ready to start yet. We need to make sure that the objective
function w is written only in terms of non-basic variables, and we want each
column corresponding to a basic variable to have an entry of 1 for that variable
an 0 for all other variables. Both our easy to solve. First, we simply multiply the
row for a1 by −1:

x1 x2 x3 s1 s2 a1 a2

s1 8 6 12 1 0 0 0 24

a1 4 6 6 0 −1 1 0 6

a2 6 4 8 0 0 0 1 12

−w 0 0 0 0 0 −1 −1 0

−z 10 15 8 0 0 0 0 0

Then, we add the row for a1 and the row from a2 from the row for −w to zero out
its entries for a1 and a2:

x1 x2 x3 s1 s2 a1 a2

s1 8 6 12 1 0 0 0 24

a1 4 6 6 0 −1 1 0 6

a2 6 4 8 0 0 0 1 12

−w 10 10 14 0 −1 0 0 18

−z 10 15 8 0 0 0 0 0

Now, we are all set up for the simplex algorithm. Remember: we are now trying
to maximise w, so we will choose our entering variables by looking in its row. The
largest positive coefficient in this row is 14, so x3 will enter. We get bounds of 2,
1 and 3/2 for our tableau rows. The second row’s bound is smallest, so a1 is the
leaving variable. We carry out the pivot and get:

x1 x2 x3 s1 s2 a1 a2

s1 0 −6 0 1 2 −2 0 12

x3
2
3

1 1 0 −1
6

1
6

0 1

a2
2
3

−4 0 0 4
3

−4
3

1 4

−w 2
3

−4 0 0 4
3

−7
3

0 4

−z 14
3

7 0 0 4
3

−4
3

0 −8
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Now, we have column 5 as the pivot column, since 4/3 is the largest value in our
row for w. Thus, s2 is the entering variable. We get a bound of 6 for the first row,
no bound for the second row, and 3 for the third row. So, our third row is our
pivot row and our entering variable is a2. Carrying out the pivot gives us:

x1 x2 x3 s1 s2 a1 a2

s1 −1 0 0 1 0 0 −3
2

6

x3
3
4

1
2

1 0 0 0 1
8

3
2

s2
1
2

−3 0 0 1 −1 3
4

3

−w 0 0 0 0 0 −1 −1 0

−z 4 11 0 0 0 0 −1 −12

At this point, we see that there is no choice for entering variable, so we are at an
optimal solution. The value of −w = 0, and so this solution must set all artificial
variables to zero. Indeed, we find that all artificial variables are non-basic. The
values of other variables now give a feasible solution to our problem. We now start
another phase of the simplex algorithm starting from this solution. In this phase
we will keep a1 and a2 fixed to zero. The easiest way to do this is to just drop the
row for −w and the columns for a1 and a2 from the tableau. Our first tableau for
the second phase of simplex is:

x1 x2 x3 s1 s2

s1 −1 0 0 1 0 6

x3
3
4

1
2

1 0 0 3
2

s2
1
2

−3 0 0 1 3

−z 4 11 0 0 0 −12

Now, we proceed as usual, using our −z row to find pivots. In the next step, we
will have x2 entering and x3 leaving. The pivot gives:

x1 x2 x3 s1 s2

s1 −1 0 0 1 0 6

x2
3
2

1 2 0 0 3

s2 5 0 6 0 1 12

−z −25
2

0 −22 0 0 −45

Now, we are finished. We have found an optimal solution of our original linear
program corresponding to x1 = 0, x2 = 3, x3 = 0. The value of this solution is 45.
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6.3 The 2-Phase Simplex Algorithm

The algorithm we used in our example is called the 2-phase simplex algorithm. As
we saw, it works in 2 phases: the first phase introduces artificial variables to find an
“obvious” initial basic feasible solution. Then, it executes the simplex algorithm,
to try and maximise an artificial objective function that is equal to −1 times the
sum of all these artificial variables. If it finds a solution of value 0, then all these
artificial variables must be 0 and we have found a solution to our original program.
We drop all the artificial variables and then continue from this solution with the
simplex algorithm, this time maximising our original objective function. If the first
phase terminates at a solution with value less than zero, the linear program must
be infeasible. We know that when the simplex algorithm terminates, it has found
an optimal solution and if our original linear program has any feasible solution, we
could simply use the values of the variables in this solution to construct a feasible
solution of our extended program, by setting all of artificial variables set to zero.
This would give us a feasible solution with artificial objective value 0. Thus, the
only way the first phase can terminate with an optimal, artificial objective less
than 0, is if there is no feasible solution at all. What if our initial phase gives us
an unbounded program? This cannot happen, since we are maximising −1 times
the sum of a set of non-negative variables. Thus, our artificial objective function
will always be less than 0, so our phase 1 program is trivially bounded.

The general algorithm is shown on the next page.
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Algorithm 6.1 (2-Phase Simplex Algorithm). Given any linear program, the
2-phase simplex algorithm works as follows:

1. Rewrite the linear program into standard equation form, introducing
slack variables, just as in the standard simplex algorithm.

2. For each equation in your program, check to see if: (1) it has a slack
variable and (2) its right-hand side is non-negative. If either of these
conditions fail, we introduce a new, non-negative, artificial variable for
this equation. We add it to the left-hand side with a sign equal to the
sign of the right-hand side (i.e. if the right-hand side is negative, its
coefficient is −1, otherwise its coefficient is 1).

3. We form an initial basic feasible solution as follows: for each equation
with an artificial variable, choose that artificial variable to be basic.
Each equation without an artificial variable should have a slack variable
that we can choose to be basic.

4. We now construct our tableau, using these variables as our basic vari-
ables. Below the line, we write 2 objective functions: first, we write a
row for our phase 1 objective w. This is −1 in all columns correspond-
ing to artificial variables, and 0 everywhere else. Below this we copy the
value of the objective z, just as in the standard simplex algorithm.

5. Now, we need to clean up our tableau. If any artificial variable has a
−1 entry in its corresponding row and column, we multiply its row by
−1. After doing this, we add each artificial variable’s row to the row for
w. This should result in w being non-zero only for non-basic variables.

6. We now proceed as in the standard simplex algorithm, but use our w
row as the objective when choosing our entering variables.

7. If, when the algorithm terminates, the final tableau gives w > 0, then
the original linear program is infeasible—stop.

8. Otherwise, we must have all artificial variables set to zero. If any arti-
ficial variable is currently basic, we have a degenerate solution setting
this variable to zero and we need to perform an extra step, which we
will describe separately. At the end we have a tableau with all artificial
variables non-basic.

9. Delete the columns for all artificial variables and the row for w from the
tableau.

10. Continue with the standard simplex algorithm from the current tableau,
using the z to find the entering variables.
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As we have noted, if the first phase of simplex gives us a solution with objective
value w = 0, then all artificial variables must be set to zero and so our non-
artificial variables will satisfy our problem’s constraints. In step 8, we drop all
artificial variables from the tableau. This is effectively prevents them from ever
becoming basic again, and so is like insisting that they stay set to zero for the rest
of the algorithm.

6.3.1 Driving Artificial Variables Out of the Basis (non-
examinable)

One small difficulty is that if we have a degenerate solution, some artificial variable
may be set to zero but still be basic. In this case, we cannot directly continue to
phase 2, but first need to carry out a special step to drive these artificial variables
out of the basis. Note: This won’t happen on any examples in your coursework
or the examination, so this procedure is only here for the sake of completeness.

Let’s now describe how this is done:

Algorithm 6.2 (Driving Artificial Variables Out of the Basis). Suppose that at
the end of phase 1 of the 2-phase simplex algorithm, we have a tableau with
an artificial variable ai that is basic. We drive this variable out of the basis
as follows:

1. Look at the row for the basic artificial variable ai and find the first
non-zero entry in this row that corresponds to a non-artificial variable.

2. Perform a pivot operation on this column, treating this non-artificial
variable as the entering variable and ai as the leaving variable. As
usual, we update the right-hand side and the equation for z as part of
this pivot. Afterwards, ai will be non-basic.

By repeating the above procedure for each artificial variable that is basic, we can
arrive at a tableau that has all artificial variables non-basic. We can then easily
get rid of the artificial variables as described in step 8 of the 2-phase simplex
algorithm.

You may be wondering why it is okay to perform these pivots to drive out
artificial variables. Note that we do not check to make sure the non-artificial
variable has a positive value in our row for z. Performing row operations will
preserve the validity of all of our equations, but this step might decrease our
objective or make our solution infeasible by changing some other basic variable’s
value. Luckily, neither of these things can happen. Indeed, remember that in this
case our artificial variable must be set to 0 at the current solution, which means
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that the right-hand side of its row in the tableau is 0. This means that when we
carry out row operations, we will not alter the current value of any other basic
variable or the current value of the objective function (since we will just add some
multiple of 0 to the right hand side of each row).

We’ll return to the topic of degeneracy briefly in the next lecture. For now,
let’s see an example of how we can drive out artificial variables.

Example 6.1. Solve the following linear program:

maximize 4x1 + 3x2

subject to 3x1 + 6x2 = 6

2x1 − 2x2 ≥ 4

Solution. After converting to standard equation form, and adding slack variables,
our constraints look like:

3x1 + 6x2 = 6
−2x1 + 2x2 + s1 = −4

We don’t have any slack variable in the first equation, and our second equation has
a negative right-hand side, so we need to add artificial variables to both. Following
the rules for adding them, we get:

3x1 + 6x2 + a1 = 6
−2x1 + 2x2 + s1 − a2 = −4

We then write down our initial tableau and carry out the steps to make it valid.
Our first valid tableau is:

x1 x2 s1 a1 a2

a1 3 6 0 1 0 6

a2 2 −2 −1 0 1 4

−w 5 4 −1 0 0 10

−z 4 3 0 0 0 0
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After our first pivot, we get:

x1 x2 s1 a1 a2

x1 1 2 0 1
3

0 2

a2 0 −6 −1 −2
3

1 0

−w 0 −6 −1 −5
3

0 0

−z 0 −5 0 −4
3

0 −8

This tableau represents an optimal solution to the first phase. The solution has
w = 0, so the program is feasible. However, we have an artificial variable (namely,
a2) that is basic. To fix this, we can find any other non-artificial variable with
a non-zero value in the row for a2. Let’s pick x2. We perform a pivot operation
treating x2 as the entering variable and a2 as the leaving variable. Notice that we
do not do our normal checks on the objective function or compute our bounds—we
just execute the pivot. We get:

x1 x2 s1 a1 a2

x1 1 0 −1
3

1
9

1
3

2

x2 0 1 1
6

1
9

−1
6

0

−w 0 0 0 −1 −1 0

−z 0 0 5
6

−7
9

−5
6

−8

Our objective value and the values of all variable stayed the same, as we expected.
Now, all artificial variables are non-basic, so we can drop their columns, as well as
the row for −w. Our starting tableau for the second phase will be:

x1 x2 s1

x1 1 0 −1
3

2

x2 0 1 1
6

0

−z 0 0 5
6

−8

We now run the simplex algorithm starting from this tableau. Our first pivot
(remember, now we use the z row) has s1 entering and x2 leaving. We get:

x1 x2 s1
x1 1 2 0 2
s1 0 6 1 0
−z 0 −5 0 −8
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Here, the second phase terminates since the z row has no positive entry. The
optimal solution of our original program sets x1 = 2 and x2 = 0.

6.4 Termination of the Simplex Algorithm

We have seen that the simplex algorithm is capable of identifying unbounded
programs, and that the first phase of the 2-phase simplex algorithm will identify
infeasible programs. We have also seen that if the algorithm terminates, the final
tableau represents an optimal solution. Here, we consider one last question: how
do we know that the algorithm always terminates? We have seen some examples
in the last lecture in which some pivots might not increase the objective function.
In these steps, the row for leaving variable must have a zero on the right side of the
tableau, since otherwise the row operations we performed on the last line would
change the bottom-right entry. This means that when we pivot on this row, the
entire right side of the tableau stays the same. In other words, we stay at exactly
the same solution. Let’s see an example of this happening to two dimensions to
get a better idea of what’s going on.

Consider the following linear program in 2 variables:

maximize x2

subject to −2x1 + x2 ≤ 1

−3

2
x1 + x2 ≤ 3

−x1 + x2 ≤ 5

−3

4
x1 + x2 ≤ 6

x1 ≤ 10

x2 ≤ 10

x1, x2 ≥ 0

(6.3)

When we convert to standard inequality form, we will add slack variables s1, . . . , s6.
Figure 6.1 shows a picture of the feasible region, where we have omitted the normal
vectors of each constraint to avoid clutter, and labelled each constraint by its slack
variable.

The simplex algorithm we have learned will generate the following sequence of
tableaux shown in Figure 6.2. The third and fourth pivot steps here are degenerate,
and we can see what that they have in common: our leaving variable was already
set to zero before we carried out the pivot. For example, in both the second, third,
and fourth tableaux, we had 2 basic variables set to zero. In general, if a basic
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s 1
s 2

s 3

s4

s5 s 6

x1

x2

Figure 6.1: Plot of the feasible region for program (6.3)

feasible solution sets a basic variable to zero, we call the solution degenerate. We
have seen that the zero variables correspond to tight constraints of our original
linear program, so it makes sense to expect the solutions corresponding to these
tableaux to have more than 2 tight constraints. Indeed, we should expect them to
have 4: 2 for the non-basic variables, and 2 for the 2 basic variables that are set to
zero. If we plot the solutions on our picture, highlighting the non-basic constraints
with red lines, we see the sequence if plots shown in Figure 6.3.
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x1 x2 s1 s2 s3 s4 s5 s6

s1 −2 1 1 0 0 0 0 0 1

s2 −3
2

1 0 1 0 0 0 0 3

s3 −1 1 0 0 1 0 0 0 5

s4 −3
4

1 0 0 0 1 0 0 6

s5 0 1 0 0 0 0 1 0 10

s6 1 0 0 0 0 0 0 1 10

−z 0 1 0 0 0 0 0 0 0

x1 x2 s1 s2 s3 s4 s5 s6

x2 0 1 −3 4 0 0 0 0 9

x1 1 0 −2 2 0 0 0 0 4

s3 0 0 1 −2 1 0 0 0 0

s4 0 0 3
2

−5
2

0 1 0 0 0

s5 0 0 3 −4 0 0 1 0 1

s6 0 0 2 −2 0 0 0 1 6

−z 0 0 3 −4 0 0 0 0 −9

x1 x2 s1 s2 s3 s4 s5 s6

x2 0 1 0 0 −3 4 0 0 9

x1 1 0 0 0 −4 4 0 0 4

s1 0 0 1 0 −5 4 0 0 0

s2 0 0 0 1 −3 2 0 0 0

s5 0 0 0 0 3 −4 1 0 1

s6 0 0 0 0 4 −4 0 1 6

−z 0 0 0 0 3 −4 0 0 −9

−→

↙

−→

↙

−→

x1 x2 s1 s2 s3 s4 s5 s6

x2 −2 1 1 0 0 0 0 0 1

s2
1
2

0 −1 1 0 0 0 0 2

s3 1 0 −1 0 1 0 0 0 4

s4
5
4

0 −1 0 0 1 0 0 5

s5 2 0 −1 0 0 0 1 0 9

s6 1 0 0 0 0 0 0 1 10

−z 2 0 −1 0 0 0 0 0 −1

x1 x2 s1 s2 s3 s4 s5 s6

x2 0 1 0 −2 3 0 0 0 9

x1 1 0 0 −2 2 0 0 0 4

s1 0 0 1 −2 1 0 0 0 0

s4 0 0 0 1
2

−3
2

1 0 0 0

s5 0 0 0 2 −3 0 1 0 1

s6 0 0 0 2 −2 0 0 1 6

−z 0 0 0 2 −3 0 0 0 −9

x1 x2 s1 s2 s3 s4 s5 s6

x2 0 1 0 0 0 0 1 0 10

x1 1 0 0 0 0 −4
3

4
3

0 16
3

s1 0 0 1 0 0 −8
3

5
3

0 5
3

s2 0 0 0 1 0 −2 1 0 1

s3 0 0 0 0 1 −4
3

1
3

0 1
3

s6 0 0 0 0 0 4
3

−4
3

1 14
3

−z 0 0 0 0 0 0 −1 0 −10

Figure 6.2: Tableaux generated for program (6.3)
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s 1
s 2

s 3

s4

s5 s 6
x1

x2

−→

s 2

s 3

s4

s5 s 6

s 1 x1

x2

↙

s 3

s4

s5 s 6

s 1
s 2

x1

x2

−→

s 1

s4

s5 s 6

s 2

s 3

x1

x2

↙

s5

s 1
s 2

s 6

s 3

s4

x1

x2

−→

s 1
s 2

s 3

s 6

s4

s5

x1

x2

Figure 6.3: Plots of steps for the simplex algorithm applied to problem (6.3)
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Indeed, in each of our degenerate feasible solutions (which correspond to the
point (4, 9)) we have 4 tight constraints but only 2 correspond to non-basic vari-
ables. Our degenerate pivots swap one of these constraints for another and so does
not change the solution or the objective, but only changes which of the constraints
we currently consider as a non-basic variable. Eventually, we make progress, but is
this always the case? Consider the following initial tableau and sequence of pivots.

x1 x2 x3 x4 x5 x6 x7

x5 0.5 −5.5 −2.5 9 1 0 0 0
x6 0.5 −1.5 −0.5 1 0 1 0 0
x7 1 0 0 0 0 0 1 1
−z 10 −57 −9 −24 0 0 0 0

x1 x2 x3 x4 x5 x6 x7

x1 1 −11 −5 18 2 0 0 0
x6 0 4 2 −8 −1 1 0 0
x7 0 11 5 −18 −2 0 1 1
−z 0 53 41 −204 −20 0 0 0

x1 x2 x3 x4 x5 x6 x7

x1 1 0 0.5 −4 −0.75 2.75 0 0
x2 0 1 0.5 −2 −0.25 0.25 0 0
x7 0 0 −0.5 4 0.75 −2.75 1 1
−z 0 0 14.5 −98 −6.75 −13.25 0 0

x1 x2 x3 x4 x5 x6 x7

x3 2 0 1 −8 −1.5 5.5 0 0
x2 −1 1 0 2 0.5 −2.5 0 0
x7 1 0 0 0 0 0 1 1
−z −29 0 0 18 15 −93 0 0

x1 x2 x3 x4 x5 x6 x7

x3 −2 4 1 0 0.5 −4.5 0 0
x4 −0.5 0.5 0 1 0.25 −1.25 0 0
x7 1 0 0 0 0 0 1 1
−z −20 −9 0 0 10.5 −70.5 0 0
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x1 x2 x3 x4 x5 x6 x7

x5 −4 8 2 0 1 −9 0 0
x4 0.5 −1.5 −0.5 1 0 1 0 0
x7 1 0 0 0 0 0 1 1
−z 22 −93 −21 0 0 24 0 0

x1 x2 x3 x4 x5 x6 x7

x5 0.5 −5.5 −2.5 9 1 0 0 0
x6 0.5 −1.5 −0.5 1 0 1 0 0
x7 1 0 0 0 0 0 1 1
−z 10 −57 −9 −24 0 0 0 0

Notice that this sequence ends with the same tableau we started with. This is bad,
because it means the simplex algorithm will run forever, carrying out the same
sequence of pivots again and again! We call this phenomenon cycling, since the
algorithm cycles back to where it started. One can argue that in practice such
problems are unlikely to occur. Nevertheless, it will be useful in later proofs to
show that the simplex algorithm always finds an optimal tableau for any problem
that is not infeasible or unbounded. To argue this, we need to make sure our
algorithm always eventually reaches this tableau!

6.5 Alternative Pivot Rules (non-examinable)

One way of handling this problem is to change the rule we use to find entering and
leaving variables in each round. We have been selecting our entering variable by
choosing the largest positive coefficient in the last row of the tableau. In principle,
however, choosing any positive coefficient would be okay—as we saw in the equa-
tion form of the simplex algorithm, as long as a variable has a positive coefficient,
increasing it should increase the objective.

Suppose we have fixed an ordering of all of our variables. If all of our variables
are named xi, we can just order them naturally in increasing order of i. For
simplicity let’s suppose that this is the case. The following pivot rule uses this
ordering to select which variable enters and which leaves. Note that we still do
not have any variable with a non-positive coefficient in the z row entering, and we
always select some variable with the smallest bound to leave. This ensures that
our algorithm remains correct.
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Definition 6.1 (Bland’s Rule). At each step of the simplex algorithm, Bland’s
Rule examines all of the variables xi whose entry in the z row is positive, and
selects from these the one with the smallest subscript i to be the entering vari-
able. It then computes a bound for each row as usual, and if several rows have
the same smallest bound, it selects from these the one whose corresponding
basic variable xi has the smallest subscript i and sets this xi to be the leaving
variable.

You can think about Bland’s Rule as simply being a form of tie breaking. If
several variables all have positive entry in the z row, it chooses the one with the
smallest subscript, instead of choosing the one with the largest entry. Similarly,
if several variables could be the leaving variable, it breaks the tie by choosing the
one with the smallest subscript. One can show the following:

Theorem 6.1. If Bland’s Rule is used to select the entering and leaving vari-
ables in each pivot operation of the simplex algorithm, then the algorithm will
never cycle.

Proof. This Proof is Optional and Non-Examinable. Suppose (for the sake
of contradiction) that the simplex algorithm using Bland’s pivoting rule performs
a set of degenerate pivots, producing a sequence of tableaux T0, T1, . . . , Tk, T0 that
returns to where it started. Let F denote the set of variables that are entering or
leaving variables in one of these degenerate steps. Note that every variable that
leaves must also enter at some point (and vice versa) since we must somehow end
up back where we started. Let xt be the variable of F that has the largest subscript.
There must be some pivot where xt is the leaving variable and some other variable
(let’s call it xs) is the entering variable. Call the tableau immediately before this
pivot T and let B be the set of indices of the basic variables in T (that is, xj is
basic in T if and only if j ∈ B). Then, we must have the rightmost value bj = 0
for every j ∈ F .

For each i ∈ B, the tableau T gives us an equation:

xi +
∑
j ̸∈B

aijxj = bj (6.4)

Also, we have an equation for z, reading:

z =
∑
j ̸∈B

cjxj + d (6.5)

where the values in the bottom row are ci and the bottom right corner of the
tableau is −d. Note that since xs was the entering variable, we must have cs > 0,
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and also ast > 0. Also, since xt was chosen to have the largest index in F , we must
be s < t.

Let’s construct a solution satisfying our equations (6.4) as follows (note that
the solution we construct will not necessarily be feasible! All that we will require
is that it satisfies the equations (6.4)). First, set xs = θ for any constant θ. For
all other j ̸∈ B, we set xj = 0. Finally, for all i ∈ B, we set xi = bi − aisθ. Then,
for every i ∈ B, the right-hand side of (6.4):

xi +
∑
j ̸∈B

aijxj = (bi − aisθ) + aisθ = bi

as required. For this solution, our equation for z gives us:

z =
∑
j ̸∈B

cjxj + d = csθ + d .

Somewhere else in our “cycle” of tableaux xt must be the entering variable. Call
the tableau right before this pivot T ′. Then, if we set c′j T

′ also gives us an equation
for z. Let’s write it as:

z =
∑
j

c′jxj + d (6.6)

Here, we have simply sum over all the variables, setting c′j = 0 for any j that is not
basic in T ′. Notice that since all of the pivots in our cycle are degenerate, we must
have the values of d and z the same throughout. Our pivots simply rearrange the
equations in our tableau, and so any solution of (6.4) and (6.5) will also satisfy
(6.8). Plugging our previously constructed solution into (6.6), we get:

z =
∑
j

c′jxj + d = c′sθ +
∑
i∈B

c′i(bi − aisθ) , (6.7)

since the only non-zero variables are xs and the variables xj for j ∈ B. Since both
(6.7) and (6.5) are valid, we must have:

csθ + d = c′sθ +
∑
i∈B

c′i(bi − aisθ) ,

which we rearrange as: (
cs − c′s +

∑
i∈B

c′iais

)
θ =

∑
i∈B

c′ibi .

This holds regardless of how we choose θ. So, for every possible choice of θ, the
right-hand side must equal the left-hand side, which is a constant independent of
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θ. This can happen only if:(
cs − c′s +

∑
i∈B

c′iais

)
= 0 . (6.8)

But, we have cs > 0, since s entered in the pivot for tableau T . Now, s < t but t
is entering in pivot for tableau T ′. Since Bland’s rule chooses the eligible variable
with the smallest index, it must be the case that xs was not eligible in this pivot,
and so cs′ ≤ 0. But, this means that cs− c′s > 0. Thus, (6.8) implies that we must
have

∑
i∈B c′iais < 0, and so c′iais < 0 for some i ∈ B.

Let r ∈ B be one such index with c′rars < 0. Now, since r ∈ B, xr is basic in
tableau T . But, if c′rars < 0, then c′r ̸= 0, so r must be non-basic in tableau T ′. In
other words, r ∈ F (the set of variables that change between basic and non-basic
in our cycle) and since t the largest index of any variable in F , we have r ≤ t.
We now show that in fact r < t. Indeed, as we have already noted, ait > 0, since
t is the leaving variable in the pivot from tableau T , and, since t is the entering
variable in the pivot from tableau T ′, c′t > 0. But, r has c′rars < 0. Thus, r ̸= t.

Now, r < t and xr and xt are both non-basic in tableau T ′, but t is the entering
variable in the pivot from this tableau. Again, if r were eligible to enter in this
pivot, Bland’s rule would have selected it instead of t, so we must have c′r ≤ 0.
Since c′rars < 0, this implies that ars > 0. Also, since r ∈ F , we have br = 0. But
this means that we must have recorded a 0 for row r when selected the leaving
variable from tableau T . Since r < t, we should thus have selected r as the leaving
variable in T rather than t—a contradiction.

In practice, many linear programming solvers just ignore the problem of de-
generacy, for the following reasons. First, using Bland’s Rule doesn’t give us any
choice for entering and leaving variables, and some other methods have been shown
to usually increase the objective faster. Second, if we look at our picture of de-
generacy, we find that it requires several lines to intersect in a single point. When
we implement simplex on a computer, we use floating-point numbers, which are
decimals with only a fixed amount of precision. This introduces small errors into
the arithmetic because we always need to round off all but the first few decimals to
store our numbers. The effect of these errors is another potential cause for worry
(which we will not consider here), but a happy side-effect is that they mean it is
unlikely that several equations go through exactly the same point, because this
requires that all of their coefficients be exactly correct.
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Week 7

Duality (I)

Now we turn to our next major topic, which is duality. We begin with a small
motivating example. Consider the following linear program:

maximize 2x1 + 3x2 + x3

subject to x1 + x2 + x3 ≤ 10
1
2
x1 + x2 ≤ 8

x1 + x2 − x3 ≤ 4

x1, x2, x3 ≥ 0

Suppose that we wanted to estimate how large the optimal solution’s objective
value was. We could get the exact answer by running the simplex algorithm, but
we could get a quick upper-bound by examining the constraints. For example, the
first constraint says that x1 + x2 + x3 ≤ 10. If we multiply both sides by 3, we get
an equivalent inequality 3x1 + 3x2 + 3x3 ≤ 30, which any feasible solution to our
program must satisfy. Then, since x1, x2, x3 ≥ 0, we have:

2x1 + 3x2 + x3 ≤ 3x1 + 3x2 + 3x3 ≤ 30 , (7.1)

and so we know that no feasible solution to our program has objective value more
than 30. We can do better than this, though. Suppose we multiply the second
inequality by 2 and add it to the first inequality. Then, we get:

2x1 + 3x2 + x3 ≤ (x1 + x2 + x3) + 2

(
1

2
x1 + x2

)
≤ 10 + 2 · 8 = 26 . (7.2)
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Alternatively, we could multiply the first inequality by 2 and add it to the second
to get:

2x1 + 3x2 + x3 ≤ 3x1 + 3x2 + x3 = 2(x1 + x2 + x3) + (x1 + x2 − x3)

≤ 2 · 10 + 4 = 24 . (7.3)

In order to compute each of the bounds (7.1)–(7.3), we multiplied our con-
straints by some constants and added them together. Our goal was to do this in
a way that made the right-hand side as small as possible. However, we needed
to make sure that the coefficient of each xi was at least as large as its coefficient
ci in the objective. This gave us the first inequality in each chain of inequalities
above. Also, we needed to make sure that the numbers we multiplied by were
non-negative, so that the inequalities in the constraints did not change direction.
This allowed us to apply the second inequality in each of the examples above.

In order to make this formal, suppose that we want to find an upper bound on
the objective for a linear program in standard inequality form:

maximize c1x1 + c2x2 + · · · cnxn

subject to a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≤ b2
...

...

am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm

xj ≥ 0 for each j = 1, . . . , n

(7.4)

Then, our problem becomes the following. We want to choose values y1, . . . , ym by
which to multiply each constraint. Our goal is to make the total right-hand side,
given by

b1y1 + b2y2 + · · ·+ bmym ,

as small as possible. The total coefficient of the variable xj in our resulting left-
hand side will be given by

a1,jy1 + a2,jy2 + · · ·+ am,jym .

As we discussed before, for each xj, we want to make sure that this is at least cj.
Also, we need to make sure that yi ≥ 0.
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It turns out we can formulate all of this as another linear program:

minimize b1y1 + b2y2 + · · · bmym

subject to a1,1y1 + a2,1y2 + · · ·+ am,1ym ≥ c1

a1,2y1 + a2,2y2 + · · ·+ am,2ym ≥ c2
...

...

a1,ny1 + a2,ny2 + · · ·+ am,nym ≥ cn

yi ≥ 0 for each i = 1, . . . ,m

(7.5)

We say that the program (7.5) is the dual of (7.4). In order to keep track of
which we are talking about, it is customary to refer to our original program (here,
(7.4)) as the primal program.

Notice that we can formulate both of these programs even more succinctly
using matrix notation. If our primal program has the form:

maximize cTx

subject to Ax ≤ b

x ≥ 0

with n variables and m constraints, then our dual program will always have the
form:

minimize bTy

subject to ATy ≥ c

y ≥ 0

with m variables and n constraints. Notice that each constraint of the primal
becomes a variable in the dual, and each variable of the primal becomes a constraint
in the dual. Note that the dual of a maximisation program will always be a
minimisation problem (and, it turns out, vice versa). It is relatively easy to see
from the above formulation that the dual of the dual program is again the primal
program. It follows that each primal has a unique dual, and that once you know
either the primal or the dual program, you can always figure out the other one.

In the above, we considered a linear program in standard inequality form. In
general, we will typically assume that one of our programs (usually the primal) has
maximisation as the goal, all inequalities of the form aTx ≤ b, and all variables
non-negative or unrestricted. Inequalities of the form aTx ≥ b and variables that
are non-positive can both easily be handled by changing signs in our program.
However, as we have seen, handling equations and unrestricted variables is slightly
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more tedious and increases the number of constraints and variables in our program.
It ends up that we can deal with both of these directly.

Intuitively, if our primal program has an equation, we can go through the same
sort of argument as above to find an upper bound on its objective. The key dif-
ference is that we can multiply an equation by either a positive or negative value
without changing its meaning. Thus, when we construct the dual of a linear pro-
gram, each equation constraint in the primal will become an unrestricted variable
in the dual. The reverse is true as well: suppose a program has an unrestricted
variable xi. Then when we construct our bound on the program’s objective, it’s
no longer enough to make sure that coefficient of xi that we get when adding
up the constraints is at least ci. This is because xi could be negative, and then
our resulting inequality would be the wrong way around. Instead, we must make
sure that the coefficient of xi is exactly the same as ci. That is, each unrestricted
variable in the primal will become an equation in the dual.

The following table shows the general relationship between objects in the primal
and the dual:

maximise ⇐⇒ minimise

non-negative variable xj ⇐⇒ ≥ constraint

unrestricted variable xj ⇐⇒ = constraint

objective cTx ⇐⇒ RHS c

LHS Ax ⇐⇒ LHS ATy

RHS b ⇐⇒ objective bTy

≤ constraint ⇐⇒ non-negative variable yi

= constraint ⇐⇒ unrestricted variable yi

Note that this table can be used in both directions, but we need to be careful that
our program is in an appropriate form. Consider now a general maximise program
with some inequalities, some equations, some non-negative variables, and some
unrestricted variables. We form the dual of this program as follows:

1. Make sure all inequalities are of the form aTx ≤ b and that all variables are
either unrestricted or non-negative. This can be done by multiplying (≥)
inequalities by −1 and introducing variables x̄ = −x for each non-positive
variable x.

2. Introduce a variable yi for each constraint. If the corresponding constraint is
an equation, then yi will be unrestricted. If the constraint is a (≤) constraint,
then we will have yi ≥ 0.

107



MTH5114 (Spring 2023)

3. Set the goal of the program to be minimise and construct the objective
function bTy by using the right-hand side (RHS) vector b for the primal
constraints. That is, in the dual objective, the coefficient of a variable yi is
just the left-hand side of the ith constraint in the primal.

4. Construct a constraint in the dual corresponding to each primal variable xi,
as follows:

(a) The left-hand side (LHS) of the constraint corresponding xi has the
form:

a1,iy1 + a2,iy2 + · · ·+ am,iym .

That is the coefficients for the dual variables in the ith dual constraint
are given by the ith column of the matrix A from the primal, which
gives the coefficients of xi in each of the m constraints in the primal.

(b) The right-hand side (RHS) of the constraint corresponding to xi is given
by the coefficient ci of xi in the primal.

(c) Finally, you need to decide if this constraint is an = or ≥ constraint.
If the primal variable xi is unrestricted, then this corresponding dual
constraint will be an = constraint. If the primal variable has xi ≥ 0,
then the corresponding dual constraint will be ≥.

If we want to take form the dual of a program of the form:

minimize bTy

subject to Ay ≥ c

y ≥ 0

we can proceed in almost the same fashion, except the correspondences in the
table above will go from right to left. Considering the above program now as the
primal, we get the following. The dual will be a maximisation program, with a
variable xi for each constraint of the above primal program. In the dual objective,
the coefficient of xi is given by the RHS of the corresponding, ith constraint of the
primal (that is, by ci). Each variable yj of the primal program will correspond to
a dual constraint that has LHS given by the jth column of A and has RHS given
by the corresponding entry bj. This constraint will be either ≤ or = depending
on whether yj ≥ 0 or yj unrestricted, respectively. Finally in the dual’s objective,
xi will have coefficient ci, given by the RHS of the corresponding ith constraint in
the primal program.
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Example 7.1. Give the dual of the following linear program:

maximize x1 + 2x2 + 3x3 + 4x4

subject to x1 − 3x3 + 9x4 ≤ 10

3x1 + x2 + 5x3 + 7x4 ≤ 5

x2 + 7x4 ≥ 13

7x1 + 11x2 + 9x3 − 7x4 = 25

x1 + x2 + x3 + x4 = 100

x1, x4 ≥ 0

x2, x3 unrestricted

Solution. Here, we have cT= (1, 2, 3, 4) and also after making sure all constraints
are in the right direction for maximisation (that is, either ≤ or =), we get:

A =


1 0 −3 9
3 1 5 7
0 −1 0 −7
7 11 9 −7
1 1 1 1

 b =


10
5

−13
25
100


So, we will have 5 dual variables y1, . . . , y5, one for each constraint of the primal
(that is, each row of A). Looking at the primal constraints, we see that we will
have y1, y2, y3 ≥ 0 and y4, y5 unrestricted, since the first 3 constraints are (≤)
constraints and the last 2 are (=) constraints.

Our dual objective function will be:

bTy = 10y1 + 5y2 − 13y3 + 25y4 + 100y5

Our constraints will have left-hand side ATy and right-hand side c. The first
and fourth constraints (corresponding to the columns from A for x1 and x4) will
be ≥ and the second and third (corresponding to the columns from A for x2 and
x3) will be =. Altogether, we get:

minimize 10y1 + 5y2 − 13y3 + 25y4 + 100y5

subject to y1 + 3y2 + 7y4 + y5 ≥ 1

y2 − y3 + 11y4 + y5 = 2

−3y1 + 5y2 + 9y4 + y5 = 3

9y1 + 7y2 − 7y3 − 7y4 + y5 ≥ 4

y1, y2, y3 ≥ 0

y4, y5 unrestricted
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7.1 The Weak and Strong Duality Theorems

Henceforth, we focus on primal linear programs in standard inequality form:

maximize cTx

subject to Ax ≤ b

x ≥ 0

(7.6)

Thus, our dual program will always have the form:

minimize bTy

subject to ATy ≥ c

y ≥ 0

(7.7)

For our dual program, we have that a feasible solution y∗ is optimal if and only
if bTy∗ ≤ bTy for every other feasible solution y. Note that the inequality is
reversed—since we are trying to minimise, the best solution should have objective
value as small as possible.

We introduced the dual of a linear program as a way to place an upper bound
on its optimal value. The following theorem formalises this idea, by showing that
every feasible solution to a program’s dual gives us an upper bound on the value
of any of this program’s feasible solutions.

Theorem 7.1 (Weak Duality Theorem for Linear Programs). Consider a linear
program in standard inequality form. Let x be any feasible solution to this
program and let y be any feasible solution to the dual of this program. Then:

cTx ≤ bTy .

That is, the objective value of x in the original program is at most the objective
value of y for the dual.

Proof. Consider a feasible solutions x of a program in the form (7.6), and y of the
associated dual in the form (7.7). Since y is feasible for the dual, we must have:

cj ≤
m∑
i=1

ai,jyi,
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for each j = 1, . . . , n. Since x is feasible for the primal, we must have xj ≥ 0 and
so multiplying both sides of the above inequality by xj gives:

cjxj ≤
m∑
i=1

ai,jxjyi (7.8)

Similarly, since x is feasible for the primal, we must have: s

n∑
j=1

ai,jxj ≤ bi

for each i = 1, . . . ,m. Since y is feasible for the dual, we must have yi ≥ 0 and so
multiplying both sides of the above inequality by yi gives:

n∑
j=1

ai,jxjyi ≤ biyi (7.9)

The rest is easy. We have:

cTx =
n∑

j=1

cjxj ≤
n∑

j=1

m∑
i=1

ai,jxjyi =
m∑
i=1

n∑
j=1

ai,jxjyi ≤
m∑
i=1

biyi = bTy

where the first inequality follows from applying (7.8) to each term of the summa-
tion, and the second follows from applying (7.9) to each term.

Weak duality says that the objective value of every feasible solution for a dual
program gives us an upper bound on the objective value of any feasible solution
for its associated primal program. In fact, we can say something much stronger,
which is that at an optimal solution, the dual and primal objectives are in fact
equal. This is called the Strong Duality Theorem and will be covered next week.
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Week 8

Duality (II)

Last week we proved the Weak Duality Theorem. Weak duality says that the
objective value of every feasible solution for a dual program gives us an upper
bound on the objective value of any feasible solution for its associated primal
program. In fact, we can say something much stronger, which is that at an optimal
solution, the dual and primal objectives are in fact equal. This is called the Strong
Duality Theorem and will be covered next week.

Theorem 8.1 (Strong Duality Theorem for Linear Programs). If a linear program
(in standard inequality form) has an optimal solution x∗ with objective value
z∗, then there is an optimal solution y∗ to its dual with objective value z∗.

Proof. Consider an optimal solution x∗ of the primal program. We will show how
to construct a feasible solution y∗ of the dual program whose dual objective value
satisfies bTy∗ = cTx∗. By weak duality we then must have that y∗ is optimal,
since every other feasible solution y of the dual must have yTb ≥ x∗Tc = y∗Tb.

Since the primal program has an optimal solution, we know that applying the
simplex algorithm to it will eventually give us a final tableau, in which the last
row has no positive entries. Suppose the −z row in our final tableau looks like:

−z p1 . . . pn q1 . . . qm −z∗ (8.1)

where the entries p1, . . . , pn correspond to our original (primal) linear program’s
variables, the entries q1, . . . , qm correspond to the slack variables we introduced
to bring the program into standard equation form, and z∗ = cTx∗ represents the
value of the optimal solution x∗ corresponding to this tableau. Note that since
this is the final tableau, we must have pj ≤ 0 and qi ≤ 0 for all j = 1, . . . , n and
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i = 1, . . . ,m. Initially, our tableau was simply1:

x1 · · · xn s1 · · · sm
s1 a1,1 · · · a1,n 1 · · · 0 b1
...

...
. . .

...
...

. . .
...

...
sm am,1 · · · am,n 0 · · · 1 bm
−z c1 · · · cn 0 · · · 0 0

Each pivot step of the simplex algorithm adds some multiple of one row to all of
the other rows and to the objective function. Thus, at the end, our final row will
be our initial row plus some constant times each initial row. How can we find out
exactly how much of each initial row got added to the objective row throughout
the algorithm? Initially this seems quite hopeless—for example, our first pivot
will add some amount of the pivot row to all of the other rows (including the last
row). In later steps, when one of the other rows is chosen as the pivot row, it
will therefore be equal to its initial value plus some amounts of all of our previous
pivot rows. Luckily, there is an easy way to figure out. As an example, let’s look
at the initial and final tableaux for our first example problem from Section 5.2. If
we label our columns so that we can identify our original variables and our slack
variables, we find the following initial and final tableaux:

x1 x2 s1 s2 s3

s1 1 1 1 0 0 3

s2
1
2

1 0 1 0 2

s3
1
2

−1 0 0 1 1

−z 4 1
2

0 0 0 0

x1 x2 s1 s2 s3

x2 0 1 1
3

0 −2
3

1
3

s1 0 0 −2
3

1 1
3

1
3

x1 1 0 2
3

0 2
3

8
3

−z 0 0 −17
6

0 −7
3

−65
6

Notice that each slack variable has an entry of 1 in exactly one row, and zero
in all of the others (including the row for −z) and that each row has exactly 1
slack variable with an entry 1. So, if we want to know the total amount of (for

1This is not strictly true for the 2-phase simplex method, but it ends up that the proof work
there, too. We’ll discuss this later. For now, let’s just focus on the standard simplex algorithm.
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example) the second row in the initial tableau that was added to the −z row, over
the entire algorithm, we can just look at the final entry in the column for its slack
variable! For example, you can check that the second row in the final tableau is
−2/3 times the first row of the initial tableau, plus 1 times the second row of the
initial tableau, plus 1/3 times the third row of the initial tableau. Thus, at any
time during the algorithm, the slack variables will tell us what combination of the
initial tableau’s rows a given row represents. Similarly, the final value of the −z
row, will be its initial value2 plus some combination of the rows from the initial
tableau. We can find this combination by looking at the slack variables. Here, we
see that the −z row of the final tableau should then be equal to its initial value,
plus −17

6
times the first row of the initial tableau, plus −7

3
times the third row of

the initial tableau. You can check that this is in fact the case, here.
We can use this trick in general. The −z row in our final tableau will be equal

to the −z row in the initial tableau plus q1 times the 1st row, q2 times the second,
and so on (where the qi are the entries for the slacks of the −z row, as shown in
(8.1)). Thus, for each j = 1, . . . , n, the jth entry in our final row must be:

pj = cj +
m∑
i=1

qiaij (8.2)

and, similarly the last entry must be given by:

−z∗ = 0 +
m∑
i=1

qibi (8.3)

Now, let’s define our dual solution by setting y∗i = −qi. Note that this makes
y∗i ≥ 0, as required, since each qi ≤ 0. Moreover, (8.2) is equivalent to:

cj = pj −
m∑
i=1

qiaij = pj +
m∑
i=1

y∗i bi ≤
m∑
i=1

y∗i bi

for each j = 1, . . . , n. The first equation is obtained by rewriting (8.2), the second
is just from our definition y∗i = −qi, and the last inequality follows from the fact
that pj ≤ 0 since it is an entry in the −z row of the final tableau. Note that
the inequalities we have obtained show exactly that y∗ satisfies all constraints of
the dual and so indeed y∗T = (−q1,−q2, . . . ,−qm) is a feasible solution to our

2Why do we need to explicitly remember this for the −z row, but not the others? The answer
is that the other rows had a slack variable initially set to 1, which captured the fact that there
was 1 times the initial value of this row in the resulting combination. However, the −z row does
not have its own slack variable, so we need to explicitly remember to add in the initial value.

114



MTH5114 (Spring 2023)

dual program. To complete the proof, we just need to compute the value of this
solution. It is exactly:

m∑
i=1

y∗i bi = −
m∑
i=1

qibi = −(−z∗) = z∗ ,

where we have used our definition of y∗ for the first equation and (8.3) for the
second.

Altogether, we have shown a general method that always finds a feasible dual
solution with objective value equal to that of the optimal primal solution.

In our proof we supposed that every row of the tableau had some slack variable.
Since we assumed our program was in standard inequality form, every row will have
a slack variable when we formulate the initial tableau. However, if the right-hand
side of any of our constraints is negative, we still must use the 2-phase simplex
algorithm to solve the problem. We briefly note that the above argument works in
that case, too, with only small modifications. Specifically, we consider the tableau
constructed at the end of step 4 of procedure (that is, the tableau we get before
fixing signs and adding each artificial row to the −w row). In this tableau, we
have introduced a slack variable with coefficient 1 to each inequality, together
with some artificial variables (for the rows with a negative right-hand side). Since
we are assuming that our linear program has an optimal solution, the first phase
must terminate with all artificial variables set to zero. We then carry over the −z
row to the tableau for the second phase. You can verify that at the end of the
second phase, the row for −z is indeed equal to its initial value at step 4 of the
2-phase algorithm plus some amount of the initial values of each row in step 4.
Indeed, each pivot operation in either phase will add some amount of the pivot
row to the −z row just as in our above argument. The only difference is that these
amounts will accumulate over both phases. Some of the rows will have multiplied
by −1 when we fix the tableau after step 4, but this makes no difference to our
argument: we don’t care whether a given row is added or subtracted at each step,
and so this sign change will already incorporated into the book-keeping for the
total “amount” of a row that we are taking. Just as before, then, the total amount
of an initial row that was added into the −z row (over both phases) will be given
by the value of that row’s slack variable at the end of phase 2.

We have proved the weak and strong duality theorem for linear programs. One
extremely useful consequence of the strong duality theorem is that we can now
easily show that a given solution to a linear program is optimal.

If we want to show that a solution is feasible, things are easy: we can just
plug in the values for our variables and check by hand that each of the program’s
equations and inequalities are true. On the other hand, to show that a solution
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is optimal, we need to show that its objective value is at least as large as that of
every other feasible solution. This is much more difficult, since we need to prove
a statement about all feasible solutions. However, the strong duality theorem lets
us check that a solution x is optimal for some primal linear program by simply
verifying that a single, given solution y to its dual is feasible. If x and y have
the same objective values in the primal and dual, respectively, we then know that
both of them must be optimal.

As an example, suppose that you wanted to convince your supervisor that
you had found the best possible solution to a production problem. You could
of course say that you had found it by applying the simplex algorithm and so it
must be optimal, but what if you made a mistake in some pivot operation? If you
used a computer, how could you be sure that the code for simplex did everything
correctly? For important problems, it is often necessary to double-check a solution
by hand. You could simply show your supervisor a solution to the dual of your
problem. It would then be easy for her to check that both solutions had the
same objective value and that your dual solution was feasible. The strong duality
theorem guarantees that you can always find some such dual solution to convince
her. This dual solution is sometimes called a certificate of optimality. We call
it a “certificate” because it is a succinct, easily verifiable proof that a solution is
optimal. The strong duality theorem shows that every linear program that has an
optimal solution also has a succinct certificate proving that this is optimal.

8.1 Complementary Slackness

How do we find a dual solution to serve as a certificate? Looking at the proof of
the strong duality theorem, we see that we can easily obtain it from the last row of
the tableau. What if you didn’t have the entire simplex tableau? In this lecture,
we will see another property that allows us to easily show that a given solution to
a linear program is optimal.
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Theorem 8.2 (Principle of Complementary Slackness). Suppose that x is a
feasible solution to a (primal) linear program in standard inequality form,
and let y be a feasible solution to its dual.

Then, x and y are optimal if and only if both of the following hold:

• For every j = 1, . . . , n, xj = 0 or
m∑
i=1

ai,jyi = cj.

• For every i = 1, . . . ,m, yi = 0 or
n∑

j=1

ai,jxj = bi.

Intuitively complementary slackness says that a pair of feasible solutions x and y
to a linear program and its dual are both optimal if and only if for every primal
variable xj that is not zero, the corresponding constraint of the dual is tight, and
for every variable yi that is not zero, the corresponding constraint of the primal is
tight. We now prove that this is the case.

Proof of the Principle Complementary Slackness for Linear Programs. The proof
follows by considering the inequalities we used in the proof of the weak duality
theorem. Let x and y be optimal basic feasible solutions to a pair of primal and
dual linear programs, respectively. Then, as discussed in the proof of weak duality
for linear programs, primal and dual feasibility imply the following inequalities:

cjxj ≤
m∑
i=1

ai,jxjyi for all j = 1, . . . , n (8.4)

n∑
j=1

ai,jxjyi ≤ biyi for all i = 1, . . . ,m (8.5)

In that proof we summed the first inequality over all values of j and the second
over all values of i, then combined them to get:

cTx =
n∑

j=1

cjxj ≤
n∑

j=1

m∑
i=1

ai,jxjyi =
m∑
i=1

n∑
j=1

ai,jxjyi ≤
m∑
i=1

biyi = bTy

Now, notice that if any of our inequalities of the form (8.4) and (8.5) is not tight
(that is, if it holds with <), then we will have cTx < bTy above. On the other
hand, if every inequality of the form (8.4) and (8.5) is tight (that is, if all of them
hold with equality), then both of the inequalities above will also be tight, and so
we will actually have cTx = bTy.
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It follows that cTx = bTy (and so x and y are optimal) if and only if every
inequality of the form (8.4) and (8.5) is tight. Rearranging both sets of inequalities,
we see that this is equivalent to

xj

(
cj −

m∑
i=1

ai,jyi

)
= 0 for all j = 1, . . . , n (8.6)

yi

(
bi −

n∑
j=1

ai,jxj

)
= 0 for all i = 1, . . . ,m (8.7)

Now, we simply observe that (8.6) holds if and only if xj = 0 or
∑

i=1 ai,jyi = cj
for every j = 1, . . . , n and (8.7) holds if and only if yi = 0 or

∑n
j=1 ai,jxj = bi fore

all i = 1, . . . ,m. Thus, we have shown that x and y are optimal if and only if the
complementary slackness conditions hold.

Using complementary slackness, we can derive an optimal feasible dual solution
from an optimal basic feasible solution x to a primal linear program. That is, we
can easily find our desired certificate of optimality. We do this as follows:

• First, we look at the values of the primal variables xj. If xj ̸= 0, then we
know that the jth constraint of the dual linear program must be tight.

• Next, we look at the primal constraints, and plug in the values of our variables
from x. If these values do not make the ith primal constraint tight, then the
ith dual variable yi must be 0.

• Altogether, we get a system of equations for our dual variables, which we
can solve to get values for y. If we can find one such solution y that satisfies
all of the dual constraints (that is, if our y is feasible) then x and y are both
optimal. If we can show that there is no such solution, then x is not optimal.

Let’s see an example of how this works.

Example 8.1. Consider the linear program:

maximize 2x1 − x2 + 8x3

subject to 2x3 ≤ 1

2x1 − 4x2 + 6x3 ≤ 3

−x1 + 3x2 + 4x3 ≤ 2

x1, x2, x3 ≥ 0

(8.8)

Show that x1 = 17/2, x2 = 7/2, x3 = 0 is an optimal solution to this program.
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Solution. It will be useful (but not strictly necessary) to rewrite our program to
standard equation form. We get:

maximize 2x1 − x2 + 8x3

subject to 2x3 + s1 = 1

2x1 − 4x2 + 6x3 + s2 = 3

−x1 + 3x2 + 4x3 + s3 = 2

x1, x2, x3, s1, s2, s3 ≥ 0

(8.9)

Now, we can plug in the values for x that we were given, and find what values
the slack variables must take in the program above. We find that when x1, x2, x3

are set as in the example, we must have s1 = 1, s2 = 0, s3 = 0. This tells
us, first of all, that the given x is feasible—indeed, since all of the slack variables
for (8.9) are non-negative, we satisfy all of the inequality constraints of our original
program (8.8). It also lets us see right away which constraints of (8.8) are tight
and which are not—the first constraint is not tight, since s1 > 0, but the second
and third constraints are tight, since s2 = s3 = 0. Now, we can apply the principle
of complementary slackness to show that x is an optimal solution for (8.8).

First, we note that x1 and x2 are both non-zero, so our dual constraints corre-
sponding to x1 and x2 must be tight. That is, we must have:

2y2 − y3 = 2

−4y2 + 3y3 = −1.

Next, since the first constraint of (8.8) is not tight, its corresponding dual variable
must be equal to 0. That is, we must have:

y1 = 0.

Altogether, we get the following system of equations:

2y2 − y3 = 2

−4y2 + 3y3 = −1

y1 = 0

This has a unique solution setting y1 = 0, y2 = 5
2
, y3 = 3. Now, we only need to

check that this is a feasible solution of our program’s dual. First, we check that all
the y variables are non-negative. Next, we check that our constraints are satisfied.
We already know that the first and second constraints are satisfied, because we
chose our values to satisfy the equations corresponding to these constraints being
tight. The only remaining constraint to check is:

2y1 + 6y2 + 4y3 ≥ 8
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Since 2 · 0 + 6 · 5
2
+ 4 · 3 = 27 ≥ 8, this constraint holds. Thus, our solution y is

indeed a feasible solution to the dual. We constructed y to make sure that x and
y satisfied the complementary slackness conditions, so it follows that x and y are
optimal for our primal and dual programs, respectively.

This same example program was solved with the simplex algorithm in Example 5.1.
Notice that, as we discussed in our proof of strong duality, the values y1,y2, and y3
correspond exactly to what we get if we negate the entries for our slack variables
in the final simplex tableau there. However, here we were able to derive these just
by looking at the program and the primal solution.

The above method will always give us a system of equations for the dual vari-
ables yi. Here, we got 3 equations for 3 variables and found a unique solution. You
may be wondering whether this is always the case. The answer is “yes,” whenever
the solution x is a non-degenerate basic feasible solution of the related program in
standard equation form.

Formally, suppose we take a program in standard inequality form with n vari-
ables and m constraints and (as usual) introduce m slack variables to produce
an equivalent program in standard equation form. For any setting of the original
program’s variables x1, . . . , xn, the value of each slack variable is uniquely deter-
mined: it is equal to the right-hand side its corresponding inequality constraint
minus the left-hand side. We can thus take the solution of our standard inequality
form linear program and get a corresponding, unique solution to the equivalent
standard equation form program. If x is a non-degenerate basic feasible solution,
then it will have exactly m non-zero entries, and these will correspond to a linearly
independent set of columns from A. These m non-zero variables will give us m
linearly independent equations as follows: for each of our original variables xj that
is non-zero, complementary slackness gives us an equation aTy = c where a is
given by the column of the constraint matrix corresponding to xj. For each slack
variable si that is non-zero, we know that a primal constraint is not tight and
so complementary slackness gives us an equation yi = 0. Notice that this can be
written as aTy = 0, where a is the column of the constraint matrix corresponding
to the slack variable si (recall that this column will be zero everywhere except in
the ith row, where it is 1). Thus, we obtain m equations, and the left-hand side
of each of these is given by one of the columns of A where x was non-zero. Since
these columns are linearly independent, we have m linearly independent equations
in our m variables yi. It follows that these equations will always have a unique
solution.

In the general case, applying the principle of complementary slackness to some
solution x may give a system of equations for y with multiple solutions. In this
case, we must simply find some solution y to this system that is feasible for the
dual to show that x is optimal. In order to show that x is not optimal, we must
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find a way to show that no solution of the complementary slackness equations is
feasible for the dual.3

Finally, we note that complementary slackness can be applied even to programs
with equations and unrestricted variables. By definition, an equation has no slack.
Thus, if we have an equation in the primal it will not affect our general procedure,
other than that we must remember to check that it is satisfied in when checking
feasibility of x and remember that this equation’s corresponding dual variable in
y is unrestricted, and so is allowed take negative values when we check that y
is feasible. Similarly, if we have an unrestricted variable in the primal, we must
remember that it can take any value when checking that x is feasible, and we
must ensure that its corresponding dual equation in the dual is satisfied when
constructing y.

8.2 Interpretation of the Dual

In many settings, the dual of a linear program may have some intuitive meaning
or relationship to the problem being modelled by the primal program. In this
section, we briefly discuss a few examples and see how an optimal solution to the
dual may be useful for making decisions.

We have already seen one example of this in action. Our initial example of a
linear program (Example 1.1) was a “blending problem” in which a student was
trying to select a cheap blend of foods that met basic dietary requirements. In
Example 1.2 we considered the same problem from the point of view of a vendor
of dietary supplements trying maximise revenue. It should now be easy to see that
this is in fact the dual of the program from Example 1.1, and so both problems
have the same optimal objective value.

Now that we have developed a more comprehensive theory of linear program-
ming, we know right away that, since the diet problem has 4 constraints (one for
each of the 4 nutrients we consider) there must be an optimal solution that uses
at most 4 foods. This is because we know that if this program is feasible and
bounded, there must be an optimal solution that is a basic feasible solution. This
solution will have at most m = 4 non-zero variables. In fact, we saw that it used
only 3 foods—this is because one of the slack variables must have also been basic.
The associated inequality is not tight (unless we are at a degenerate solution) and
so we would thus expect that the dual would have its variable corresponding to
this inequality set to zero. Indeed, if we compute an optimal dual solution us-
ing complementary slackness, we see that it sets: y1 = 1.43382, y2 = 0.588235,

3Alternatively, we could argue that no feasible solution to the dual satisfies the complementary
slackness conditions for x. In some situations, this approach might be preferable.
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y3 = 0.0367647, and y4 = 0. These correspond to the nutrients Thiamin, Ri-
boflavin, Niacin, and Vitamin C, respectively. By complementary slackness, this
implies that the constraint for Vitamin C must not be tight (that is, the given diet
gives more Vitamin C than is needed).

Suppose that (against her doctor’s advice!) the student decided to consume
less than the daily allowance of some nutrient. The dual variables tell us that
consuming less Vitamin C won’t make any difference, since this constraint is not
even tight. However, consuming less of each of the other nutrients will lower the
cost of the diet at the rate given by the dual variables. This makes sense from
the point of view of the vitamin company—if the student consumes slightly less
Thiamin, their revenue will decrease at a rate equal to the current price of Thiamin
pills (which is y1). Surprisingly, this is also true from the student’s point of view.
If she decides to consume slightly less Thiamin, then this will lower the value of the
cheapest diet at a rate of 1.43382 (until perhaps some other constraint becomes
tight, of course). The dual variables can thus be interpreted as telling our student
how much satisfying each nutritional requirement is costing her.

Let’s now see an example of duality in a production problem. Our first pro-
duction problem (Example 2.1) involved a foundry making 2 kinds of parts with
4 different processes and constraints on metal, electricity and labour. We got the
following linear program for maximising revenue.4

maximize 4000x1 + 1800x2 + 4800x3 + 11400x4

subject to 100x1 + 70x2 + 120x3 + 270x4 ≤ 6000

800x1 + 600x2 + 2000x3 + 4000x4 ≤ 100000

16x1 + 16x2 + 50x3 + 48x4 ≤ 1000

xi ≥ 0, for each i = 1, 2, 3, 4

The dual of this linear program is the following:

minimize 6000y1 + 100000y2 + 1000y3

subject to 100y1 + 800y2 + 16y3 ≥ 4000

70y1 + 600y2 + 16y3 ≥ 1800

120y1 + 2000y2 + 50y3 ≥ 4800

270y1 + 4000y2 + 48y3 ≥ 11400

yi ≥ 0, for each i = 1, 2, 3

4Here, we consider the first program we derived, which does not involve input and output
variables. We would get exactly the same result if we used the more complicated (but also more
readable) program with i1, i2, i3 and o1, o2. However, the dual would have some extra variables
and would need to be simplified to see clearly what is going on.
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We now have 1 constraint for each production process, and one variable repre-
senting the cost allocated to each requirement: y1 represents metal, y2 represents
electricity, y3 represents labour. One way of viewing the dual is as follows: we want
to know what the total value of our current resources/assets. We have 6000 kg of
metal, 100000 kWh of power, and 1000 hours of labour. Using these resources, we
produce parts and obtain revenue. The dual variables represent how much one unit
of each resource currently contributes to our overall revenue in the optimal primal
solution. For example, the variable y1 represents the rate at which our optimal
total revenue would increase if we purchased a very small amount of additional
metal—note that if we purchased a large amount of metal, we might end up with
a completely different optimal production plan, but if we buy a sufficiently small
amount, we can suppose that the optimal balance between production lines stays
the same and we can then just use up this metal to make a few more of each part.

The variables of the dual then have an intuitive meaning as prices or values.
Suppose we wanted to make a small change to our budget for next month. Should
we increase the amount of metal on hand, or the amount of power or labour?
What change would have the greatest immediate effect on revenue? The answer
can be obtained by simply examining the dual variables. At an optimal solution,
the dual variables for this particular program are y1 = 20, y2 = 0, y3 = 125. We
can get these either by looking at the final simplex tableau, or (if we only know
the optimal solution to the primal) by using complementary slackness. Looking at
the values of the dual variables, we see that currently we can increase our revenue
the most by hiring labour, and that right now, this will increase our revenue by
£125 per hour of labour hired. Again, note that this estimate is only valid for the
current value of the linear program. That is, similarly to a derivative, it estimates
the instantaneous rate of increase in revenue at the current solution point. If we
hired 1000 hours of extra labour it might be that some other constraint would
become tight and we would not see a full increase of 1000 · 125 in our revenue.
Nonetheless, for very small increases, this is a good estimate just like the derivative
gives a good estimate of the behaviour of a function for small changes around a
single point.

By thinking about the dual in this way, we see that complementary slackness
also has an intuitive meaning. If some constraint is not tight in the original
program—for example the constraint on how much electricity we can use—then
we would expect the corresponding dual variable—here, the value y2 that tells us
how much we can improve revenue by buying more electricity—to be 0. Indeed,
buying more of any such will not help us to increase our revenue, since we are not
even using all of what we already have! Note that this is exactly the principle of
complementary slackness: wherever we assign a non-zero price to a resource in the
dual, its corresponding constraint in the primal must be tight.
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As the previous examples illustrate, there is often some meaning behind the
value of the dual to a linear program. In general, each dual variable represents
how much its constraint is affecting the solution. Its value tells us what rate the
objective function would change at if we relaxed this constraint slightly. Thus, the
dual variables can be extremely useful for making decisions about how to modify
our plans.

8.3 Advanced Modelling: Handling Min-Max Prob-

lems

Before continuing on to game theory, let’s return briefly to the question of what
we can model with linear programs. We will see that there are a few “tricks” that
allow certain kinds of non-linear objectives to be handled with a linear program.
Both tricks rely on the fact that we have an algorithm for computing the optimal
solution (namely, the simplex algorithm). Specifically, we will see that even though
our linear programs in the next two sections may have feasible solutions that do
not correspond to the reality of the problem we are modelling, we can guarantee
that this will not happen for an optimal solution.

For our first problem, refer back to the following example fromWeek 2:

Example 8.2. A factory makes 2 different parts (say, part X and part Y ).
Their plant has 4 separate processes in place: there are two older processes
(say, process 1 and 2) that produce parts X and Y directly, as well as two
different integrated processes for producing both X and Y simultaneously.
The 4 processes can be run simultaneously, but require labour, raw metal,
and electricity. The hourly inputs and outputs for each process are as follows:

Outputs Inputs
Process X Y Metal Electricity Labour

1 4 0 100 kg 800 kWh 16 hrs
2 0 1 70 kg 600 kWh 16 hrs
3 3 1 120 kg 2000 kWh 50 hrs
4 6 3 270 kg 4000 kWh 48 hrs

Suppose now that we wanted to know how fast we could produce 120 of part
X and 50 of part Y , if we had unlimited resources. This could be used to find out,
for example, the absolute minimum number of hours we need to keep the factory
open to still meet our production requirements. To figure this out we need to see
which of our processes runs for the longest time. The quantity we are interested
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in is thus given by the maximum of x1, x2, x3, x4. But, is this a linear function?
No! For example max(2, 0, 0, 0) = 2 and max(0, 1, 0, 0) = 1 but:

max(2 + 0, 0 + 1, 0 + 0, 0 + 0) = 2 ̸= 2 + 1 .

But, what do we know about the maximum of a set? Obviously, it must be
larger than any element of the set. Recall that we introduced decision variables
p1, p2, p3, p4 representing how long to run each process when modelling this prob-
lem in Week 2. Let’s introduce a new variable m to represent the maximum of
p1, p2, p3, p4. Then, we know that:

m ≥ p1

m ≥ p2

m ≥ p3

m ≥ p4

These are definitely linear constraints. Let’s add m to our production program,
together with these constraints, and then just try to minimise m. Doing this we
get something like the following:

minimize m

subject to m ≥ pj for each j = 1, 2, 3, 4

x = 4p1 + 3p3 + 6p4

y = p2 + p3 + 3p4

x ≥ 120

y ≥ 50

m ≥ p1

m ≥ p2

m ≥ p3

m ≥ p4

p1, p2, p3, p4 ≥ 0

x, y,m unrestricted

(8.10)

Here, the first 2 constraints tell us how many parts X and Y we can make when we
run our processes for p1, p2, p3, p4 hours, respectively. The second 2 constraints say
that we must produce at least the required number of parts X and Y. The last 4
constraints say that the variable m representing the maximum of p1, p2, p3, p4 must
be at least as large as each of p1, p2, p3, p4. Notice that, in general, the feasible
solutions of this program will not correspond exactly to what we want, since the
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maximum is equal to the largest value of p1, p2, p3, p4, but here we only ask that m
be at least each of these values. However, we will show that for an optimal solution
to our program, then m will always be equal to the maximum of p1, p2, p3, p4. This
is good enough for us, assuming our goal is to actually solve the problem optimally.

Intuitively, the idea is that as long as m is strict larger than the maximum of
p1, . . . , p4, we could decrease it to get a better solution for our program. Formally,
consider any feasible solution to our program, and suppose that it assigns values
p∗1, . . . , p

∗
4 and m∗ to the variables p1, . . . , p4 and m. Then, since the solution

is feasible, we must have that p∗i ≤ m∗ for each i = 1, 2, 3, 4. Suppose that
m∗ > max(p∗1, . . . , p

∗
4) and set ε = m∗ − max(p∗1, . . . , p

∗
4) > 0. Then, m∗ − ε =

max(p∗1, . . . , p
∗
4) ≥ p∗i for each i = 1, 2, 3, 4, so setting m = m∗ − ε gives a feasible

solution to the linear program—note that we only changed m and it does not occur
in any other constraints, so they are still satisfied. This feasible solution also has
an objective value that is ε smaller than our original Thus, our original solution
could not have been optimal. It follows any optimal solution to our transformed
program must have m = max(p1, . . . , p4), just as we claimed.

Note that we can repeat the above procedure in any mathematical program
that requires we minimise the maximum of some set of variables. Whenever we
have a mathematical minimisation program with an objective of the form:

max(x1, . . . , xk)

for some set of variables (here we call them x1, . . . , xk), we do the following:

1. We change the program by introducing a new unrestricted variable (let’s call
it m).

2. We replace the term max(x1, . . . , xk) in the objective by m.

3. We add a constraint saying thatm should be larger than each of the variables
in the maximum. That is, for each variable xi that appears in the maximum,
we introduce the constraint:

m ≥ xi

The above procedure will give us a linear program, by getting rid of the maximum.
We can use a similar trick to model any linear program that involves maximising
the minimum of several variables. There, we replace min(x1, . . . , xk) by m and
add constraints m ≤ xi for each xi.
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8.4 Piecewise Linear Concave and Convex Ob-

jectives

Let’s look at another production example, which is a modification of Exam-
ple 9.1.

Example 8.3. Consider the setting from Example 9.1 and suppose that, as
before, each unit of part Y sells for £1800, but that due to market demand,
we can only sell the first 30 units of part X for £1000. Further units up to
60 can be sold for £700 and any excess units after that can be sold only for
£400. Suppose you have 6000 kg of metal, 100000 kWh of electricity, and
1000 h of labour available. How should we schedule production to maximise
revenue?

Here, the revenue from selling X is given by the function f depicted in Fig-
ure 9.1. Note that this is not a linear function. It is a combination of several
different linear functions “glued together.” We call such functions piecewise lin-
ear. Note that the function f behaves like a linear function f1 passing through the
origin with slope 1000 when x ∈ [0, 30), like a linear function f2 with slope 700
when x ∈ [30, 60), and like a linear function f3 with slope 400 when x ∈ [60,∞).
We say that the function f is concave because these slopes are decreasing. This
should agree roughly with your intuition for what graphs of concave functions look
like.

We cannot model this problem directly as a linear program, since our profit
function is non-linear. However, we will see that since it is piecewise linear and
concave we can still maximise it using a linear program. To do this, suppose that x
is the decision variable for how many of part X we make—that is, x is the argument
of our piecewise linear concave function f . We want to find an expression for each
linear piece of the function f .

Let’s start with the first piece f1. We know that the slope of f1 is 1000 and f1
passes through the origin, so f1(0) = 0. Thus, we have:

f1(x) = 1000x+ 0 = 1000x

Now, let’s look at f2. We know that the slope of f2 is 700, so f2 has the general
form:

f2(x) = 700x+ b2

for some constant b that we will now determine. Intuitively, b determines how
much we “shift” the for f2 up from the origin, and we want to shift it so that
it joins up with the line for f1 at the point x = 30, where f stops behaving like
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Figure 8.1: Revenue for Example 9.2

f1 and starts behaving like f2. Formally, since f is continuous5, we must have
f1(30) = limx→30+ f(x) = limx→30− f2(30) = f2(30). Using the expression we
already have for f1(x) we get:

f1(30) = 1000 · 30 f2(30) = 700 · 30 + b2

and so:

1000 · 30 = 700 · 30 + b2

which we can solve to get b2 = 9000. Thus:

f2(x) = 700x+ 9000.

We can now repeat the above procedure to find an equation for f3. Remember
that f(x) behaves like f2(x) for x ∈ [30, 60) and like f3(x) for x ∈ [60,∞). So,
now we need f2(60) = f3(60), in order for these 2 “pieces” to join up at 60. We
know the slope of f3 is 400 and we need to find its intercept b3. We now have:

f2(60) = 700 · 30 + 9000 f3(60) = 400 · 60 + b3

5If you’ve not encountered the formal definition of continuity: all we are saying here is that
the “piece” for f1 must end at the same value that the “piece” for f2 starts.
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Figure 8.2: Revenue f(x) (in red) for Example 9.2 and plots of f1(x), f2(x), f3(x).

and so:

700 · 60 + 9000 = 400 · 60 + b3,

which we can solve to get b3 = 27000. Thus:

f3(x) = 400x+ 27000.

Let’s double-check our work by plotting our functions for f1,f2, and f3, to-
gether with the function for f , as shown in Figure 9.2. We see that each of our
lines does indeed correspond to one of the linear pieces of f . We can also see
that for any x, f(x) is equal to the lowestof our three lines. That is, f(x) =
min(f1(x), f2(x), f3(x)). This is because f was piecewise linear and concave. Our
goal is to maximise f , which we can now see is a minimum of 3 linear functions.
To put everything together, we can then use the procedure we saw earlier for
maximising the minimum of several values.

Using the procedure, since we want to maximise f(x) = min(f1(x), f2(x), f3(x))
we introduce a new variable (let’s use z) to represent the minimum and then
introduce constraints z ≤ f1(x), z ≤ f2(x), z ≤ f3(x). Using the definitions for
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each of f1, f2, f3, we get:

maximize z + 1800y

subject to z ≤ 1000x

z ≤ 700x+ 9000

z ≤ 400x+ 27000

x = 4p1 + 3p3 + 6p4

y = p2 + p3 + 3p4

m = 100p1 + 70p2 + 120p3 + 270p4

e = 800p1 + 600p2 + 2000p3 + 4000p4

l = 16p1 + 16p2 + 50p3 + 48p4

m ≤ 6000

e ≤ 100000

l ≤ 1000

p1, p2, p3, p4 ≥ 0

x, y, z,m, e, l unrestricted

A similar trick can be used to minimise a piecewise linear convex function f .
We do exactly the same thing as above, except at the end we will find that f(x)
is given by the maximum of each of the pieces f1(x), f2(x), . . .. Then, we can use
our trick for minimising a maximum to model the problem.
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Week 9

Advanced Modelling and Game
Theory (I)

9.1 Advanced Modelling: Handling Min-Max Prob-

lems

Before continuing on to game theory, let’s return briefly to the question of what
we can model with linear programs. We will see that there are a few “tricks” that
allow certain kinds of non-linear objectives to be handled with a linear program.
Both tricks rely on the fact that we have an algorithm for computing the optimal
solution (namely, the simplex algorithm). Specifically, we will see that even though
our linear programs in the next two sections may have feasible solutions that do
not correspond to the reality of the problem we are modelling, we can guarantee
that this will not happen for an optimal solution.

For our first problem, refer back to the following example fromWeek 2:
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Example 9.1. A factory makes 2 different parts (say, part X and part Y ).
Their plant has 4 separate processes in place: there are two older processes
(say, process 1 and 2) that produce parts X and Y directly, as well as two
different integrated processes for producing both X and Y simultaneously.
The 4 processes can be run simultaneously, but require labour, raw metal,
and electricity. The hourly inputs and outputs for each process are as follows:

Outputs Inputs
Process X Y Metal Electricity Labour

1 4 0 100 kg 800 kWh 16 hrs
2 0 1 70 kg 600 kWh 16 hrs
3 3 1 120 kg 2000 kWh 50 hrs
4 6 3 270 kg 4000 kWh 48 hrs

Suppose now that we wanted to know how fast we could produce 120 of part
X and 50 of part Y , if we had unlimited resources. This could be used to find out,
for example, the absolute minimum number of hours we need to keep the factory
open to still meet our production requirements. To figure this out we need to see
which of our processes runs for the longest time. The quantity we are interested
in is thus given by the maximum of x1, x2, x3, x4. But, is this a linear function?
No! For example max(2, 0, 0, 0) = 2 and max(0, 1, 0, 0) = 1 but:

max(2 + 0, 0 + 1, 0 + 0, 0 + 0) = 2 ̸= 2 + 1 .

But, what do we know about the maximum of a set? Obviously, it must be
larger than any element of the set. Recall that we introduced decision variables
p1, p2, p3, p4 representing how long to run each process when modelling this prob-
lem in Week 2. Let’s introduce a new variable m to represent the maximum of
p1, p2, p3, p4. Then, we know that:

m ≥ p1

m ≥ p2

m ≥ p3

m ≥ p4

These are definitely linear constraints. Let’s add m to our production program,
together with these constraints, and then just try to minimise m. Doing this we
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get something like the following:

minimize m

subject to m ≥ pj for each j = 1, 2, 3, 4

x = 4p1 + 3p3 + 6p4

y = p2 + p3 + 3p4

x ≥ 120

y ≥ 50

m ≥ p1

m ≥ p2

m ≥ p3

m ≥ p4

p1, p2, p3, p4 ≥ 0

x, y,m unrestricted

(9.1)

Here, the first 2 constraints tell us how many parts X and Y we can make when we
run our processes for p1, p2, p3, p4 hours, respectively. The second 2 constraints say
that we must produce at least the required number of parts X and Y. The last 4
constraints say that the variable m representing the maximum of p1, p2, p3, p4 must
be at least as large as each of p1, p2, p3, p4. Notice that, in general, the feasible
solutions of this program will not correspond exactly to what we want, since the
maximum is equal to the largest value of p1, p2, p3, p4, but here we only ask that m
be at least each of these values. However, we will show that for an optimal solution
to our program, then m will always be equal to the maximum of p1, p2, p3, p4. This
is good enough for us, assuming our goal is to actually solve the problem optimally.

Intuitively, the idea is that as long as m is strict larger than the maximum of
p1, . . . , p4, we could decrease it to get a better solution for our program. Formally,
consider any feasible solution to our program, and suppose that it assigns values
p∗1, . . . , p

∗
4 and m∗ to the variables p1, . . . , p4 and m. Then, since the solution

is feasible, we must have that p∗i ≤ m∗ for each i = 1, 2, 3, 4. Suppose that
m∗ > max(p∗1, . . . , p

∗
4) and set ε = m∗ − max(p∗1, . . . , p

∗
4) > 0. Then, m∗ − ε =

max(p∗1, . . . , p
∗
4) ≥ p∗i for each i = 1, 2, 3, 4, so setting m = m∗ − ε gives a feasible

solution to the linear program—note that we only changed m and it does not occur
in any other constraints, so they are still satisfied. This feasible solution also has
an objective value that is ε smaller than our original Thus, our original solution
could not have been optimal. It follows any optimal solution to our transformed
program must have m = max(p1, . . . , p4), just as we claimed.

Note that we can repeat the above procedure in any mathematical program
that requires we minimise the maximum of some set of variables. Whenever we
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have a mathematical minimisation program with an objective of the form:

max(x1, . . . , xk)

for some set of variables (here we call them x1, . . . , xk), we do the following:

1. We change the program by introducing a new unrestricted variable (let’s call
it m).

2. We replace the term max(x1, . . . , xk) in the objective by m.

3. We add a constraint saying thatm should be larger than each of the variables
in the maximum. That is, for each variable xi that appears in the maximum,
we introduce the constraint:

m ≥ xi

The above procedure will give us a linear program, by getting rid of the maximum.
We can use a similar trick to model any linear program that involves maximising
the minimum of several variables. There, we replace min(x1, . . . , xk) by m and
add constraints m ≤ xi for each xi.

9.2 Piecewise Linear Concave and Convex Ob-

jectives

Let’s look at another production example, which is a modification of Exam-
ple 9.1.

Example 9.2. Consider the setting from Example 9.1 and suppose that, as
before, each unit of part Y sells for £1800, but that due to market demand,
we can only sell the first 30 units of part X for £1000. Further units up to
60 can be sold for £700 and any excess units after that can be sold only for
£400. Suppose you have 6000 kg of metal, 100000 kWh of electricity, and
1000 h of labour available. How should we schedule production to maximise
revenue?

Here, the revenue from selling X is given by the function f depicted in Fig-
ure 9.1. Note that this is not a linear function. It is a combination of several
different linear functions “glued together.” We call such functions piecewise lin-
ear. Note that the function f behaves like a linear function f1 passing through the
origin with slope 1000 when x ∈ [0, 30), like a linear function f2 with slope 700
when x ∈ [30, 60), and like a linear function f3 with slope 400 when x ∈ [60,∞).
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Figure 9.1: Revenue for Example 9.2

We say that the function f is concave because these slopes are decreasing. This
should agree roughly with your intuition for what graphs of concave functions look
like.

We cannot model this problem directly as a linear program, since our profit
function is non-linear. However, we will see that since it is piecewise linear and
concave we can still maximise it using a linear program. To do this, suppose that x
is the decision variable for how many of part X we make—that is, x is the argument
of our piecewise linear concave function f . We want to find an expression for each
linear piece of the function f .

Let’s start with the first piece f1. We know that the slope of f1 is 1000 and f1
passes through the origin, so f1(0) = 0. Thus, we have:

f1(x) = 1000x+ 0 = 1000x

Now, let’s look at f2. We know that the slope of f2 is 700, so f2 has the general
form:

f2(x) = 700x+ b2

for some constant b that we will now determine. Intuitively, b determines how
much we “shift” the for f2 up from the origin, and we want to shift it so that
it joins up with the line for f1 at the point x = 30, where f stops behaving like
f1 and starts behaving like f2. Formally, since f is continuous1, we must have

1If you’ve not encountered the formal definition of continuity: all we are saying here is that
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f1(30) = limx→30+ f(x) = limx→30− f2(30) = f2(30). Using the expression we
already have for f1(x) we get:

f1(30) = 1000 · 30 f2(30) = 700 · 30 + b2

and so:

1000 · 30 = 700 · 30 + b2

which we can solve to get b2 = 9000. Thus:

f2(x) = 700x+ 9000.

We can now repeat the above procedure to find an equation for f3. Remember
that f(x) behaves like f2(x) for x ∈ [30, 60) and like f3(x) for x ∈ [60,∞). So,
now we need f2(60) = f3(60), in order for these 2 “pieces” to join up at 60. We
know the slope of f3 is 400 and we need to find its intercept b3. We now have:

f2(60) = 700 · 30 + 9000 f3(60) = 400 · 60 + b3

and so:

700 · 60 + 9000 = 400 · 60 + b3,

which we can solve to get b3 = 27000. Thus:

f3(x) = 400x+ 27000.

Let’s double-check our work by plotting our functions for f1,f2, and f3, to-
gether with the function for f , as shown in Figure 9.2. We see that each of our
lines does indeed correspond to one of the linear pieces of f . We can also see
that for any x, f(x) is equal to the lowestof our three lines. That is, f(x) =
min(f1(x), f2(x), f3(x)). This is because f was piecewise linear and concave. Our
goal is to maximise f , which we can now see is a minimum of 3 linear functions.
To put everything together, we can then use the procedure we saw earlier for
maximising the minimum of several values.

Using the procedure, since we want to maximise f(x) = min(f1(x), f2(x), f3(x))
we introduce a new variable (let’s use z) to represent the minimum and then
introduce constraints z ≤ f1(x), z ≤ f2(x), z ≤ f3(x). Using the definitions for

the “piece” for f1 must end at the same value that the “piece” for f2 starts.
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Figure 9.2: Revenue f(x) (in red) for Example 9.2 and plots of f1(x), f2(x), f3(x).

each of f1, f2, f3, we get:

maximize z + 1800y

subject to z ≤ 1000x

z ≤ 700x+ 9000

z ≤ 400x+ 27000

x = 4p1 + 3p3 + 6p4

y = p2 + p3 + 3p4

m = 100p1 + 70p2 + 120p3 + 270p4

e = 800p1 + 600p2 + 2000p3 + 4000p4

l = 16p1 + 16p2 + 50p3 + 48p4

m ≤ 6000

e ≤ 100000

l ≤ 1000

p1, p2, p3, p4 ≥ 0

x, y, z,m, e, l unrestricted

A similar trick can be used to minimise a piecewise linear convex function f .
We do exactly the same thing as above, except at the end we will find that f(x)
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is given by the maximum of each of the pieces f1(x), f2(x), . . .. Then, we can use
our trick for minimising a maximum to model the problem.

Now, we move on to the module’s other major topic, which is game theory.
Game theory concerns problems in which several independent agents or players
interact. In this module, we will consider only situations in which 2 players inter-
act. This is just a small part of the general theory, but it is enough to get some
idea of several fundamental results and techniques.

9.3 Two Player Matrix Games

At its heart, game theory is about how people make decisions, and we will study
situations in which several individuals must independently decide what to do. Like
any mathematical theory, we must make some assumptions about our setting in
order to be able to model problems and derive results. The first assumption we
will make is that these individuals are rational—that is, each individual carefully
considers her options and make the best possible decision under the circumstances.
But, what do we mean by “best?”

We assume that each player has some underlying preferences about the world.
These can be encoded in the form of a utility or payoff function. Formally, we
will study situations in which each player i has available some set of actions Ai,
and these actions lead to some set of possible outcomes O. We suppose that each
individual i has a function ui : O → R representing how happy they are with the
outcome O. When we talk about games, we often use the word “payoff” to talk
about this value. Intuitively, you could think about ui(x) representing a monetary
amount that player i receives when outcome x ∈ O occurs. However, people
often consider other factors when making decisions. For example, when offered
two possible jobs, many people would rather take a job that was interesting or
rewarding—or a job that didn’t require commuting—even if this job payed slightly
less. Luckily, we can avoid thinking about all of these possible factors by simply
assuming that our players has already incorporated all this kind of information
them into their functions ui. The main property is that player is that ui(a) should
be greater than ui(b) whenever player i prefers outcome a to outcome b for whatever
reason. Sometimes a distinction is made between the notion of a payoff and a
utility, but in this module, we will use the terms interchangeably.

If each player has a payoff function ui that represents the relative value they
place on certain outcomes, we can formally state our assumption that players are
rational as follows:
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Definition 9.1 (Theory of Rational Choice). in any situation, a rational player
will select an action that makes ui as large as possible.

That is, we will assume that each player i acts to maximise her own utility ui.
We will consider the following general setting. There are 2 players, each making

a decision independently.

Definition 9.2 (Two-Player Strategic Game). A two player strategic game is a
game with 2 players, that we will call player 1 and player 2. It is specified by:

• A set of actions A1 that player 1 can take. We call these strategies for
player 1.

• A set of actions A2 that player 2 can take. We call these strategies for
player 2.

• A pair of payoff functions u1 : A1 × A2 → R and u2 ∈ A1 × A2 → R.
For any possible pair of strategies a1 ∈ A1 and a2 ∈ A2 that player 1
and player 2 select, ui(a1, a2) gives the payoff (or utility) that player i
receives when player 1 chooses action a1 and player 2 chooses action a2.

In a 2-player strategic game, we have one outcome for each possible pair of
decisions in A1 × A2. Notice that a player’s utility depends not only on her own
choice but also on the other player’s choice.

When the number of possible strategies for each player is small, we can easily
represent two-player games by using a matrix. We label the rows of this matrix
with one player’s strategies and the columns with the other player’s. In each entry
in the matrix, we list the payoffs for the row player and column player. To help
us keep things straight, let’s name our row player Rosemary (i.e. ROW-smary)
and our column player Colin (i.e. COL-in), and let R and ur be Rosemary’s set
of strategies and utility function and C and uc be Colin’s set of strategies and
utility function. We will also assume that the amounts won or lost by the players
correspond to their payoff functions (if not, we could just rephrase the game so
that each “wins” or “loses” an amount equal to however much they value the
outcome). Here is an example of how we represent a game with payoff matrix:

Example 9.3. Suppose that Rosemary and Colin each have 2 cards, labelled
with a 1 and a 2. Each selects a card and then both reveal their selected cards.
If the sum s of the numbers on their cards is even, then Rosemary wins and
Colin must pay her this s. Otherwise, Colin wins and Rosemary must pay
him s.
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In this case, each player has 2 strategies, corresponding to whether to choose their
1 card or 2 card. For simplicity, let’s name these strategies “1” and “2”. Then,
the payoff matrix for this game is given by:

1 2
1 (2,−2) (−3, 3)
2 (−3, 3) (4,−4)

Note that in each entry of the matrix, we always write Rosemary’s payoff first and
Colin’s payoff second.

The game in this example has a special structure. Namely, you can see that
Rosemary and Colin’s payoffs sum to zero in every outcome. in other words,
whatever Rosemary gains, Colin loses, and vice versa. These games model purely
competitive scenarios, and are called zero-sum games:

Definition 9.3 (Zero-Sum Game). A two-player strategic game is a zero-sum
game if and only if for every possible outcome (a1, a2) ∈ A1 × A2 we have
u1(a1, a2) = −u2(a1, a2). In other words, for any possible outcome, the sum
of the payoffs to both players is zero.

When thinking about zero-sum games, we can save ourselves some trouble by
just listing Rosemary’s entries in the payoff matrix. We know that Colin’s payoffs
will then be the opposite of whatever appears in the matrix. In the previous
example, we could have just given the payoff matrix as:

1 2
1 2 −3
2 −3 4

Let’s see a couple of other examples of zero-sum games:

Example 9.4. Suppose we consider the same game as before, except that now
Rosemary has an additional card, labelled with a 3.

Now, Rosemary has an additional strategy (choosing the 3 card) and we need to
add a new row to the payoff matrix. We get:

1 2
1 2 −3
2 −3 4
3 4 −5

140



9.4. Rational Strategies MTH5114 (Spring 2023)

From Colin’s perspective, the matrix now gives the amount that he loses in each
case. Thus, we can intuitively think as follows: Rosemary wants an outcome with
a matrix entry as large as possible, and Colin wants an outcome with a matrix
entry number as small as possible. Of course, we should keep in mind that both
are always trying to make their actual payoffs as large as possible, this is just a
side effect of the way we have represented these payoffs in the matrix!

Here is an example of a game with more complicated sets of strategies:

Example 9.5. Rosemary and Colin each have a £1 and a £2 coin. They each
select one of them and hold it in their hand, then Colin calls out “even” or
“odd” and they reveal their coins. Let s be the sum of the values of the coins.
If Colin correctly guessed whether s was even or odd, he wins both coins.
Otherwise, Rosemary wins both coins.

Here, Rosemary has only 2 strategies, choosing a £1 or £2 coin. Colin, on the
other hand, must choose a coin and a value in {even, odd}. We can represent her
strategies as pairs of choices—a choice of coin and a choice of even/odd. Each
player starts with £3, and their payoff from the game represents how much money
they win or lose. The payoff matrix then looks like this:

(1, odd) (2, odd) (1, even) (2, even)
1 1 −1 −1 2
2 −2 2 1 −2

9.4 Rational Strategies

Now that we know how to model simple purely competitive situations, let’s turn
to the problem of analysing how a rational agent should play. Let’s start with
a simple example. Suppose we have a 2-player game with the following payoff
matrix:

c1 c2
r1 100 −50
r2 8 20

How should Rosemary decide on a strategy? Since she wants to maximise her
utility, one choice would be to simply find the strategy that leads to the largest
potential payoff. Here, if she chooses strategy r1, she can get the largest possible
payoff of 100. But, this happens only if Colin chooses strategy c1. However, if
Colin plays c2 Rosemary will have the worst possible outcome! This suggests that
simply picking the strategy with the largest possible payoff is a bad choice. She
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could try instead to sum up all the values in each row. Notice, however, that this
would still lead her to choose r1, which certainly seems like a bad idea.

Instead, Rosemary thinks about things for a bit, and realises that no matter
what strategy she adopts, she cannot control what Colin does. Thus, she should
instead worry about the worst case that happens for each of her strategies. For-
mally, we call this quantity the security level for a strategy.

Definition 9.4 (Security Level). For the row player (Rosemary), the security
level of any strategy ri ∈ R is defined as:

min
cj∈C

ur(ri, cj)

Similarly, for the column player (Colin), the security level of any strategy
c ∈ C is defined as:

min
ri∈R

uc(ri, cj)

Our first principle is that a rational player should always act to maximise his
her security level. For Rosemary, the corresponding payoff according to this goal
can be written formally as:

max
ri∈R

min
cj∈C

ur(ri, cj) .

Similarly, Colin’s payoff according to his goal is:

max
cj∈C

min
ri∈R

uc(ri, cj) .

Notice that both players are trying to maximise a minimum—that is, they want
to make a choice whose worst possible outcome is as good as possible.

In a zero-sum game presented as a payoff matrix, it is easier to identify each
strategy ri with row i of the payoff matrix A and each strategy cj with the jth
column of the payoff matrix A and then think about the matrix entries. For any ri
and cj we have ur(ri, cj) = ai,j = −uc(ri, cj). Then, we can rewrite our definition
of security level using only the entries of the payoff matrix as follows. For any
strategy ri ∈ R the corresponding security level for Rosemary will be:

min
cj∈C

ai,j .

Similarly for any cj ∈ C, the corresponding security level for Colin will be:

max
ri∈R

ai,j .
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Of course, the second quantity is actual −1 times Colin’s utility (and security
level), but when thinking about zero-sum games, it is useful to fix a player (here,
Rosemary) and only think of her utilities. The numbers we work with are thus the
payments to Rosemary, so it makes sense that Colin wants to make these as small
as possible. From now on, we’ll adopt this convention when talking about security
levels and utilities (that is, all are given in terms of payments to Rosemary).

The principle that rational players act to maximise security tells us something
about how the player’s should behave. In our example game, Rosemary’s security
level for r1 is −50 and her security level for r2 is 8. Similarly, Colin’s security
level for strategy c1 is 100 and his security level for c2 is 20 (remember, though,
these really correspond to losing 100 and 20 units from Colin’s perspective). This
leads to an interesting problem. If Colin suspects that Rosemary is going to
play to maximise her security level, he would do better by playing strategy c2.
Anticipating this, however, Rosemary might play r1. We can keep going around
like this in circles forever.

Instead, let’s just note that we expect that a pair of rational players’ strategies
should tend to points that are equilibrium. To keep things simple, let’s just give
the definition in terms of the payoff matrix. Later, we will see a more general
definition.

Definition 9.5 ((Pure) Nash Equilibrium for a Zero-Sum Game). Consider a
zero-sum game with payoff matrix A. A pair of strategies ri ∈ R and cj ∈ C
are said to be a Nash equilibrium for this game if and only if both:

ai,j ≥ ai′,j for all ri′ ∈ R

ai,j ≤ ai,j′ for all cj′ ∈ C

A Nash Equilibrium (ri, cj) represents a steady-state for a two-player game. Sup-
pose that Rosemary plays ri and Colin plays cj. Then, this is Nash equilibrium if
and only if, under the assumption that Colin continues playing strategy cj, there
is no incentive for Rosemary to change her strategy to anything other than ri and
similarly, under the assumption that Rosemary continues playing strategy ri, there
is no incentive for Colin to change his strategy to anything other than cj.

Looking at our previous example games, you may be concerned that most
of them don’t seem to have any such equilibrium points. We’ll return to this
question in the next lecture. For now, however, we establish a necessary and
sufficient condition for a game to possess a pair of strategies (si, cj) that is a Nash
equilibrium. First, let’s see an example where an equilibrium does exist.
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Example 9.6. Suppose we seek a pair of strategies (ri, cj) that form a Nash
equilibrium for the game with the following payoff matrix:

c1 c2 c3 c4 c5
r1 2 −3 −3 12 −5
r2 2 7 2 9 11
r3 −1 4 0 1 0
r4 −3 5 1 2 −3

We find Rosemary’s security levels by computing the minimum value in each row.
We get −5, 2,−1,−3 for r1, r2, r3, r4, respectively. Colin’s security levels are given
by the maximum value of each column. We get 2, 7, 2, 12, 11 for c1, c2, c3, c4, c5
respectively. Thus, if both players seek to optimise their security levels (Rosemary
to maximise and Colin to minimise), we expect that Rosemary should play strategy
r2 and Colin should play either strategy c1 or c3. Let’s check to see if these values
are a Nash Equilibrium. Indeed, we find that at (r2, c1) is at least as good for
Rosemary as any other option (ri, c1) and at least as good for Colin as any other
option (r2, cj). The same is true for (r2, c3). Thus both of these pairs of strategies
are indeed Nash equilibria.

In this example, we saw that Rosemary’s best (maximum) security level was
equal to Colin’s best (minimum) security level. In terms of the matrix, we saw that
the entries for (r2, c1) and (r2, c3) both had the property that they were smaller
than any other number in their row (and so Colin cannot do better by deviating)
and larger than any other number in their column (and so Rosemary cannot do
better by deviating). This condition ends up being both necessary and sufficient
for a point to be a Nash equilibrium (although shortly we will see a generalisation
of strategies that allows every zero-sum game to have an equilibrium).

Theorem 9.1. Let u∗
r and u∗

c be the best security levels for the row and column
players, respectively, in some two-player zero-sum game. Then, this game has
a pair of strategies (ri, cj) that together form a Nash equilibrium if and only
if u∗

r = u∗
c .

Proof. Suppose that ri is the strategy for which Rosemary attains security level
u∗
r and that ai,y is the entry the payoff matrix such that u∗

r = ai,y = minck∈C ai,k.
Similarly, let cj be the strategy for which Colin attains security level u∗

c and let
ax,j be the entry in the payoff matrix such that u∗

c = ax,j = maxrℓ∈R aℓ,j. Then,
first, we note that we must have:

u∗
r = ai,y = min

ck∈C
ai,k ≤ ai,j ≤ max

rℓ∈R
aℓ,j = ax,j = u∗

c . (9.2)
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Now, we note that if u∗
r = u∗

c , we must have that (9.2) holds with equality.
Then, since all the inequalities in (9.2) must be equations, we must have:

ai,j = max
rℓ∈R

aℓ,j ≥ ai′,j for all ri′ ∈ R

ai,j = min
ck∈C

ai,k ≤ ai,j′ for all cj′ ∈ C

It follows that (ri, cj) is a Nash equilibrium for the game.
For the other direction, suppose that (ri, cj) is a Nash equilibrium. Then, since

Rosemary has no incentive to change strategies:

ai,j ≥ ai′,j for all ri′ ∈ R

and so ai,j = maxrℓ∈R aℓ,j. Similarly, since Colin has no incentive to change strate-
gies:

ai,j ≤ ai,j′ for all cj′ ∈ C

and so ai,j = minck∈C ai,k. It follow that both inequalities in (9.2) actually hold
with equality, and thus u∗

r = u∗
c .

In our example, we saw that all the Nash equilibria in our zero-sum game had
the same value for Rosemary (and so also for Colin). This is also always true, but
we will wait and prove it for a much more general case.
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Week 10

Game Theory (II)

We have seen that in a two-player, zero-sum game, a rational player should always
seek to optimise his or her security level. We also saw a condition under which
such a game has a pair of pure strategies that together form a Nash equilibrium.
We also saw that even some simple games do not have any such equilibrium. This
leads us to the notion of mixed strategies

10.1 Mixed Strategies

Consider the following zero-sum game, called “Matching Pennies”:

Example 10.1. Rosemary and Colin each have a 1p coin. Simultaneously,
they place their coins on the table with either heads or tails showing. If the
coins match, Rosemary wins £1 from Colin. Otherwise, Colin wins £1 from
Rosemary.

Here each player has 2 strategies, which we will label h or t (for heads and tails).
The payoff matrix for this game looks like this:

h t
h 1 −1
t −1 1

Checking this matrix, we see that there is clearly no Nash equilibrium. For any
pair of strategies with the coins different, Rosemary would prefer to flip her coin,
and for any pair with the coins the same, Colin would prefer to flip his coin. This
perhaps suggests that Nash equilibria are not so useful, since even a simple game
like this does not possess one. In this section we will generalise our notion of
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strategies. For these generalised strategies, we will be able to show that in fact
every zero-sum two-player game has a Nash equilibrium.

It seems that no matter how complicated a method Rosemary uses to choose
a strategy (head or tails), Colin would be able to win the game by using the same
method and then picking the opposite (tails or heads). Intuitively, one way around
this might be for Rosemary to choose a strategy randomly. Think of the following
strategy for Rosemary: she could flip her coin so that it comes randomly heads or
tails. Then, neither Rosemary nor Colin know what the outcome will be, and no
matter what Colin chooses, Rosemary will win half the time, since the probability
of her coin coming up the same as Colin’s choice will be 1/2. This leads us to the
notion of a mixed strategy.

Definition 10.1 (Mixed Strategy). Let S be a set of strategies for a player,
and let xT= (x1, . . . , x|S|) be a collection of numbers with xi ≥ 0 for all i and∑

i xi = 1. We say that x is a mixed strategy for our player. We now call
the original strategies in S pure strategies and let ∆(S) denote the set of all
mixed strategies from S.

Note that, agreeing with our previous insight, we can interpret the numbers
x1, . . . , x|S| as a probability distribution, since they are non-negative and sum to
1. Intuitively, the mixed strategy x ∈ ∆(S) corresponds to a random strategy
in which a player plays each si ∈ S with probability xi. The outcome of a game
then becomes a random variable, and we assume that a rational player should
act to maximise his or her expected payoff. If Rosemary plays strategy x ∈ ∆(R)
and Colin plays strategy y ∈ ∆(C), the expected payoff in a zero-sum game with
payoff matrix A will be given by:

xTAy =
∑
ri∈R

∑
cj∈C

xiyjai,j .

Here, xi and yj are the probabilities that Rosemary chooses ri and Colin chooses
cj. Since these choices are made independently, Rosemary will receive the payoff
ai,j with probability xiyj. Thus, the above expression does indeed represent her
expected payoff (and so also the opposite of Colin’s expected payoff).

We can suppose, as before, that players will act to optimise their security levels.
Now, however, the notion of a security level looks more complicated. In particular,
Rosemary must select a mixed strategy from ∆(R) that maximises the minimum
payoff over all possible strategies in ∆(C). It turns out that each player only need
to consider the other player’s pure strategies when calculating his or her security
level.
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Lemma 10.1. For any mixed strategy x ∈ ∆(R),

min
y∈∆(C)

xTAy = min
cj∈C

∑
ri∈R

xiai,j

Similarly, for any mixed strategy y ∈ ∆(C),

max
x∈∆(R)

xTAy = max
ri∈R

∑
cj∈C

yjai,j

Proof. Both results intuitively follow from the fact that a weighted average of some
payoffs is at least as large as the smallest payoff and at most as large as the largest
payoff. Formally, for the first result, suppose that j∗ is the index j for which:∑

ri∈R

xiai,j

is the smallest. Then,

min
y∈∆(C)

xTAy = min
y∈∆(C)

∑
ri∈R

∑
cj∈C

yjxiai,j (Algebra)

= min
y∈∆(C)

∑
cj∈C

yj
∑
ri∈R

xiai,j (Changing order of summation)

≥ min
y∈∆(C)

∑
cj∈C

yj
∑
ri∈R

xiai,j∗ (By our choice of j∗)

= min
y∈∆(C)

∑
ri∈R

xiai,j∗ (yj sum to 1)

=
∑
ri∈R

xiai,j∗ (The term inside the min does not depend on y)

= min
cj∈C

∑
ri∈R

xiai,j . (By our choice of j∗)

Furthermore, we note that the pure strategy cj∗ can be represented as a mixed
strategy y′ with y′j∗ = 1 and y′j = 0 for all j ̸= j∗. Thus,

min
y∈∆(C)

xTAy ≤ xTAy′ = min
cj∈C

∑
ri∈R

xiai,j .

It follows that miny∈∆(C) x
TAy = mincj∈C

∑
ri∈R xiai,j.
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Similarly, for the second claim, let i∗ be the index for which∑
cj∈C

yjai,j

is the largest. Then,

max
x∈∆(R)

xTAy = max
x∈∆(R)

∑
ri∈R

∑
cj∈C

yjxiai,j (Algebra)

≤ max
x∈∆(R)

∑
ri∈R

xi

∑
ri∈R

yjai∗,j (By our choice of i∗)

= max
x∈∆(R)

∑
cj∈C

yjai∗,j (xi sum to 1)

=
∑
cj∈C

yjai∗,j (The term inside the max does not depend on x)

= max
ri∈R

∑
cj∈C

yjai,j (By our choice of i∗)

Further, we note that if we set x′ so that x′
i∗ = 1 and x′

i = 0 for all i ̸= i∗ then:

max
x∈∆(R)

xTAy ≥ x′TAy = max
ri∈R

∑
cj∈C

yjai,j,

so indeed maxx∈∆(R) x
TAy = maxri∈R

∑
cj∈C yjai,j.

We want Rosemary and Colin’s security levels for a given mixed strategy to
represent the worst possible outcome that can happen for each of them when they
play this strategy. The previous theorem implies that this worst case will always be
attained when the other player’s simply plays one of their pure strategies. Indeed,
note that our theorem shows that if Rosemary picks a strategy x ∈ ∆(R), then
for any of Colin’s strategies in y ∈ ∆(C) there is a there is a single pure strategy
cj ∈ C that would be as bad or worse for Rosemary as x. Similarly, if Colin mixed
strategy y ∈ ∆(C), then for any mixed strategy x ∈ ∆(R) there is a single pure
strategy ri ∈ R for Rosemary that would be as bad or worse for Colin. Based on
these observations, we can state a simple formula for the security levels for both
Rosemary and Colin:

149



10.2. General Nash Equilibria MTH5114 (Spring 2023)

Definition 10.2 (Security Level for a Mixed Strategy). For any mixed strategy
x ∈ ∆(R), Rosemary’s security level for x is given by:

min
cj∈C

∑
ri∈R

xiai,j

This is the smallest expected payoff (to Rosemary) of any single column under
the probability distribution x on rows of A.

Similarly, for any mixed strategy y ∈ ∆(C), Colin’s security level for y is
given by:

max
ri∈R

∑
cj∈C

yjai,j

This is the largest expected payoff (to Rosemary) of any single row under the
probability distribution y on columns of A.

Next, we show that many of the results and definitions for pure strategies can
be generalised in a straightforward way to handle mixed strategies. Moreover, we
will see that every zero-sum game has a Nash equilibrium when players can play
mixed strategies.

10.2 General Nash Equilibria

Our notion of equilibria for mixed strategies looks exactly like that for pure
strategies—at an equilibrium, neither player has any incentive to deviate from
their current strategy. However, in the general definition, we will now players al-
low players to use mixed strategies and they will consider their expected payoffs
with respect to these mixed strategies.

Definition 10.3 (General Nash Equilibrium for a Zero-Game). Consider a zero-
sum game with payoff matrix A. A pair of mixed strategies x ∈ ∆(R) and
y ∈ ∆(C) are said to be a Nash equilibrium for this game if and only if both:

xTAy ≥ x′TAy for all x′ ∈ ∆(R)

xTAy ≤ xTAy′ for all y′ ∈ ∆(C)

Note that the first condition says that—assuming Colin continues to play y—
Rosemary cannot improve her expected payoff by selecting any other mixed strat-
egy x′. Similarly, the second condition says that—assuming Rosemary continues
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to play x—Colin cannot improve his expected payoff by selecting any other mixed
strategy y′.

We now give a generalisation of Theorem 9.1 that will allow us to characterise
when a pair of mixed strategies forms a Nash equilibrium:

Theorem 10.2. Let x ∈ ∆(R) and y ∈ ∆(C) be a pair of mixed strategies for
a two-player, zero-sum game, and let:

u∗
r = min

cj∈C

∑
ri∈R

xiai,j

u∗
c = max

ri∈R

∑
cj∈C

yjai,j

be the security levels for x and y, respectively. Then, (x,y) is a Nash equi-
librium for this game if and only if u∗

r = u∗
c .

Proof. Similarly to the proof of Theorem 9.1, we must have:

min
cj∈C

∑
ri∈R

xiai,j = min
z∈∆(C)

xTAz ≤ xTAy ≤ max
z∈∆(R)

zTAy = max
ri∈R

∑
cj∈C

yjai,j (10.1)

Here, the first and last equations follow from Lemma 10.1. Now, suppose that
u∗
c = u∗

r. Then the right and left of (10.1) are equal and so both inequalities in
(10.1) must in fact be equations. In particular, we must have that:

xTAy = min
z∈∆(C)

xTAz ≤ xTAy′

for any y′ ∈ ∆(C) and also

xTAy = max
z∈∆(R)

zTAy ≥ x′TAy

for any x′ ∈ ∆(R). Thus, (x,y) is a Nash equilibrium.
Conversely, suppose that (x,y) is a Nash equilibrium. Then, for every x′ ∈

∆(R) we have:
xTAy ≥ x′TAy

and so xTAy = maxx′∈∆(R) x
′TAy. Similarly, for every y′ ∈ ∆(C) we have:

xTAy ≤ xTAy′

and so xTAy = miny′∈∆(C) x
′TAy. Thus, both inequalities in (10.1) hold with

equality. It follows the left and right of (10.1) are equal, and so u∗
r = u∗

c .
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10.3 Security levels and linear programming

So far, we have focused on characterising Nash equilibria, but have not considered
how a player might go about finding a mixed strategy that maximises his or her
security level. We will now show that in fact both players can compute their
optimal security levels, as well as the corresponding strategies, by using a linear
program!

Suppose that Rosemary has n pure strategies and Colin has m pure strategies,
so |R| = n, |C| = m.

Let’s consider Colin first. In order to optimise his security level, Colin wants
to find a strategy that minimises the maximum payoff that he could have to make
to Rosemary. That is, he wants to find a probability distribution y1 . . . , ym over
his m strategies so that

max
ri∈R

(y1ai,1 + y2ai,2 + . . .+ ymai,m)

is minimised. Also, for y to be a proper distribution, he should have:

y1 + y2 + · · ·+ ym = 1

and also yj ≥ 0 for all 1 ≤ j ≤ m. is as small as possible. Formally, we can write
this as a mathematical program:

minimize max
ri∈R

(y1ai,1 + y2ai,2 + . . .+ ymai,m)

subject to y1 + · · ·+ ym = 1

y1, . . . , ym ≥ 0

Using a trick we saw in Week 3, we can rewrite this into a linear program. We
introduce an unrestricted variable s to represent the minimum. Then, we say that
we want to minimise s, subject to the constraints that s is at least as large as each
possible expected payoff y1ai,1+ y2ai,2+ · · ·+ ymai,m. Formally, we get a program:

minimize s

subject to s ≥ y1a1,1 + y2a1,2 + · · ·+ yma1,m

s ≥ y1a2,1 + y2a2,2 + · · ·+ yma2,m
...

s ≥ y1an,1 + y2an,2 + · · ·+ yman,m

y1 + y2 + · · ·+ ym = 1

y1, . . . , ym ≥ 0

s unrestricted
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We can rearrange the constraints to get:

minimize s

subject to s− y1a1,1 − y2a1,2 − · · · − yma1,m ≥ 0

s− y1a2,1 − y2a2,2 − · · · − yma2,m ≥ 0

...

s− y1an,1 − y2an,2 − · · · − yman,m ≥ 0

y1 + y2 + · · ·+ ym = 1

y1, . . . , ym ≥ 0

s unrestricted

(10.2)

If Colin solves this linear program, the value assigned to s will tell him his best
possible security level, and the values y1, . . . , ym will tell him the probabilities with
which he should play pure strategies c1, . . . , cm to attain this security level.

Let’s now consider Rosemary’s security level. She wants to find a distribution
x that maximises the minimum expected payoff she might receive. That is, she
wants to find a probability distribution x1 . . . , xn over her n strategies so that

min
cj∈C

(x1a1,j + x2a2,j + . . .+ xnan,j)

is maximised. Similarly to Colin, for x to be a proper distribution, she should
have:

x1 + x2 + · · ·+ xn = 1

and also xi ≥ 0 for all 1 ≤ i ≤ m. We can write this problem as a mathematical
optimisation program:

maximize min
cj∈C

(x1a1,j + x2a2,j + . . .+ xnan,j)

subject to x1 + · · ·+ xn = 1

x1, . . . , xn ≥ 0

We can use essentially the same trick, and introduce a new variable t to represent
the minimum in the objective. Then, we need to make sure that:

t ≤ x1a1,j + x2a2,j + . . .+ xnan,j
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for every j. We get the linear program:

maximize t

subject to t ≤ x1a1,1 + x2a2,1 + . . .+ xnan,1

t ≤ x1a1,2 + x2a2,2 + . . .+ xnan,2
...

t ≤ x1a1,m + x2a2,m + . . .+ xnan,m

x1 + x2 · · ·+ xn = 1

x1, . . . , xn ≥ 0

t unrestricted

We can rearrange this to get a program that looks like:

maximize t

subject to t− x1a1,1 − x2a2,1 − . . .− xnan,1 ≤ 0

t− x1a1,2 − x2a2,2 − . . .− xnan,2 ≤ 0

...

t− x1a1,m − x2a2,m − . . .− xnan,m ≤ 0

x1 + x2 · · ·+ xn = 1

x1, . . . , xn ≥ 0

t unrestricted

(10.3)

If Rosemary solves this linear program, the value assigned to t will give her best
possible security level, and the values x1, . . . , xn will tell her the probabilities with
which she should play pure strategies r1, . . . , rn to attain this security level.

Example 10.2. Give a linear program for finding the row player’s optimal
mixed strategy for the zero-sum game with the following payoff matrix:

1 2
1 2 −3
2 −3 4
3 4 −5

Solution. Since we are interested in Rosemary’s optimal strategy, we should have
a program with a variable xi for each pure strategy ri ∈ R. Our program will have
a constraint saying that the expected payoff when Rosemary plays x should be at
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most the value this strategy gives for each of Colin’s pure strategies cj ∈ C. That
is, we will get a constraint for each column of the payoff matrix. The program is
given by:

maximize t

subject to t ≤ 2x1 − 3x2 + 4x3

t ≤ −3x1 + 4x2 − 5x3

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

t unrestricted

10.4 The Minimax Theorem

We are now prove the von Neumann minimax theorem, which shows that every
2-player zero-sum game has a genaral Nash equilibrium. The theorem actually
applies to a fairly broad class of linear optimisation problems, but we will state it
here in the language of zero-sum games.

In lectures we did not state the theorem in this way but we used essentially
the same proof to show that every 2-player zero-sum game has a general (mixed)
Nash equilibrium.

Theorem 10.3 (von Neumann Minimax Theorem). In any zero-sum game with
payoff matrix given by A, and row and column player strategies given by R
and C, respectively,

max
x∈∆(R)

min
y∈∆(C)

xTAy = min
y∈∆(C)

max
x∈∆(R)

xTAy .

Proof. Intuitively, the left-hand side represents the optimal security level for Rose-
mary, and the right-hand side represents the optimal security level for Colin. As we
showed in Lemma 10.1, we can compute these by considering only pure strategies
for the other player. That is, we have:

max
x∈∆(R)

min
y∈∆(C)

xTAy = max
x∈∆(R)

min
cj∈C

∑
ri∈R

xiai,j (10.4)

min
y∈∆(C)

max
x∈∆(R)

xTAy = min
y∈∆(C)

max
ri∈R

∑
cj∈C

yjai,j (10.5)
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Now, we will use the fact that each player can compute these security levels with a
linear program. Specifically, we saw that the objective of the linear program (10.2)
is equal to (10.4) and the objective of the linear program (10.3) is equal to (10.5).

Now, let’s look at the dual of the linear program (10.3). Recall that this
program is given by:

maximize t

subject to t− x1a1,1 − x2a2,1 − . . .− xnan,1 ≤ 0

t− x1a1,2 − x2a2,2 − . . .− xnan,2 ≤ 0

...

t− x1a1,m − x2a2,m − . . .− xnan,m ≤ 0

x1 + x2 · · ·+ xn = 1

x1, . . . , xn ≥ 0

t unrestricted

Let’s name the dual variables for each of the inequalities y1, . . . , ym and the dual
variable for the equation constraint s. Then, in our dual program, we will have
y1, . . . , ym ≥ 0 and s unrestricted. The objective function for our dual program
will then be simply s (since right-hand side of every constraint is 0 except for the
equation, which has right-hand side 1). For each non-negative primal variable xi

we will get a corresponding dual inequality constraint of the form:

−ai,1y1 − ai,2y2 − . . .− ai,mym + s ≥ 0

and for the unrestricted primal variable t we will get a corresponding dual equation
constraint:

y1 + y2 + · · ·+ ym = 1

Altogether, we can write the dual program as:

minimize s

subject to s− y1a1,1 − y2a1,2 − · · · − yma1,m ≥ 0

s− y1a2,1 − y2a2,2 − · · · − yma2,m ≥ 0

...

s− ≥ y1an,1 − y2an,2 − · · · − yman,m ≥ 0

y1 + y2 + · · ·+ ym = 1

y1, . . . , ym ≥ 0

s unrestricted
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Notice that this is precisely the program (10.2) for Colin’s security level. By strong
duality, these programs must have the same optimal solution, and so indeed the
expressions (10.4) and (10.5) are equal.

An immediate consequence of the minimax theorem shows that for any zero-
sum game there is always a pair of mixed strategies for Rosemary and Colin that
give the same security level. Combining this with Theorem 10.2, we get the fol-
lowing corollary:

Corollary 10.4. Every two-player zero-sum game has a Nash equilibrium.

The optimal security level for both players in a zero-sum game can be computed
by linear programming. We have just seen that there is always a mixed strategy
that gives both the same security level, which is also the expected payoff for their
strategies. It could be that there is more than 1 pair of such strategies, however.
Intuitively, we should expect that they all have the same expected payoff, since
they are all solutions of the same pair of dual linear programs. In the following
theorem, we show this directly. Additionally, we show that we can combining
Rosemary and Colin’s strategies from 2 different Nash equilibria to get another
Nash equilibrium.

Theorem 10.5. Suppose that (x,y) and (x′,y′) is a pair of strategies that are
both Nash equilibria for a given zero-sum game. Then, (x,y′) and (x′,y) are
also Nash equilibria. Moreover, all these equilibria have the same expected
payoff.

Proof. Since (x,y) is a Nash equilibrium, Rosemary and Colin do not have any
incentive to change to any other strategy (in particular, x′ or y′), and we must
have both:

xTAy ≥ x′TAy

xTAy ≤ xTAy′

Similarly, since (x′,y′) is a Nash equilibrium Rosemary and Colin do not have any
incentive to change to x or y. Thus, we have both:

x′TAy′ ≥ xTAy′

x′TAy′ ≤ x′TAy

Combining these 4 inequalities we get:

xTAy ≥ x′TAy ≥ x′TAy′ ≥ xTAy′ ≥ xTAy
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Clearly, this can only be true if all four inequalities are tight. Thus, each of the
4 pairs of strategies (x,y), (x′,y), (x,y′), (x′,y′) have the same expected payoff.
Let’s now show that both (x′,y) and (x,y′) are also Nash equilibria. Indeed, for
any other strategies a ∈ ∆(R) and b ∈ ∆(C) we must have:

xTAy′ = x′TAy′ ≥ aTAy′

xTAy′ = xTAy ≤ xTAb

Since (x′,y′) and (x,y) are Nash equilibria. Thus, (x,y′) is also a Nash equilib-
rium. Similarly,

x′TAy = xTAy ≥ aTAy

x′TAy = x′TAy′ ≤ x′TAb

and so (x′,y) is a Nash equilibrium.

Definition 10.4 (Value of a Two-Player Zero-Sum Game). We call the common
expected payoff of all Nash equilibria for a zero-sum game the value of the
game.
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Week 11

Game Theory (III)

11.1 General 2-Player Games

We now move beyond the simple setting of zero-sum games and consider arbitrary
2-player games. Recall that in a 2-player game, each possible pair of strategies
(ri, cj) ∈ R × C results in a payoff ur(ri, cj) to Rosemary and a payoff uc(ri, cj)
to Colin. For the past few lectures, we have always assumed that uc(ri, cj) =
−ur(ri, cj) for all ri ∈ R and cj ∈ C. This allowed us to represent the game with a
single payoff matrix, A where which we recorded ur(ri, cj) in the entry ai,j. Then,
we imagined Rosemary choosing her actions to make the selected outcome’s entry
in A as large as possible and Colin choosing his actions to make this entry as small
as possible. In the case of Colin, this was still the same as maximising payoff,
because uc(ri, cj) = −ai,j and so becomes larger when ai,j becomes smaller.

Now, we return to the general setting in which both players’ payoffs can be
arbitrary. In order to represent such games, we need to list both players’ payoffs
in each possible outcome. As we did when we originally introduced 2-player games,
we can do this by constructing a payoff matrix with a pair of payoffs in each entry.
In row i, column j, we list the pair

(ur(ri, cj), uc(ri, cj))

The first entry is the payoff to Rosemary when she plays ri and Colin pays cj, and
the second entry is the payoff to Colin in this same outcome. Note that we adopt
the convention that we always list Rosemary’s payoff first and Colin’s second.
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Example 11.1. Suppose that Rosemary and Colin are working on a joint
project. Each of them can choose to “work hard” or “goof off.” Both of them
must work hard together to receive a high mark for the project. Both have
utility 3 for receiving a high mark utility 1 for goofing off (regardless of what
mark they receive) and utility 0 for working hard but not receiving a high
mark. Give the payoff matrix for this game.

Solution. Here, there is only one outcome (work hard, work hard) that gets a high
mark. In this case, both players receive payoff 3. Otherwise, the project will not
receive a high mark, and a player will receive a utility value of 1 if he/she goofed
off, and 0 if he/she worked hard. We can represent this as a matrix as follows:

work hard goof off
work hard (3, 3) (0, 1)
goof off (1, 0) (1, 1)

Notice that our example game is not a zero-sum game, because the pair of payoffs
do not sum to zero in every case. This means that the game is no longer strictly
competitive: An outcome that makes Rosemary happy does not necessarily make
Colin less happy. In this scenario, we can see that each player receives the highest
payoff when they work hard together. Do we expect that this will always happen?

Unfortunately, a lot of our intuition about rational players stops working for
non-zero-sum games. In particular, we can no longer compute optimal strategies
by using linear programming! Luckily, we can still use the notion of an equilibrium
state to reason about these games.

Definition 11.1 ((Pure) Nash Equilibrium for a general two-player game). Con-
sider a general two player game in which the row and column player have
strategies R and C and utility functions ur : R×C → R and uc : R×C → R.
Then, a pair of strategies ri ∈ R and cj ∈ C is a Nash equilibrium for this
game if and only if both

ur(ri, cj) ≥ ur(ri′ , cj) for all ri′ ∈ R

uc(ri, cj) ≥ uc(ri, cj′) for all cj′ ∈ C

Notice that this corresponds exactly to our previous notion of an Nash equilibrium
for zero-sum games. It simply says that if (ri, cj) is a Nash equilibrium then neither
player would prefer to switch to any of his or her other strategies—assuming that
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the other player keeps playing his or her current strategy. You can check that if
ur(ri, cj) = ai,j and uc(ri, cj) = −ai,j for all i and j, then this definition indeed
simplifies to Definition 9.5.

If we look at the payoffs in Example 12.1, we can identify 2 pure Nash equilibria.
If both players are working hard, then neither player has an incentive to switch
to the goof off strategy. If both players are goofing off, then neither player has an
incentive to switch to the work hard strategy. Thus, (work hard, work hard) and
(goof off, goof off) are both Nash equilibria of this game.

This demonstrates 2 major differences between zero-sum games and general
games. First, notice that our 2 Nash equilibria have different payoffs. In contrast,
we proved that for zero-sum games all Nash equilibria would have the same payoff
to Rosemary and so also to Colin. Next, suppose that Rosemary and Colin each
compute a security level, corresponding to the worst thing that could happen if
they played a given strategy. Rosemary finds that her worst payoff when she works
hard is 0, and her worst payoff when she goofs off is 1. Colin finds the same. Thus,
both players have a security level of at most 1. However, in contrast to zero-sum
games there is an equilibrium strategy that is better than this security level. In
fact, the best Nash equilibrium gives each player their worst security level!

This means that thinking about the best possible strategy in a non-zero-sum
game is not so straightforward. In general, our analysis may depend on whether
or not we assume that players are allowed to communicate before the game to
decide on a mutually beneficial strategy. In zero-sum games this was not an issue,
because the players were always in competition with one another.

Instead of using security levels, we can compute pure Nash equilibria by con-
sidering Rosemary and Colin’s best response to each others possible strategies:

Definition 11.2 (Best Response to a Strategy). For any strategy cj ∈ C, Rose-
mary’s best response to cj is any strategy ri ∈ R with:

ur(ri, cj) = max
rℓ∈R

ur(rℓ, cj) .

For any strategy ri ∈ R, Colin’s best response to ri is any strategy cj ∈ C
with:

uc(ri, cj) = max
ck∈C

uc(ri, ck) .

Intuitively, each player’s best response to some opponent’s strategy x is simply
the strategy from their own set that gives them the highest payoff when their
opponent plays strategy x. We can easily compute the best responses by looking
at our matrix. Each of Colin’s strategies is a column. Thus, Rosemary’s best
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response to a strategy cj corresponds to the row that has the largest first entry for
the column corresponding to cj. Note that if there is a tie for the largest entry, then
all of the tied strategies will be best responses. Similarly, Colin’s best response to
a strategy ri ∈ R corresponds to the column that has the largest second entry in
the row corresponding to ri.

Note that in order for a pair of pure strategies (ri, cj) to be a Nash equilibrium,
Rosemary must have no better payoff in the column corresponding to Colin’s
current strategy cj and Colin must have no better payoff in the row corresponding
to Rosemary’s current move ri. That is, ri must be a best response to cj and vice
versa. This gives us an easy way to find all pure Nash equilibria.

We go through the columns of the matrix one by one and mark the largest payoff
for Rosemary in each column. These will be her best responses for each of Colin’s
corresponding strategies. Then, we go through the rows and mark the largest
payoff to Colin each row. These will be his best responses for each of Rosemary’s
corresponding strategies. Then, a pair of strategies is a pure Nash equilibrium if
and only if its payoffs to both Colin and Rosemary have been marked.

For Example 12.1, underlining Rosemary’s best responses gives us:

work hard goof off
work hard (3, 3) (0, 1)
goof off (1, 0) (1, 1)

Then, additionally underlining Colin’s best responses, we get:

work hard goof off
work hard (3,3) (0, 1)
goof off (1, 0) (1,1)

Thus, we find that the pure Nash equilibria are (word hard, work hard) and (goof
off, goof off).

Example 11.2. Find all pure Nash equilibria for the games with the following
payoff matrices.

c1 c2 c3
r1 (0,−1) (1, 2) (2,−1)
r2 (2, 1) (0,−1) (2, 1)
r3 (0, 2) (−1, 1) (1,−1)

c1 c2 c3
r1 (1, 0) (0, 1) (1,−1)
r2 (−1, 1) (1, 0) (0, 1)

Solution. As before, to find the best responses, we mark the largest first value in
each column and the largest second value in each row. For the first game, this
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gives:
c1 c2 c3

r1 (0,−1) (1,2) (2,−1)
r2 (2,1) (0,−1) (2,1)
r3 (0,2) (−1, 1) (1,−1)

Thus, the pure Nash equilibria are (r1, c2), (r2, c1), and (r2, c3). Notice that we
marked both of Rosemary’s 2’s in the third column and both of Colin’s 1’s in the
second row, since both had the largest value.

For the second game, we get:

c1 c2 c3
r1 (1, 0) (0,1) (1,−1)
r2 (−1,1) (1, 0) (0,1)

Thus, this game does not have any pure Nash equilibria.

Our second example showed that, just like we saw for zero-sum games, a non-
zero sum game might not have any pure Nash equilibrium. The solution to this
problem is the same as it was there. We can allow Rosemary and Colin to play
mixed strategies x ∈ ∆(R) and y ∈ ∆(C). Then we examine each of their expected
payoffs under these strategies. Let Ar be the matrix that contains only Rosemary’s
payoffs and Ac be the matrix that contains only Colin’s payoffs (that is, Ar has
as its entries the first number from each cell in our combined payoff matrix and
Ac has as its entries the second number) then, Rosemary’s expected payoff will
be xTAry and Colin’s expected payoff will be yTAcy. Similarly to before, we can
then generalise the notion of Nash equilibrium as follows:

Definition 11.3 (Nash Equilibrium for a General 2-player Game). A pair of mixed
strategies x ∈ ∆(R) and y ∈ ∆(C) are said to be a Nash equilibrium for a
two-player game if and only if both:

xTAry ≥ x′TAry for all x′ ∈ ∆(R)

xTAcy ≥ xTAcy
′ for all y′ ∈ ∆(C)

John Nash showed, as part of his PhD thesis the following general result: ev-
ery game has a Nash equilibrium. The result works even for games that are not
zero-sum. It also holds in settings not considered here, such as games with more
than 2 players, or games where each player has an infinite number of strategies.
However, unlike our proof for the 2-player zero-sum case, his proof relies on re-
sults from topology (specifically Brouwer’s fixed-point theorem). Moreover, the
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proof does not give a method for calculating the equilibrium strategies. Recent
results in theoretical computer science suggest that, in contrast to the zero-sum
case, computing a Nash equilibrium of a general game might be impossible to do
efficiently.

11.2 The Prisoner’s Dilemma

The most famous example from game theory is the following game called “The
Prisoners’ Dilemma.” Rosemary and Colin have been arrested by the police as
suspects. The police question them separately in different rooms. Each can either
snitch on the other or can keep quiet. The payoff matrix looks like this:

snitch keep quiet
snitch (−2,−2) (0,−3)

keep quiet (−3, 0) (−1,−1)

We can interpret the game as follows. If both keep quiet, the police have only
enough evidence to put them in prison for 1 year. If one snitches on the other,
then he/she can go free and the other will serve a 3 year sentence. If both snitch,
then each of them will have to serve a 2 year sentence. If we examine the payoff
matrix, we see that there is only 1 pure Nash equilibrium—that is when both
players snitch!

Note that the strange thing about this game is that the players will converge
to the outcome that is the worst overall in terms of their average happiness. That
is, the Nash equilibrium involves 4 total years of prison time, which is more than
any other outcome. Additionally, both players are better off if they keep quiet.
However, because they cannot communicate, neither can ensure that the other
player will not snitch.

The prisoner’s dilemma has been used to model a variety of scenarios, including
nuclear armament in the Cold War and reactions to climate changes. We end the
module by returning to our example from the Golden Balls game show. There,
we saw that there was a pot of £13, 600 available to the players and they had 2
choices—split or steal. We can represent the payoffs to the players in the game
show as follows:

split steal
split (6800, 6800) (0, 13600)
steal (13600, 0) (0, 0)

You can see that this game is very similar to the Prisoner’s dilemma. Specifically,
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if we identify the players’ best responses, we find the following:

split steal
split (6800, 6800) (0,13600)
steal (13600,0) (0,0)

Here, there are actually 3 equilibria. However, we could argue that if Rosemary
knew that Colin was going to steal, she would probably rather see him get nothing
than get £13,600, and similarly for Colin. We can build this extra preference into
the players’ utility functions by introducing a small value ϵ > 0 representing the
satisfaction of seeing the greedy stealing player get nothing. Then, our payoff
matrix and best responses look like this:

split steal
split (6800, 6800) (0,13600)
steal (13600, 0) (ϵ, ϵ)

Now, the only Nash equilibrium becomes (steal,steal). Just as in the Prisoner’s
dilemma, this is the worst overall outcome in terms of total utility for both players.
In the episode of Golden balls that we watched, one player (let’s use Rosemary in
our example) did a strange thing by promising to steal and then give half the money
to the other player after the show. Similar scenarios are studied in more advanced
game theory, where they are called a cooperative games with side payments or
utility sharing.

We can now mathematically show why this was a good strategy. Assuming
Rosemary’s promise to split the winnings after the show can be trusted, the payoff
matrix for the game would become:

split steal
split (6800, 6800) (0, 13600)
steal (6800, 6800) (ϵ, ϵ)

Now, when we compute the best responses for each player, we find:

split steal
split (6800, 6800) (0,13600)
steal (6800,6800) (ϵ, ϵ)

So, the unique Nash equilibrium is no (steal, split). That is, by offering a pay-
ment Rosemary has changed the game so that a mutually beneficial outcome is an
equilibrium. This is clearly better for both players than the steal, steal outcome!
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Figure 11.1: A road network with travel times.

11.3 Braess’s Paradox

Note: this section is included as an example of a more complicated result from
game theory. It is non-examinable (but hopefully interesting!)

In The Prisoner’s Dilemma, we have seen an example of a 2-player game in
which the only Nash equilibrium in fact leads to a strictly worse outcome for both
players than another pair of strategies would. Here, we will see another striking
example of this phenomenon. Suppose that there are 2 towns S and T joined by
a road network, as shown in Figure 12.1. The two arrows A → T and S → B
represent highways and the two arrows S → A and B → T represent smaller
roads. We suppose that the average time to travel each highway is a constant: 12
minutes. Due to traffic congestion, the average travel along the two roads depends
on the number of users of the road.1 We suppose that when there are n drivers
taking one of the roads the travel time on this road is given by n/10.

We can model this as a 100-player game, in which each player is a driver
whose available strategies are possible choices of routes from S to T . Each driver
wants to select a route with the goal of minimising his or her average travel time.
We now show that the unique Nash equilibrium for this setting is when 50 of
our 1000 drivers travel along the top road and highway and the other 50 travel
along the bottom. Indeed, note that in this case, all drivers have a travel time
of 50/10 + 12 = 17 minutes. Here, the first term is due to the road, which will
have 50 drivers, and the second is due to the highway, which has a constant cost
of 12 minutes. Consider an arbitrary driver, and let’s consider whether it might

1Of course, the travel time for the first person taking this road will likely not depend on the
number of user. Here we imagine a scenario in which 100 drivers commute from S to T every
morning at 8:00 AM. On any given day we suppose a driver may arrive slightly before or after
any other driver and their relative order is random. Then, for an individual driver it makes sense
instead to consider the average travel time.
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be better to switch to the other route. If the other 99 continue to take the same
route, her new average travel time will be 51/10 + 12 = 17.1 minutes. This is
strictly worse. The same is true for any one of our 100 drivers, and so we see that
no one has any incentive to change route. In other words, this is indeed a Nash
equilibrium.

We now show that no other combination of strategies give a Nash equilibrium.
Indeed suppose that x drivers take the top route S → A → T and 100− x drivers
take the bottom route S → B → T . Suppose first that x > 50. Then, a driver
currently on the top route has average travel time x/10 + 12 > 5 + 12 = 17.
If this driver switched to the bottom route, he would have average travel time
(100−x)/10+12 < (100−50)/10+12 = 17 and so would do strictly better. Thus,
this cannot be a Nash equilibrium. The case in which x < 50 can be analysed
in exactly the same way. It follows that the only Nash equilibrium of our traffic
game has exactly x = 50 drivers along each route, and the average travel time for
each driver is 17 minutes.

Suppose now that a new highway is built between points A and B, as shown
with a dashed line in Figure 12.1. The highway has a constant travel time of 1
minutes. Intuitively, building a road should only make the situation better for
everyone. However, we will see that, surprisingly, this is not the case!

Suppose we are in the situation where 50 drivers take the top route and 50
take the bottom route. Then, a driver currently taking route S → A → T will
notice that the route S → A → B → T now takes time 50/10 + 1 + 51/10 = 11.1
minutes. This is better than 17, so she will switch. It follows that our original
Nash equilibrium is no longer an equilibrium after building the road. We now show
that in the only equilibrium after building the new road, all 100 drivers travel the
path S → A → B → T . First, note that, regardless of what the other drivers are
doing, no driver ever has an incentive to take either of the highways S → B or
A → T . Indeed, both of these cost 12 minutes, but we could replace these links
by S → A → B or A → B → T , respectively, and each of these has a total cost of
n/10 + 1 ≤ 11 (since n ≤ 100). Thus, it is always better to substitute the route
S → A → B for S → B (and similarly A → B → T for B → T ), and so no
Nash equilibrium has any driver travelling along either highway S → B or A → T .
It follows that when all 100 drivers take the route S → A → B → T there is
no incentive for any of them to change route and so this is a Nash equilibrium.
Moreover, if any 1 takes another route, we have just seen that this driver would
prefer to switch, so no other combination of strategies is a Nash equilibrium.

It follows that the unique Nash equilibrium after we build the extra road A → B
has all 100 drivers travelling the route S → A → B → T . The average travel time
for a driver on this route is 100/10+1+100/10 = 21. Notice that this is larger than
the average travel time before we built the road! This result is called “Braess’s
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Paradox.” Although it indeed seems paradoxical at first, intuitively the reason it
happens is that each driver behaves selfishly to minimise their own travel time.
Thus, even though we know there is a configuration for everyone that is better
(namely 50 drivers taking S → A → T and 50 taking S → B → T ), no single
driver wants to be the first to switch to this; indeed until enough of the other
drivers also switch, this alternative route will costs more. We see that if each
driver acts purely selfishly, the overall outcome is worse for everyone than if they
together coordinated and agreed not to use the road A → B. This is related to
the concept of the “price of anarchy” from algorithmic game theory, which is the
worst case ratio between the overall welfare that can be achieved by a centralised
planner versus what will happen if all agents act in their own interests.
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