IV-1. What are the quotients and remainder when X^{5} is divided by $X^{2}+(1+\sqrt{-1}) X+\sqrt{-1}$ in $\mathbb{C}[X]$.

IV-2. Given an example of a ring R and a polynomial f in $R[X]$ such that the number of solutions in R is greater than $\operatorname{deg}(f)$.

IV-3. If x and y are elements of a ring R such that $x y=y x$, we say that x and y commute, or x commutes with y. Find all 2-by-2 matrices with coefficients in \mathbb{R} which commute with $\left(\begin{array}{cc}3 & 4 \\ -2 & -3\end{array}\right)$.

IV-4. Let R be a ring and n be a positive integer. Describe the rings $\mathrm{M}_{n}(R[X])$ and $\mathrm{M}_{n}(R)[X]$. Given an example of an element of each ring with $n=2$ and $R=\mathbb{Z}$. Explain how these two rings are related to each other.

IV-5. Let R be a ring. Prove $(\mathrm{R} \times 1)$ for $\mathrm{M}_{2}(R)$.
IV-6. Let R be a ring. Prove that the set $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in R\right\}$ of 2-by-2 matrices over R whose lower left entry is zero is a ring, with the usual addition and multiplication of matrices. You may assume that $\mathrm{M}_{2}(R)$ is a ring.

IV-7. Label the corners of a regular pentagon 1 through 5 in order. Each of the symmetries of the pentagon- reflections, rotations, and the identity (doing nothing)- gives a permutation in S_{5} describing how it moves the corners. (a) Write down the set of all these permutations. (b) Is your set closed under composition?

IV-8. A permutation matrix in $\mathrm{M}_{n}(\mathbb{R})$ is a matrix so that, in each row and column, there is exactly one 1 , and all other entries are 0 . For example, the identity matrix is a permutation matrix. (a) Pick some $n \geqslant 3$ and write down two more permutation matrices in $\mathrm{M}_{n}(\mathbb{R})$ other than the identity matrix. Then compute their product. (b) Why is the name 'permutation matrix' appropriate?

