MTHG6101: Introduction to Machine Learning
Semester B, 2023-24

Week 1, introductory slides

Kostas Papafitsoros & Hugo Maruri-Aguilar
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Timetable

Lectures:

e (1) Tuesdays, 14:00-16:00 (Weeks 1-6, 8-12), Peoples Palace: Skeel-LT
Wednesdays, 09:00-11:00 (Weeks 1-6, 8-12), iQ East C. (Scape): 0.14

2)
e (1) Thursdays, 14:00-15:00 (Weeks 1-6, 8-12), Gr. Ctr: G.10 (Peston LT)
(2) Thursdays, 15:00-16:00 (Weeks 1-6, 8-12), Maths: MLT
IT-labs:
e (i) Fridays: 16:00-17:00 (Weeks 3-9, 11-12), Queens: QB-202
e (ii) Fridays: 17:00-18:00 (Weeks 3-9, 11-12), Bancroft: 1.15A
e (iii) Fridays: 17:00-18:00 (Weeks 3-9, 11-12), Bancroft: 1.23
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Prerequisites

e Linear Algebra | and Calculus

e Statistical Modelling | (essential)
e Statistical Modelling Il (helpful)
e Probability and Statistics

Programming language:

e Rstudio
https://cran.r-project.org
https://rstudio.com/products/rstudio/download/

https://rdrr.io/snippets
— Check instructions on Week 2 on QMplus!
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Syllabus

Quick revision, Week 1:
Linear algebra, Calculus, Statistics

h’
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Assessment

Week 7, Friday, 10-12am  Week 12, TBA

Exam period, TBA
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Communication /Questions/Discussions

— Office hours: Mondays 14:00-16:00, MB117 (or via teams)
— You can you ask questions on teams and the student forum

— Learning Cafe (more on that later)
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Communication /Questions/Discussions

— Office hours: Mondays 14:00-16:00, MB117 (or via teams)
— You can you ask questions on teams and the student forum

— Learning Cafe (more on that later)

There is no such thing as a stupid question

(and we are very approachable)
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What is machine learning?
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How was science traditionally done:
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How was science traditionally done:

Build a model Collect data Test the model

www.marinedataservice.com, CC BY-SA 4.0
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How was science traditionally done:

Build a model Collect data Test the model
77 Model agrees
with the data

I'M THE KING UF[THE WORLD!
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How was science traditionally done:

Collect data Test the model
Model disagrees
with the data

www.marinedataservice.com, CC BY-SA 4.0
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How was science traditionally done:

Collect data Test the model
Model disagrees
with the data

www.marinedataservice.com, CC BY-SA 4.0

Build a better model
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Google says new Al models allow for ‘nearly
instantaneous’ weather forecasts
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What changed? (from early 2000’s)

e Huge amount of data became gradually available
e Increased computing power to deal with so much data

e Development of sophisticated algorithms
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There are roughly two types of

r methods in machine learning: ﬁ

Supervised learning Unsupervised learning
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Supervised learning
e Available data come with
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e Input-outputs pairs are
specified for these data

— Predict labels for new
data or an output given
some new input

Unsupervised learning
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There are roughly two types of

r methods in machine learning: ﬁ

Supervised learning Unsupervised learning
e Available data come with e Available data do not
known labels come with known labels
e Input-outputs pairs are e There are no input-
specified for these data output data pairs
— Predict labels for new — Learn patterns, identify
data or an output given distinct groups, generate
some new input new examples
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Examples

Supervised learning

e Available data come with known labels
e Input-outputs pairs are specified for these data

— Predict labels for new data or an output given some new input
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Examples

Supervised learning

e Available data come with known labels
e Input-outputs pairs are specified for these data

— Predict labels for new data or an output given some new input

Classification: Assign data to categories (labels)
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Supervised learning
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Classification: Assign data to categories (labels)
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Examples

Supervised learning

e Available data come with known labels
e Input-outputs pairs are specified for these data

— Predict labels for new data or an output given some new input

Classification: Assign data to categories (labels)

4
Turtle A Turtle B Turtle A Turtle B

Methods: Logistic regression, decision trees, linear discriminant analysis, K-nearest neigh-

bour, support vector machines, neural networks... 1317



Examples

Supervised learning

e Available data come with known labels
e Input-outputs pairs are specified for these data

— Predict labels for new data or an output given some new input

Regression: Predict continuous quantities from input data
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Examples

Supervised learning

e Available data come with known labels
e Input-outputs pairs are specified for these data

— Predict labels for new data or an output given some new input

Regression: Predict continuous quantities from input data
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Methods: Linear regression, nonlinear regression, Gaussian processes, neural networks...
14/17



Examples

Unupervised learning

e Available data do not come with known labels

e There are no input-output data pairs

— Learn patterns, identify distinct groups, generate new examples

Dimensionality reduction: Map high dimensional data into low
dimensions while still keeping relevant information

2
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feature 1
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Examples

Unupervised learning

e Available data do not come with known labels

e There are no input-output data pairs

— Learn patterns, identify distinct groups, generate new examples

Dimensionality reduction: Map high dimensional data into low

dimensions while still keeping relevant information

2

feature

feature 1

Methods: Principal component analysis, factor analysis, neural networks...
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Examples

Unupervised learning

e Available data do not come with known labels
e There are no input-output data pairs

— Learn patterns, identify distinct groups, generate new examples

Clustering: Organise data in groups of similar points
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Examples

Unupervised learning

e Available data do not come with known labels
e There are no input-output data pairs

— Learn patterns, identify distinct groups, generate new examples

Clustering: Organise data in groups of similar points

Methods: Agglomerative clustering, K-means clustering
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Summarizing;:

Supervised learning

e Classification: To which category does this data point belong?

e Regression: Given this input from a data set, what is the likely
value of a particular quantity?

Unupervised learning

e Dimensionality reduction: What are the most significant fea-
tures of the data and how can they be summarised/visualised?

e Clustering: Which data points are similar to each other?

Other types (not covered in this module):
Neural networks, deep learning, semi-supervised learning, reinforcement learning...
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