
MTH6101 Introduction to Machine learning- 2023/24

HMA

April 9, 2024

Printed notes
This booklet contains notes and problem questions for the Module “MTH6101 In-
troduction to Machine learning” The booklet complements lectures and thus it is
not a substitute for attending lectures. The printed notes and the scanned notes are
also not a substitute for your own handwritten notes. In this Module, laboratory
work is essential and not an optional activity.

Note that everything in these notes and what is covered in lectures, coursework
and labs is examinable.

A note on the Calendar: Computer labs will start in week 2.
Update: In week 12, there will be no Friday lab but we’ll have the midterm

test.
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Week one
This Module is concerned with four topics

1. Principal component analysis

2. Clustering data

3. Classification

4. Lasso and regularization

Formulæ and review of concepts from linear algebra
Before the first Module topic, we review eigenvalues and eigenvectors of a square
matrix. Then we look at two important matrix factorizations. The first is the
Karhunen-Loeve decomposition for square matrices, and the second is the singular
value decomposition of a matrix.

Eigenvalues and eigenvectors of a matrix
Consider a real valued square matrix A of size p (i.e. p×p) which has full rank, that
is, an invertible matrix. This matrix A has associated eigenvectors v1, . . . , vp

and eigenvalues λ1, . . . , λp. The eigenvalues are (complex) numbers λi which
are the roots of the characteristic polynomial det (A − λI) with I and identity
matrix of the appropriate size. The reproducing property that eigenvector vi and
eigenvalue λi of A satisfy is

Avi = λivi.

Because the matrix A is invertible, it has no zero eigenvalues. We further assume
that A has no repeated eigenvalues and that the associated eigenvectors are linearly
independent.

Let Q be defined as Q := (v1 v2 · · · vp), that is a matrix built by collecting
the eigenvectors of A as columns of it and let Λ be a diagonal matrix with the
corresponding eigenvalues of A in its diagonal Λ := diag (λ1, λ2, . . . , λp). The
following decomposition holds

A = QΛQ−1.
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Two matrix decompositions
Other two matrix decompositions are given next. The first is the spectral de-
composition, also known as the Karhunen-Loeve decomposition (KL). This
decomposition is a specialized result which follows from the fact that if A is symmet-
ric then all its eigenvalues are real and that eigenvectors corresponding to different
eigenvalues are orthogonal.

The Karhunen-Loeve (spectral) decomposition of a square symmetric matrix
A of size p is the factorization

A = QΛQT ,

where Q = (v1 v2 · · · vp) is the same matrix of columns with eigenvectors as above,
but now the columns (eigenvectors) of A are an orthonormal set, that is QQT = I.
It is standard practice that the diagonal matrix Λ contains the eigenvalues of A
written in decreasing order. The KL (spectral) decomposition of A can also be
written as

A =
p∑

i=1

λivivT
i ,

that is, a sum of rank one matrices.
Consider a matrix X of size n×p. The singular value decomposition (SVD)

factorizes X as
X = UDVT ,

where U is a matrix of size n×min(n, p) that satisfies UT U = I and whose columns
are eigenvectors of XXT ; and V is a matrix of size p×min(n, p) that satisfies VT V =
I and whose columns are eigenvectors of XT X. The matrix D is a rectangular
diagonal matrix of size min(n, p)×min(n, p) that in its diagonal contains the square
roots of eigenvalues of XXT in decreasing order.

While the computation of eigenvalues described at the beginning of this revision
can only be done for square matrices, the SVD decomposition can be done for any
matrix, not necessarily square. An important result is that if X is square and
symmetric, the singular value decomposition coincides with the Karhunen-Loeve
(spectral) decomposition.

In a similar manner as with the spectral decomposition, the matrix X can be
written as a sum of rank one matrices, that is

X =
min(n,p)∑

i=1

diuivT
i ,
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where the sum is over the relevant non-zero diagonal elements di of D, and ui is a
(eigenvector) column of U with n elements and vi as a (eigenvector) columns of V
with p elements.

R and RStudio
You will be using R for data analysis and I recommend that you do a review of past
R material that you may have done. If you have a computer you may want to install
the software which can be downloaded for free from https://www.r-project.org/.
We will use the friendly environment RStudio so once you have R, RStudio can be
downloaded from https://rstudio.com/products/rstudio/download/ We will use
the markdown capability of RStudio so check that it works. If it does not work, you
may need to also install the pandoc functionality https://pandoc.org/

Simple operations

2+2 ## Basic arithmetic operations

## [1] 4

2*2; 2-2; pi; 2/0

## [1] 4
## [1] 0
## [1] 3.141593
## [1] Inf

Matrix decompositions

A<-matrix(ncol=2,byrow=TRUE,c(4,1,-1,0)); A

## [,1] [,2]
## [1,] 4 1
## [2,] -1 0

eigen(A) ## eigenvector and eigenvalue calculation

## eigen() decomposition
## $values
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## [1] 3.7320508 0.2679492
##
## $vectors
## [,1] [,2]
## [1,] 0.9659258 -0.2588190
## [2,] -0.2588190 0.9659258

svd(A) ## singular value decomposition

## $d
## [1] 4.236068 0.236068
##
## $u
## [,1] [,2]
## [1,] -0.9732490 0.2297529
## [2,] 0.2297529 0.9732490
##
## $v
## [,1] [,2]
## [1,] -0.9732490 -0.2297529
## [2,] -0.2297529 0.9732490

Other resources and help

A starting point in R is the page https://www.r-project.org/ and also the page
https://stat.ethz.ch/R-manual/R-devel/library/ For matrix material, a vast
manual from https://www.math.uwaterloo.ca/˜hwolkowi/matrixcookbook.pdf is
“The Matrix Cookbook”.
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Exercises matrices
Exercise 1 Eigenvalues, eigenvectors. For each of the following matrices:

1 :

(
−1 −2 2
−3 5 −3
−3 8 −6

)
, 2 :

(
−6 4 4
−1 2 1
−7 4 5

)
, 3 :

(
1 1 1

−6 3 6
4 1 −2

)
,

4 :

 −1 3 −3 3
0 2 −6 6

−5 3 1 3
−5 3 5 −1

 , 5 :

 −9 1 12 −6
−6 4 6 −6
−6 1 9 −6

1 0 −1 −2

 ,

6 :
(

0 1
2 1

)
, 7 :

(
−1 −2 2

1 2 −4
1 1 −3

)
, 8 :

(
−2 4 −4
−1 0 −1
−1 −2 1

)
.

1. Compute the eigenvector-eigenvalue decomposition of the matrices. Remem-
ber to define the matrix using the R command matrix and then use the function
eigen.

2. For every pair eigenvector-eigenvalue, verify numerically that they satisfy the
reproducing property Avi = λivi. Recall that %*% is the syntax for matrix
product in R.

3. Compute and write the characteristic polynomial. Also find numerically its
zeroes. For this, use functions charpoly, poly2str and polyroots from library
pracma.

4. Plot the characteristic polynomial and show graphically that it has zeroes at
the eigenvalues you just found. For this, write a function using polyval and
the characteristic polynomial you just computed, and then plot it using curve.

Exercise 2 Eigenvalues, eigenvectors (challenging). Doing computations by
hand, for each of the following matrices write the characteristic polynomial and
then determine eigenvalues and eigenvectors:(

1 −2
1 1

)
,

(
1 −1
1 1

)
,

(
1 0
1 1

)
,

(
1 1
1 1

)
.

Comment on your results. Are you surprised?
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Exercise 3 Spectral decomposition For each of the following matrices.

1 :

(
0.51111 0.17778 −0.22222
0.17778 0.64444 0.04444

−0.22222 0.04444 0.44444

)
, 2 :

(
1 0.13333 0.26667

0.13333 0.66667 −0.4
0.26667 −0.4 0.73333

)
,

3 :

(
0.64444 −0.22222 0.04444

−0.22222 0.71111 0.17778
0.04444 0.17778 0.84444

)
,

4 :

 1.1476 −0.26529 0.22452 −0.17005
−0.26529 1.20698 0.01164 −0.33588

0.22452 0.01164 1.28606 0.10687
−0.17005 −0.33588 0.10687 1.15936

 ,

5 :

 0.63111 −0.22133 0.27727 0.15962
−0.22133 0.7872 −0.31364 −0.38423

0.27727 −0.31364 0.58496 0.06731
0.15962 −0.38423 0.06731 0.59672


1. Compute the Karhunen-Loeve decomposition (spectral decomposition). This

is a computation of eigenvalues λi and eigenvectors ai similar to that of Ex-
ercise 1 and for this use the R function eigen.

2. Using the results you just obtained and with your eigenvalues λ1, λ2, . . . in de-
creasing order, write a series of matrices

∑1
i=1 λiaiaT

i = λ1a1aT
1 ,
∑2

i=1 λiaiaT
i =

λ1a1aT
1 +λ2a2aT

2 , . . .,
∑p

i=1 λiaiaT
i which are approximations to the matrix

you just decomposed. Comment on the approximation. For this, simply use
the eigenvalues and eigenvectors read as $values and $vectors from the result
of the command eigen.

3. In a similar form as the previous step and using the same decreasing order for
the eigenvectors, compute (with R) and write a series of matrices

∑1
i=1 aiaT

i =
a1aT

1 ,
∑2

i=1 aiaT
i = a1aT

1 +a2aT
2 , . . .,

∑p

i=1 aiaT
i . Does your result coincide

with what you would expect?

Exercise 4 Singular value decomposition For each of the following matrices:

1 :
(

−1 1 −1
1 0 0

)
, 2 :

(
0 −1 −1
1 −1 −1

)
,
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3 :

(
−1 0 −1 1

0 1 0 −1
−1 1 1 1

)
, 4 :

(
−1 −1
−1 0
−1 1

)

5 :

(
1 1
1 1
0 1

)
, 6 :

(
−1 1
−1 0

1 0

)
1. Compute the singular value decomposition (R) and report the results.

2. Using the results you just obtained with eigenvalues d1, d2, . . . sorted out in
decreasing order and corresponding eigenvectors u1, u2, . . . and v1, v2, . . .,
compute a series of approximations of rank one using R. These are d1u1vT

1 ,
d1u1vT

1 + d2u2vT
2 , . . . as appropriate according to the matrix dimensions.

Comment on your results. Recall that you will be using the columns of the
matrices from the svd decomposition together with the eigenvalues.

Exercise 5 Singular value decomposition The singular value decomposition is
not restricted to square matrices yet it can be done for square matrices. Do the
numerical singular value decomposition for each of the square matrices in Exercises
1 and 3. Comment on the results with special emphasis in the simmilarities and
differences between what you obtained with commands eigen and svd.
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Important points and concepts of week one:

1. Eigenvalues and eigenvectors of a square matrix; the reproducing property
Avi = λivi and the decomposition A = QΛQ−1.

2. The Karhunen-Loeve (spectral) decomposition of a square symmetric matrix
A = QΛQT =

∑p

i=1 λivivT
i .

3. The singular value decomposition X = UDVT =
∑

i=1 diuivT
i of any matrix

X.

4. Distinguish between the cases above: When you can do each factorization?
When do they coincide?

5. You are expected to become proficient with the numerical manipulation
of the matrices and decompositions using R and RStudio. The main functions
for practice are eigen() and svd().
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Week two
Preliminaries from Calculus: derivatives and Lagrange multi-
pliers
Consider the linear form As and the quadratic form sT Bs, where B is a sym-
metric matrix and s is a column vector of indeterminates s1, s2, . . . and the opera-
tions with matrices are well defined. The derivatives of the linear form and of the
quadratic form are:

∂

∂s
(As) = A and ∂

∂s
(sT Bs) = 2Bs.

Lagrange multipliers is the name of a procedure to find the extreme points
(maximum-minumum) of a function f(x) subject to a series of conditions (con-
straints) h1(x) = 0, h2(x) = 0, . . . , hm(x) = 0. Note that f(x) and the con-
straints hj(x) may be functions of more than one input so x is in general a vector
x = (x1, . . . , xl). The Lagrange multipliers method consists of forming the La-
grangian defined as

L = f(x) −
m∑

j=1

λjhj(x).

The quantities λj are known as Lagrange multipliers. The collection of extreme
points is obtained by solving a system of simultaneous equations obtained by
computing the derivative of L with respect to all the xi inputs and also with respect
to the Lagrange multipliers λj . This system of equations has l + m equations. If
the solution exists, it satisfies all the conditions.

Preliminaries from Statistics: moments and variance matrices
Moments for populations

Consider a multivariate random vector X = (X1, X2, . . . , Xp)T ∈ Rp, here p is the
number of variables. The vector of expectations (population means) is

E(X) = (E(X1), E(X2), . . . , E(Xp))T .

The covariance between variables X1 and X2 is the usual Cov(X1, X2) = E(X1X2)−
E(X1)E(X2) so that the covariance matrix of X (variance-covariance matrix) is
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the symmetric matrix of size p×p whose diagonal contains variances of the variables
and off diagonal entries are pairwise covariances. It is defined as

Cov(X) = E(XXT ) − E(X)E(X)T .

The total variance of X is
∑p

i=1 V ar(Xi) = tr(Cov(X)).
Moments of a linear transformation. If C is a matrix so that the product

CX is well defined, then
E(CX) = CE(X) and Cov(CX) = CCov(X)CT .

Sample moments

The data is a realization of a multivariate random vector. It is collected in a matrix
X of size n × p. Each of the n rows of X is one multivariate observation, carried
out in each of p variables. The vector of means (sample means) is the vector of
sample means per variable, that is the row vector of means per column

X =

(
1
n

n∑
i=1

xi1,
1
n

n∑
i=1

xi2, . . . ,
1
n

n∑
i=1

xip

)
= (x̄1, x̄2, . . . .x̄p).

This vector can be simply written as X = 1T X/n where 1 is a matrix of ones of
size n × 1.

The sample covariance matrix (sample variance-covariance matrix) is the
symmetric matrix Σ of size p × p that has the sample variances of each column
in its diagonal and entries outside the diagonal are sample covariances between
columns. That is, the entry (j, j) of this matrix is the sample variance of the j-th
column

1
n − 1

n∑
i=1

(xij − x̄j)2 = 1
n − 1

n∑
i=1

x2
ij −

n

n − 1
x̄2

j ;

and the (j, k) entry is the sample covariance between j- and k-th columns

1
n − 1

n∑
i=1

(xij − x̄j)(xik − x̄k) = 1
n − 1

n∑
i=1

xijxik −
n

n − 1
x̄j x̄k.

Using matrix operations, this symmetric matrix is

Σ = 1
n − 1

(
XT X − nXT X

)
.

If the columns of X have been centered around their means, then the sample co-
variance is simply Σ = XT X/(n − 1).
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Data manipulation: means, centering, scaling

X ## running times of 10 persons in three different types of ground

## Hill Flat Tarmac
## 1 19 17 19
## 2 29 21 25
## 3 26 18 24
## 4 21 29 17
## 5 29 26 26
## 6 26 23 23
## 7 29 22 31
## 8 22 27 22
## 9 17 21 16
## 10 31 20 33

colMeans(x=X) ## means per variable (column)

## Hill Flat Tarmac
## 24.9 22.4 23.6

apply(X=X,MARGIN=2,FUN=mean) ## same result for means per variable

## Hill Flat Tarmac
## 24.9 22.4 23.6

apply(X=X,MARGIN=2,FUN=sd) ## standard deviation per (variable) column

## Hill Flat Tarmac
## 4.840799 3.893014 5.541761

for(i in 1:3){ print(colnames(X)[i])
print(X[,i]-mean(X[,i]))} ## center each column

## [1] "Hill"
## 1 2 3 4 5 6 7 8 9 10
## -5.9 4.1 1.1 -3.9 4.1 1.1 4.1 -2.9 -7.9 6.1
## [1] "Flat"
## 1 2 3 4 5 6 7 8 9 10
## -5.4 -1.4 -4.4 6.6 3.6 0.6 -0.4 4.6 -1.4 -2.4
## [1] "Tarmac"
## 1 2 3 4 5 6 7 8 9 10
## -4.6 1.4 0.4 -6.6 2.4 -0.6 7.4 -1.6 -7.6 9.4
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## single function scale, here X is the data matrix
scale(x=X,center=TRUE,scale=FALSE) ## center not scaling

## Hill Flat Tarmac
## 1 -5.9 -5.4 -4.6
## 2 4.1 -1.4 1.4
## 3 1.1 -4.4 0.4
## 4 -3.9 6.6 -6.6
## 5 4.1 3.6 2.4
## 6 1.1 0.6 -0.6
## 7 4.1 -0.4 7.4
## 8 -2.9 4.6 -1.6
## 9 -7.9 -1.4 -7.6
## 10 6.1 -2.4 9.4
## attr(,"scaled:center")
## Hill Flat Tarmac
## 24.9 22.4 23.6

scale(x=X,center=TRUE,scale=TRUE) ## center and scaling

## Hill Flat Tarmac
## 1 -1.2188071 -1.3871002 -0.83006111
## 2 0.8469676 -0.3596186 0.25262729
## 3 0.2272352 -1.1302298 0.07217923
## 4 -0.8056522 1.6953447 -1.19095725
## 5 0.8469676 0.9247335 0.43307536
## 6 0.2272352 0.1541222 -0.10826884
## 7 0.8469676 -0.1027482 1.33531570
## 8 -0.5990747 1.1816039 -0.28871691
## 9 -1.6319621 -0.3596186 -1.37140531
## 10 1.2601226 -0.6164890 1.69621183
## attr(,"scaled:center")
## Hill Flat Tarmac
## 24.9 22.4 23.6
## attr(,"scaled:scale")
## Hill Flat Tarmac
## 4.840799 3.893014 5.541761
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Data manipulation: variance-covariance matrices

## here X is the data matrix
var(x=X) ## raw data

## Hill Flat Tarmac
## Hill 23.4333333 -0.8444444 24.511111
## Flat -0.8444444 15.1555556 -4.044444
## Tarmac 24.5111111 -4.0444444 30.711111

var(x=scale(x=X,center=TRUE,scale=FALSE)) ## centered data

## Hill Flat Tarmac
## Hill 23.4333333 -0.8444444 24.511111
## Flat -0.8444444 15.1555556 -4.044444
## Tarmac 24.5111111 -4.0444444 30.711111

var(x=scale(x=X,center=TRUE,scale=TRUE)) ## centered and scaled data

## Hill Flat Tarmac
## Hill 1.0000000 -0.0448093 0.9136886
## Flat -0.0448093 1.0000000 -0.1874672
## Tarmac 0.9136886 -0.1874672 1.0000000

The last result (variance-covariance matrix of centered and scaled data) is now
obtained in two different forms.

## First form, correlation
cor(x=X) ## correlation matrix of raw data

## Hill Flat Tarmac
## Hill 1.0000000 -0.0448093 0.9136886
## Flat -0.0448093 1.0000000 -0.1874672
## Tarmac 0.9136886 -0.1874672 1.0000000
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## The second form, using standard deviations
VX<-solve(diag(diag(var(x=X)))); VX ## reciprocal of variances per column

## [,1] [,2] [,3]
## [1,] 0.04267425 0.0000000 0.00000000
## [2,] 0.00000000 0.0659824 0.00000000
## [3,] 0.00000000 0.0000000 0.03256151

sqrt(VX) ## reciprocal of standard deviations

## [,1] [,2] [,3]
## [1,] 0.2065775 0.0000000 0.0000000
## [2,] 0.0000000 0.2568704 0.0000000
## [3,] 0.0000000 0.0000000 0.1804481

sqrt(VX)%*%var(x=X)%*%sqrt(VX) ## equal to the correlation

## [,1] [,2] [,3]
## [1,] 1.0000000 -0.0448093 0.9136886
## [2,] -0.0448093 1.0000000 -0.1874672
## [3,] 0.9136886 -0.1874672 1.0000000
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1 Introduction: What is machine learning
Machine learning is an umbrella term for a collection of automated methods for
data analysis. The intention is to detect patterns in data and then use these pat-
terns to describe future behavior (predict) or to perform some decision making.

There are several types of algorithms in machine learning. The two main types
are unsupervised learning and supervised learning. The difference between
the two types is whether there is an output available or not.

Unsupervised learning The outputs are not specified in advance. The main aim
is to identify distinct groups. Some problems are:

1. Dimensionality reduction. The data has a high number of dimensions
and data needs to be mapped into low dimensions while still preserving
relevant information. Examples of techniques: Principal Component
Analysis, Factor analysis, Multidimensional scaling.

2. Clustering. Data needs to be organised in groups “clusters” of similar
points. Examples of techniques: agglomerative clustering, k-means
clustering. Gaussian mixtures, Dirichlet process mixtures.

Supervised learning The outputs are known in advance. The aim is to predict
targets correctly. Some problems are

1. Classification. Data is assigned to one of several categories, and the task
is to predict labels from input data after the model has been trained on
labelled data. Examples of techniques are logistic regression, decision
trees, support vector machines, neural networks, random forests.

2. Regression. The analyses predict continuous quantities from input data.
Typical methods include linear regression, neural networks and Gaus-
sian processes.

Semi-supervised learning This is a mixed approach, such as unsupervised anal-
ysis followed by supervised analysis. Examples of techniques are probabilistic
models, graph-based semi-supervised learning.

Reinforcement learning Techniques use feedback in the form of rewards to make
improvements. Examples of techniques are Q-learning, direct-policy methods.
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Some simple questions may help elucidate which problem and type of machine
learning technique is most adequate:

Unsupervised learning
1. Dimensionality reduction: What are the most significant features of this data

and how can they be summarised?
2. Clustering: Which data points are similar to each other?
Supervised learning
1. Classification: To which category does this data point belong?
2. Regression: Given this input from a data set, what is the likely value of a

particular quantity?
Semi-supervised learning
How can labelled and unlabelled data be combined?
Reinforcement learning
What actions will most effectively achieve a desired endpoint?

17



Exercises concepts
Exercise 6 Here is a list of questions/situations. In each case, identify which type
of learning can be applied, and which machine learning problem is the relevant one.

Email scanning Is this email spam or just a regular message?

Insurance What will be the price an insurance policy for new drivers?

Transport Which customers exhibit similar travel behavior to each other?

Banking Is this transaction fraudulent?

Image processing Is this photo in the social media of yourself?

Medical diagnosis Does this X-ray show sign of disease?

Voice processing An app that adapts over time to the users voice.

Housing What would the price of this house be if it were sold today?

Image processing In this photo, is this a car or a bycicle?

Biology How can scientists summarise the behaviour of all 20,000 genes in a par-
ticular diseased tissue?

Food quality How many days before this strawberry is ripe?

Image processing How old is this person in this photo?

Exercise 7 Consider the vector z = (z1, z2, z3)T and the matrix

A =
(

1 4 0
−1 1 2

)
.

1. Build explicitly B = AT A and then Az and zT Bz.

2. Compute by hand the derivatives ∂
∂z (Az) and ∂

∂z (zT Bz).

3. Verify that your results coincide with the result given in lectures.
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Exercise 8 Do all the steps of Exercise 7 for the following cases.

1. For A =
(

−1 1
)

and z = (z1, z2)T .

2. For A =
(

−1 1
1 1

)
and z = (z1, z2)T .

3. For A =
(

−2 1 1 2
1 2 −1 2

)
and z = (z1, z2, z3, z4)T .

Exercise 9 Do a simple descriptive analysis of data using scatterplots and box-
plots and describe any interesting patterns. Use functions such as pairs, boxplot,
summary and computing means and variances for

1. the running times data of Page 12,

2. the four quantitative variables of the iris data (loaded with the command
data(iris)),

3. airquality data. Use the command data(airquality) and exclude the variable
month.
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Important points and concepts of week two:

1. At a concept level and operative level, understand and be able to calculate
derivatives of linear and quadratic forms.

2. The concept of Lagrange multipliers.

3. The taxonomy of Machine Learning. Within it, different types of learning
and problems within types of learning.

4. You are expected to become proficient with basic numerical manipulation
of data using R and RStudio. You need to be able to load data from file or
type it in, and also compute means per column and sample variance-covariance
matrix. The main functions for practice are var() and scale().
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Week three
2 Principal Component Analysis
The idea behind principal components analysis (PCA) is to study projections of the
data that best reproduce the variability in the data. One important objective of
this analysis is to reduce dimensionality of the data, that is, with only a few features
of the data, to still reproduce the variability present in the whole data set.

Here we present two possible approaches to this: linear projections of the data
as well as low rank approximation of the data itself.

2.1 Principal component analysis
Consider the data set collected in the matrix X of size n × p. Each of the n rows
corresponds to an individual and the columns are p measurements taken on an
individual. Without lack of generality, assume that every column of the matrix
X has been centered around its mean to have zero mean. This centering of the
columns of X does not alter variance-covariance calculations. We want to a create
a linear projection of the data X that has maximal variance.

2.1.1 First component

Define this projection as z1 = Xa1. Clearly, z1 has zero mean and its sample
variance is just

1
n − 1

zT
1 z1 = 1

n − 1
aT

1 XT Xa1 = aT
1

( 1
n − 1

XT X
)

︸ ︷︷ ︸
Σ

a1 = aT
1 Σa1.

That is, the sample variance of z1 is the quadratic form aT
1 Σa1, with Σ as defined

earlier. Note that Σ is a matrix of constants.
We want to pick a1 to maximize the sample variance of z1. Note that this sample

variance can be made arbitrarily large so we constrain the search to vectors a1 that
have unit norm, that is aT

1 a1 = 1. So our problem is:

Pick a1 to maximize aT
1 Σa1 subject to aT

1 a1 = 1.

This problem can be simply solved by Lagrange multipliers. Here is the Lagrangian:

L = aT
1 Σa1︸ ︷︷ ︸

variance

−λ(aT
1 a1 − 1︸ ︷︷ ︸

unit vector

).
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The derivatives of the Lagrangian are simply computed by formulæ and a simulta-
neous system of equations is formed:

∂
∂a1

L = 2Σa1 − 2λa1

∂
∂λ

L = aT
1 a1 − 1

}so that Σa1 = λa1
and

aT
1 a1 = 1.

On reading the equations obtained above, it is clear that this is an eigenvalue
scenario, i.e. the object a1 is an eigenvector of Σ with unit norm for which the
eigenvalue is λ. We want to maximize the variance of z1 so when using the above
result, the variance of z1 is now

aT
1 Σa1︸︷︷︸

λa1

= λaT
1 a1 = λ.

In order to maximize the variance of z1, take λ to be the largest eigenvalue of Σ
with eigenvector a1. In summary, the eigenvector a1 gives the coefficients to build
the linear combination of variables z1, while the corresponding eigenvalue gives the
sample variance of z1, the first principal component.

2.1.2 Second and following components

After we have picked the first component, we now define z2 = Xa2. We require
that the variance of z2 is maximized as a function of a2, subject to the vector a2
having unit norm and being orthogonal to the vector a1 of the first step.

Exercise 10 Show that the Lagrangian for the derivation of the second principal
component is L = aT

2 Σa2 − µ(aT
2 a2 − 1) − ν(aT

1 a2). Complete the derivation by
doing derivatives and show the result.

It turns out that the vector a2 that maximizes the variance is when a2 is an
eigenvector of Σ with eigenvalue µ. Moreover, the vector a2 has unit norm and
is orthogonal to a1. To maximize the variance of z2, we cannot take the largest
eigenvalue of Σ as that was done in the first step. We thus take take µ to be the
second largest eigenvalue of Σ with eigenvector a2.

Exercise 11 Build the Lagrangian and complete the derivation of the third prin-
cipal component.
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At this moment the pattern is clear: for maximizing the variance of a projection
in a sequential manner, the projection vectors and variance of projections are the
pairs eigenvector-eigenvalue of the (sample) variance-covariance matrix Σ. In short,
we are using and following the spectral decomposition of Σ. The following paragraph
summarizes PCA for samples.

Summary 1 (Principal Component Analysis PCA) Let Σ be the (sample)
variance-covariance matrix of centered data X, and let A and Λ be the matrices of
the Karhunen-Loeve (spectral) decomposition of Σ as

Σ = AΛAT .

Here Λ = diag(λ1, λ2, . . . , λp) is the matrix with eigenvalues of Σ in decreasing or-
der λ1 ⩾ λ2 ⩾ · · · ⩾ λp ⩾ 0, and these eigenvalues have corresponding eigenvectors
a1, a2, . . . , ap, collected as columns of matrix A.

The eigenvectors ai are known as loadings (PC loadings) and the transformed
variables z1 = Xa1, z2 = Xa2, . . . , zp = Xap are the scores (PC scores).

If we collect all the PC scores as columns of a matrix Z = (z1 z2 · · · zp), we
have Z = XA, and the (sample) variance-covariance matrix of the PC scores is

1
n − 1

ZT Z = AT ΣA = Λ,

where the last result used the fact that the matrix A is an orthogonal matrix. In
particular, the (sample) variance of the score zi is the eigenvalue λi, and the scores
are uncorrelated. Moreover, the total variance of X equals that of Z.

Standard Principal Component Analysis uses the Karhunen-Loeve decomposi-
tion Σ = AΛAT . Importantly, note that all the results from PCA can be recovered
from the singular value decomposition of the data matrix X = UDVT . We substi-
tute this singular value decomposition of X in the definition of Σ:

AΛAT = Σ︸ ︷︷ ︸
this is KL

= 1
n − 1

XT X = 1
n − 1

VDUT︸ ︷︷ ︸
XT

UDVT︸ ︷︷ ︸
X

= V
( 1

n − 1
D2
)

VT .

Comparing with the Karhunen-Loeve decomposition, it follows that the matrix of
PC loadings (eigenvectors of Σ) equals the matrix V of the singular value decom-
position, that is A = V. Also, the eigenvalue matrices of both decompositions
have the following relation Λ = 1

n−1 D2; in other words, for corresponding eigen-
values λi of Σ and di of X we have λi = 1

n−1 d2
i . Finally, the PC scores can be

written using the singular value decomposition:

Z = XA = XV = UDVT V = UD.
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Example, runners data

Recall the dataset of running times in different types of ground shown in Page 12.
Here we do three equivalent versions of PCA. As the units for each variable are
the same (minutes), the analysis is done without transforming data.

First version: Karhunen-Loeve decomposition with function eigen:

VX<-var(X) ## variance-covariance matrix of data (matrix) X
eigen(VX)->E; ## KL of the variance-covariance matrix
pairs(X%*%E$vectors,pch=16,cex=0.85) ## Plot of PC scores

var 1

−
6

0
6

−10 5

−6 0 6

var 2

−
10

5

−1 1

−
1

1

var 3

Here are the eigenvalues of KL. When rescaled, they are percentages of variability
accounted by each component: 75.33 %, 21.81 %, 2.86 %.

E$values

## [1] 52.205300 15.112674 1.982026

E$values/sum(E$values)

## [1] 0.75332323 0.21807610 0.02860067
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Here are the coefficients of the rotation:

E$vectors

## [,1] [,2] [,3]
## [1,] 0.64706823 0.17947577 0.7410069
## [2,] -0.09729664 0.98339053 -0.1532202
## [3,] 0.75619844 -0.02704643 -0.6537832

These coefficients are read from the columns above. That is, if the data values
(by row) were stored in variables “Hill, Flat, Tarmac”, the first principal component
would be

0.6471*Hill + -0.0973*Flat + 0.7562*Tarmac.

The eigenvectors (coefficients, PC loadings) are unique up to sign change, so this
first component could be computed by reversing all the signs in the first column so
coefficients for “Hill, Flat, Tarmac” would be −0.6471, 0.0973, −0.7562, respectively.
The individual PC1 scores would have sign change, but the variability accounted
by it is exactly the same as in the first case above.
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Second version: singular value decomposition with function svd:

S<-svd(X) ## Singular value decomposition of data matrix X
S$dˆ2/(10-1) ## eigenvalues of KL

## [1] 52.205300 15.112674 1.982026

S$v # PC loadings

## [,1] [,2] [,3]
## [1,] 0.64706823 -0.17947577 -0.7410069
## [2,] -0.09729664 -0.98339053 0.1532202
## [3,] 0.75619844 0.02704643 0.6537832

pairs(S$u%*%diag(S$d),pch=16,cex=0.85) ## PC scores

var 1

−
6

0
4

−10 5

−6 0 4

var 2

−
10

5

−2 0

−
2

0var 3

Note that all quantities are equal up to sign (see comment in Page 25) thus
diagrams may be reflected.
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Third version: function prcomp:

PCA<-prcomp(x=X); summary(PCA); pairs(PCA$x,pch=16,cex=0.85) ## PC scores

## Importance of components:
## PC1 PC2 PC3
## Standard deviation 7.2253 3.8875 1.4078
## Proportion of Variance 0.7533 0.2181 0.0286
## Cumulative Proportion 0.7533 0.9714 1.0000

PC1

−
6

0
4

−10 5

−6 0 4

PC2

−
10

5

−2 0

−
2

0PC3

PCA$rotation

## PC1 PC2 PC3
## Hill 0.64706823 -0.17947577 -0.7410069
## Flat -0.09729664 -0.98339053 0.1532202
## Tarmac 0.75619844 0.02704643 0.6537832
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Exercise 12 Perform PCA analysis for the iris data set of Exercise 9. Do the
analysis for both cases: centered only and centered and scaled.

Exercise 13 Consider a data matrix loaded in R as X (if you want a specific data
instance, use the matrix for the runners’ data in Page 12). Consider each of the
following cases of parameters to be used in the function scale before analysing the
data in each instance. Comment on the PCA results obtained in each case.

center scale Comments space space space space
FALSE FALSE
FALSE TRUE
TRUE FALSE
TRUE TRUE

Exercise 14 For the data sets of Exercise 9, compare and comment the differences
between PCA when data has not been centered and when data has been centered.

Exercise 15 Do PCA for a data set of your own interest. Interpret your results.

Exercise 16 (Extra) Consider the results from standard linear regression for co-
efficient estimates

(
XT X

)−1
XT Y and predicted values X

(
XT X

)−1
XT Y. Using

the singular value decomposition of X, develop versions of both formulæ.
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Important points and concepts of week three:

1. Understand the (sample) variance-covariance matrix of a centered data set
Σ = 1

n−1 XT X and be able to compute it either by hand in small example or
numerically using software.

2. Understand and compute numerically PCA in its two versions: as Karhunen-
Loeve decomposition of Σ and using the Singular value decomposition of X.
That is, become familiar with the following two factorisations

1
n − 1

XT X = AΛAT︸ ︷︷ ︸
KL-based PCA

= V
( 1

n − 1
D2
)

VT︸ ︷︷ ︸
SVD-based PCA

.

3. Compute and interpret PC loadings A = V and PC scores XA = UD.

4. Understand the difference in PCA when data has/has not been centered and
when data has/has not been scaled.
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Week four
2.2 Interpreting Principal Component Analysis (PCA) out-

put
Principal Component Analysis of data produces three output objects: the eigenval-
ues, which are the variances of principal components; the eigenvectors, also known
as PC loadings; and the rotated data, known as PC scores. Using the notation
of Karhunen-Loeve decomposition, the eigenvalues are collected in the diagonal of
matrix Λ, the eigenvectors are columns of A and the rotated data which are rows
of the matrix XA. Each of this objects can be computed and written equivalently
using the singular value decomposition, as discussed previously.

2.2.1 How many components to select?

The main objective of Principal Component Analysis is to do a reduction in the
dimensionality of the data and selecting a few components that represent the vari-
ability of the whole data set is one important aim of this analysis.

A simple graphical tool is to plot the eigenvalues in decreasing order, and if there
is a point after which the eigenvalues clearly flatten, this suggests the number of
components to take. This is known as the scree plot, which is produced in R by
plotting the output of the command prcomp.

A different take is to consider the matrix Zk of size n × p with the first k PC
scores Zk = (z1 z2 · · · zk 0 · · · 0). The PC scores z1, z2, . . . are columns taken
from XA and correspond to the first PC, second PC etc. The total variance of
Zk is λ1 + λ2 + . . . + λk so that the percentage of total variability explained by the
first k components is

λ1 + λ2 + . . . + λk

λ1 + λ2 + . . . + λk + . . . + λp
.

A table or a plot of this percentage may suggest a suitable number of components.
The Pareto principle “few important, most trivial” might be a useful tool to

help decide on number of components. In PCA, the Pareto principle states that
around 80% of the variability is explained by the 20% of the components. However
in a given analysis the results are data dependent and there is no guarantee that
for a given data set, the 80-20 Pareto principle will hold.

By the close link we have seen and studied between the Karhunen-Loeve decom-
position of Σ = 1

n−1 XT X and the Singular value decomposition of X, the percent-
age of variability explained by the first k principal components can be equivalently
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written using eigenvalues di of X as

d2
1 + d2

2 + . . . + d2
k

d2
1 + d2

2 + . . . + d2
k

+ . . . + d2
p

.

2.2.2 Interpretation, scaling data

The PC scores are linear combinations of variables and interpreting them is also
needed as part of PCA. To interpret the component, look at each eigenvector. The
signs and the magnitudes of the entries of each eigenvalue are used to interpret
that principal component as weighted averages or as contrasts/comparisons
of weighted averages of variables.

As a general rule, the results of PCA should not depend on the scale of units
of measurements per variable. There may be exceptions to this, as for example
when the variables are measured over the same units. It is however generally rec-
ommended that the analysis is carried out on standardized variables.

When on standardized variables, the PCA computations are performed over the
sample correlation matrix. In this case, the total variance is equal to p and the
proportion of variability explained by the first k components is 1

p

∑k

i=1 λi.
In general, Principal component analyses and conclusions when using scaled

(standardized) data do not coincide with those obtained with non-standardized
data is used. To see this, call S to the diagonal matrix whose diagonal is that of
Σ so that we retrieve the sample correlation matrix R := S−1/2ΣS−1/2, which is
the variance-covariance matrix for scaled data. We now do this operation on both
sides of the Karhunen-Loeve expansion of unscaled data Σ = AΛAT to have

R = S−1/2AΛAT S−1/2.

If this was a Karhunen-Loeve expansion with eigenvalues Λ, this should satisfy the
reproducing property which for the unscaled data is ΣA = AΛ. We easily see
that this fails, either when right-multiplying by the obvious candidate to eigenvec-
tor S−1/2A or the different attempt multiplying by S1/2A. The reproducibility
property is not retrieved and thus the eigenvalues -and eigenvectors- of R (scaled
data) differ from those of Σ (unscaled data).

2.2.3 Plots

A pairwise plot of PC scores, that is, the rotated variables is a scatterplot of
variables that are uncorrelated. This plot can be used to examine the data for
patterns such as groups of observations or detection of potential outliers. Recall
that the PC scores are the columns of XA (using KL) or of UD (using SVD).
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A special plot called biplot is produced by overlaying PC loadings per vari-
able on top of a scatterplot of PC scores. The PC loadings are represented as
arrows and are the coefficients of the linear transformation, i.e. eigenvalues con-
tained in matrix A of the K-L decomposition of Σ. This plot is useful to further
describe data by looking at the contributions of individual observations with respect
to variables in the Principal Component Analysis.

Example, runners data

Continuing with the running times data shown in Page 12, and the codes already
shown earlier. Here I only comment on results.

Unscaled data: One component is enough to recover over 80% of the total
variability. This first component is a weighted average of all the variables, with
Hill and Tarmac having similar magnitude than Flat.

## Importance of components:
## PC1 PC2 PC3
## Standard deviation 7.2253 3.8875 1.4078
## Proportion of Variance 0.7533 0.2181 0.0286
## Cumulative Proportion 0.7533 0.9714 1.0000
## PC1 PC2 PC3
## Hill 0.64706823 -0.17947577 -0.7410069
## Flat -0.09729664 -0.98339053 0.1532202
## Tarmac 0.75619844 0.02704643 0.6537832

The selection of only one principal component is supported by the scree plot.
Runners data: PC variances
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The pairwise scatterplot of PC projections (PC scores) may help in determining
if there are groups in data or potential outliers. In this case there are too few data
points and it is not evident some unusual pattern.
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In the biplot, the position of arrows indicates how much each variable contributes
to the component. Variable Hill, for instance, while not being the main contributor
by magnitude to the first component, contributes little to the second component.
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In the biplot we can also see that e.g. observations 9 and 10 have opposing
values relative to the variable Tarmac. We look at the raw observations.

## Hill Flat Tarmac
## 9 17 21 16
## 10 31 20 33

The opposing values mean that, for two runners, the times on Tarmac were very
different. This becomes clearer when we look at the centered data.
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## Hill Flat Tarmac
## 9 -7.9 -1.4 -7.6
## 10 6.1 -2.4 9.4

For variable Flat a similar opposing pattern is observed for observations 1 and
4. Here are the entries of the raw data

## Hill Flat Tarmac
## 1 19 17 19
## 4 21 29 17

and of the centered data.

## Hill Flat Tarmac
## 1 -5.9 -5.4 -4.6
## 4 -3.9 6.6 -6.6

Scaled data: Here two components are required to recover at least 80% of total
variability. With relatively few columns, the advantage of PCA is less evident as
dropping only one dimension is not a huge dimensionality reduction.

## Importance of components:
## PC1 PC2 PC3
## Standard deviation 1.3937 0.9912 0.27410
## Proportion of Variance 0.6475 0.3275 0.02504
## Cumulative Proportion 0.6475 0.9750 1.00000
## PC1 PC2 PC3
## Hill 0.6898224 -0.19997668 -0.6958120
## Flat -0.1726480 -0.97880552 0.1101473
## Tarmac 0.7030915 -0.04414842 0.7097276

The first component is an average of the three variables, with smaller weight in
variable Flat. The second component is mostly variable Flat compared against an
average of the other two variables.
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Runners data: PC variances
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The selection of only
two principal components is seen in the scree plot, and the scatterplot of PC scores
does not indicate something extraordinary.
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As in every biplot, the position of arrows indicates how much each variable
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contributes to the component. Variables Tarmac and Hill, contribute little to the
second component, while the three variables contribute to the first. The fact that
arrows point in the same direction is an obvious consequence of the PC loadings
having the same sign.
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We can establish similar descriptions of individuals with respect to variables as
in the cases described in the unscaled case.
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Exercise 17 Complete PC analysis for the datasets described in Exercises 9 and
14. Your complete analysis includes: determining number of PCs, interpretation of
PC loadings and of descriptive plots of raw data, of PC scores and biplot.

Exercise 18 Ditto as per Exercise 17 for other datasets in R such as

the data from black cherry trees (command data(trees));

Intercountry Life-Cycle Savings Data (use data(LifeCycleSavings));

data for Motor Trend Car Road Tests (data(mtcars)) and

data with measurements on petroleum rock samples (data(rock)).

Also perform PCA for a couple of relatively large data sets:

the dataset on Daily Closing Prices of Major European Stock Indices, 1991-1998
(data(EuStockMarkets)), and

the data with prices of 50,000 round cut diamonds (data(diamonds)).

In these latter cases, as well as standard PCA, comment upon close inspection of
resulting plots.

Exercise 19 Using the theoretical results of the Karhunen-Loeve expansion, show
that the total variance of Zk is λ1 + λ2 + . . . + λk. Repeat your derivation of the
total variance of Zk using results from SVD.
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Important points and concepts of week four:

1. The output of Principal components has three elements: the PC variances,
PC loadings and PC scores. Become familiar with them, identify them and
understand how to compute them. In particular:

2. determine number of components to select. If no other threshold has been
established, use 80% of the total variability;

3. interpret PC loadings, that is contributions of variables in each column (eigen-
vector) of A and

4. to further study and describe the data, use scatterplots of PC scores (projec-
tions) and the biplot which doubles with PC loadings (coefficients).
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Week five

3 Clustering methods
Clustering methods aim to detect groups in the individuals that compose the data.
We discuss two possible approaches to this: the agglomerative clustering ap-
proach and the K-means method. We first describe how to create distances be-
tween individuals.

3.1 Distances and distance matrix
To perform clustering, distances between individuals must be computed. Recall
that each individual refers to a row of the data matrix X, so that the distance
between individuals i and j is the quantity dij that reflects how close are the i-th
row (xi1, xi2, . . . , xip) and the j-th row (xj1, xj2, . . . , xjp) of the data matrix.

Assuming that the entries of the data matrix are real values, some commonly
known distances are the ‘Manhattan’, ‘Euclidean’ and the ‘Minkowski’ dis-
tances, see Table 1. Other distances that depend on variances and correlations are
the Mahalanobis distance and the absolute correlation. In the above table, to keep
with literature, the quantity xi· in the Mahalanobis distance is the i-th row of the
matrix X but written as column, and the quantity ρij is the (sample) correlation
between rows i and j.

Once a distance has been selected, the information is collected in the distance
matrix (dij). This is a symmetric matrix of size n × n with value dij in the entry
(i, j). Note that the diagonal of this matrix is exactly equal to zero.

The Manhattan distance and the Euclidean distance are particular cases of the
Minkowski distance and note that these satisfy the requirements of a metric for
general real points. In the case of the data points and the distance matrix, the
properties of a metric are: the distance is non-negative dij ⩾ 0; the distance is
symmetric dij = dji; it satisfies the triangle inequality dij ⩽ dik + dkj and finally,
dij = 0 if and only if i = j.

3.2 Agglomerative clustering
Agglomerative clustering is a sequential procedure to cluster n individuals. Ini-
tially each individual is its own cluster. At every step, an updated table
of distances between clusters (dissimilarities) is considered and minimized to
merge another individual into a cluster. At the end of the procedure, a single clus-
ter is achieved. The process is depicted in a special plot termed a dendrogram.
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Name Distance dij

Manhattan
∑p

l=1

∣∣xil − xjl

∣∣
Euclidean

√∑p

l=1

(
xil − xjl

)2

Minkowski
(∑p

l=1

∣∣xil − xjl

∣∣m)1/m

Mahalanobis
√

(xi· − xj·)T Σ−1 (xi· − xj·)

Absolute correlation
√

1 − |ρij |

Table 1: Common distances between individuals.

In the initial step of agglomerative clustering each point is its own cluster and
distance between clusters i and j (at this initial step, the clusters are individu-
als i and j) is computed by the entry dij of the distance matrix (dij). However,
apart from this step, we need to compute the distance between clusters that have
in general, more than one point. This distance is also referred to as dissimilar-
ity. There are several proposals to construct dissimilarities (“distances”) between
clusters of points:

• single linkage The dissimilarity between two clusters is that between the
closest two points, hence this is known as “nearest neighbor”.

• average linkage The dissimilarity between two clusters is the average of
distances between them, hence the name “average neighbor”

• complete linkage The dissimilarity between clusters is that between the two
points that are furthest apart, hence “farthest neighbor”

• Ward linkage
After the initial step, clustering proceeds by an updated dissimilarity matrix.

The minimum non diagonal entry of this matrix is found and this determines the
next cluster to be formed. A new updated matrix is produced and the method
continues until there is only a single cluster.
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3.2.1 Example of clustering

To motivate with an example, consider the following a data set with n = 5 points
with integer coordinates. The data is given below.

x1 x2
0 4
3 6
6 2
0 5
1 1

In Figure 1 we plot the data, and in the plot we put the row numbers in the cor-
responding coordinates. For two dimensions it is possible to observe and conjecture
from such a plot the existence of clusters, but when data lies in higher dimension
it is more difficult to conclude clusters from scatterplots, although the R command
pairs can always be used to construct such scatterplots.

To begin the agglomerative cluster process, we need to compute the dissimilarity
matrix. Recall that in the initial step, the dissimilarities are distances. Assume we
use ‘Manhattan’ distance so the matrix of distances dij is:

1 2 3 4 5
1 0 5 8 1 4
2 5 0 7 4 7
3 8 7 0 9 6
4 1 4 9 0 5
5 4 7 6 5 0

As expected, the diagonal of this matrix consists of zeroes, and the analysis
ignores it. The matrix is symmetric and the rest of the procedure can be achieved by
using indistinctly either the upper half or the lower half of this matrix of distances.

At this initial stage, we have five clusters and each point is its own individual
cluster. At this point, the smallest distance between clusters in the table is 1 which
is that between clusters ‘1’ and ‘4’ and thus these two clusters are joined at
that distance.

3.2.2 Example of clustering: linkage options for the next step

For the next step in the procedure, we require an updated table of dissimilarities
between the current clusters. We have several choices. The simplest is the single
linkage which produces the following updated table of dissimilarities.
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Figure 1: Data of synthetic example of Page 42.
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14 2 3 5
14 0 4 8 4
2 4 0 7 7
3 8 7 0 6
5 4 7 6 0

The updated tables of dissimilarities for the average linkage and for the com-
plete linkage are:

14 2 3 5
14 0 4.5 8.5 4.5
2 4.5 0 7 7
3 8.5 7 0 6
5 4.5 7 6 0

and

14 2 3 5
14 0 5 9 5
2 5 0 7 7
3 9 7 0 6
5 5 7 6 0

3.2.3 Example of clustering: rest of the procedure with single linkage

For the remaining of this example we use the single linkage to determine dissim-
ilarities (“distances”) between clusters. The next cluster is determined by finding
the minimum dissimilarity between clusters in the updated dissimilarity table. This
minimum “distance” value is 4 at which point the clusters ‘14’ and ‘2’ are merged.

The updated table of dissimilarities at this stage is the following.

124 3 5
124 0 7 4
3 7 0 6
5 4 6 0

The procedure continues by finding the minimum dissimilarity between clusters
in the newly updated distance table. This minimum value is 4 at which point the
clusters ‘124’ and ‘5’ are merged.

This is the updated table of dissimilarities at this stage.

1245 3
1245 0 6

3 6 0

The last step of this agglomerative clustering process is the trivial merging of
the clusters ‘1245’ and ‘3’ at the distance 6.
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3.2.4 The dendrogram

The process of agglomerative clustering is summarized in a simple tree-like plot
called dendrogram (from the Greek ‘dendro’ that means tree). In this plot, the
initial individual clusters are represented as leaves (or roots, depending on the
orientation of the diagram). As we move along the diagram, the clusters gradually
join the trunk at heights determined by the distance metric used and the linkage
method used. In one end of the diagram we have n individual clusters and at the
other end, all individuals have merged in a single cluster. Note that ordering of the
leaves in the dendrogram does not generally correspond to the original ordering of
the data.

The height of jumps in the dendrogram suggest the number of clusters that may
describe adequately the data. Big jumps in the dendrogram indicate clusters of
individuals that are separate and should not be merged. It is difficult in general to
suggest a single hard and fast rule for the metric and the type of linkage used,
and the choice may depend on the ultimate use of cluster results.

The following lines reproduce our running example, we use function agnes from
the library cluster.

library(cluster); X; A<-agnes(x=X,method = "single",metric="manhattan")

## [,1] [,2]
## [1,] 0 4
## [2,] 3 6
## [3,] 6 2
## [4,] 0 5
## [5,] 1 1

The clustering object in the analysis above is stored in a variable termed A.
Among other results, this object contains the ordering of points and heights (dis-
tances) at which they merge:

A$order; A$height

## [1] 1 4 5 2 3
## [1] 1 4 4 6

We may want to look at the dendrogram of it, which can be plotted with the
simple command plot(A,which.plot=2). This dendrogram for the running example
that started in of Page 42 is shown in Figure 2. The clusters are formed at the
heights specified by the algorithm output. The same figure also shows the results
for other linkages.
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Figure 2: Dendrograms for the example of Page 42 and different linkage methods.
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3.2.5 Further exploration with the dendrogram

The function cutree from library dendextend allows manipulation of the dendro-
gram, to either identify clusters formed at certain heights or a specific number of
clusters. In below A is the output of the command agnes for the first example.

plot(A,which.plot=2,main="Single",xlab="",cex.main=0.75,cex.lab=0.75,hang=-1)
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## First cut A at height = 2 then cut A to have 2 clusters
cutree(tree=A,h=2); cutree(tree=A,k=2)

## [1] 1 2 3 1 4
## [1] 1 1 2 1 1

The colors of labels correspond to clusters formed at specified heights.
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Exercise 20 Perform agglomerative cluster analysis exploring different options for
distances (option metric) and linkage methods (option method). Pick one of the
datasets from the package cluster, such as pluton, xclara or ruspini (done in
lab for one linkage). You may also try the iris data as well. In your chosen case,
examine your dendrogram and suggest a number of clusters.

Exercise 21 The data set agriculture is a small data set with GDP and per-
centage of population working in agriculture for EU countries in 1993. Perform
agglomerative cluster analysis; from the dendrogram suggest a number of clusters
and interpret your results.

Exercise 22 Ditto with the USArrests data. In this case compare the clusters
obtained without scaling the data against scaled data.
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Important points and concepts of week five:

1. Become familiar with the procedure of agglomerative clustering.

2. The process of agglomerative clustering does not change despite using differ-
ent distances and linkage options. In other words, you only need to become
familiar with one general method and there is not need to memorize e.g. nine
apparently ‘different’ methods (three distances and three linkages).

3. Use the function agnes from library cluster to do agglomerative clustering.
Plot and interpret results.

49



Week six
3.3 Method of K-means
The method known as K-means is a different approach to clustering: the user
supplies a desired number of clusters K, and an algorithm attempts to cluster
observations in the best way while minimizing a measure of cluster discrepancy.
This measure of cluster discrepancy is usually the Error Sum of Squares (ESS),
defined as

ESS =
K∑

k=1

∑
i

(xi − x̄k) (xi − x̄k)T .

In the formula above, the inner sum is performed over i such that c(i) = k, that is,
all such vectors xi belonging to cluster k. The vector x̄k is a centroid for cluster
k. The choice of x̄k leads to two big variations of the procedure. One is to have
x̄k to be the sample mean of cluster k. The other case is to use the “medoid”,
where x̄k is one of the observations in cluster k such that the inner sum in ESS is
minimized.

3.3.1 Simple example

Assume we are interested in building the K-means method with K = 2, i.e. two
clusters. The data we want to cluster is the set of n = 5 points of Page 42:

x1 x2
0 4
3 6
6 2
0 5
1 1

From the point of view of software, all we needed is to run a command like kmeans
for clustering around centroid mean, or pam from the library cluster for the medoid
method. Another medoid function from the same library is clara, recommended
for larger data sizes. Note that these functions perform random searches hence it is
recommended to run them a few times to make sure some stable cluster partition
has been achieved.
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We first run the K-means method.

K<-2; kmeans(x=X,centers=K)->KM; ## clustering around the mean
KM$cluster ## the clusters obtained

## [1] 2 2 1 2 2

The given output is the set of labels for the clusters, that is, observations 1,2,4,5
form one cluster, and observation 3 forms another. Labels in cluster numbering are
not important per se, i.e. output labels 2 2 1 2 2 are equivalent to 1 1 2 1 1.

The following is the K-medoids clustering for the same data. The results coincide
with those of the K-means.

library(cluster)
K<-2; pam(x=X,k=K)->PM; ## clustering around the medoid
PM$clustering ## the clusters obtained

## [1] 1 1 2 1 1

We plot the clusters next; numbers with the same color belong to the same
cluster, and the circle indicates the centroid used in each case.
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3.3.2 An explanation using exhaustive approach

To give some intuition on how cluster would be done exhaustively, partitioning
n = 5 observations in K = 2 clusters would lead to the following computations.
There are

(5
2

)
=
(5

3

)
= 10 different ways of rearranging labels 1 1 1 2 2; and there

are
(5

1

)
=
(5

4

)
= 5 ways of rearranging labels 1 1 1 1 2 so in total there can be 15

potential clusters.
The following table summarizes the whole search. From the table, we select for

each method the best clustering as that scheme that minimizes ESS. This coincides
with the software results.

Clusters ESS
K-medoid K-mean

123, 45 55 34.5
124, 35 37 21
134, 25 70 43.167
15, 234 45 31.667
14, 235 52 27.167
135, 24 46 30.333
125, 34 68 39.833
145, 23 36 21.833
13, 245 67 38.667
12, 345 56 35.833
1, 2345 64 38
1345, 2 51 34.75
1245, 3 24 20
1235, 4 63 35.75
1234, 5 48 33.5

Exhaustive search is very expensive indeed. Even in this simple scheme with
K = 2 clusters, the number of possible clusters grows exponentially as function of
n. For this reason, this exhaustive development is intended as a guide to explain,
but not as a tool used in practice or in our Module. The relevant R functions such as
kmeans, pam or clara do a numerical search in an otherwise very expensive problem.

3.3.3 Plotting ESS and the silhouette to suggest K

In practice, different values of K are tried to then select a potential number of
clusters. If we consider the measure ESS as a measure of cluster effectiveness,
it is useful to remember that as the number of clusters grows, the quantity ESS
diminishes so that when every unit is its own cluster, ESS is effectively zero. Hence
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minimizing ESS cannot be taken as an objective as trivially the minimum value
ESS=0 is achieved regardless of data when K = n. A plot of ESS can be used to
select potential number of clusters by looking at a decrease in ESS while keeping K
at the smallest possible.

The silhouette s(i) is a numerical summary that suggests how good clustering
has been done for individual i. Values of s(i) close to one indicate that the indi-
vidual i has been correctly clustered, while a zero value of s(i) suggests that the
individual lies between two clusters. A negative value of the silhouette suggests
that the individual is in the wrong cluster. Usually, the average silhouette value per
cluster is reported, or the average silhouette over all clusters.

In a practical application, the clusters obtained have to be interpreted.

3.3.4 Example of K-means clustering

Consider the dataset USArrests, previously seen. Before clustering, we compute
and analyze Principal Components.

X<-scale(x=USArrests,center=TRUE,scale=TRUE);
PC<-prcomp(x=X,scale=FALSE,center=FALSE)
summary(PC)

## Importance of components:
## PC1 PC2 PC3 PC4
## Standard deviation 1.5749 0.9949 0.59713 0.41645
## Proportion of Variance 0.6201 0.2474 0.08914 0.04336
## Cumulative Proportion 0.6201 0.8675 0.95664 1.00000

We need only two components to recover more than 80% of the total variability.
The PC scores are the values that will be clustered. We redefine the data to be
these.

X<-PC$x[,1:2]
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We compute ESS values for K between 1 and 15 and plot them. The ESS plot
suggests no more than perhaps K = 4 or K = 5 clusters.

for(K in 1:15) ess[K]<-pam(x=X,k=K+1)$objective[2]
plot(x=(1:15)+1,y=ess,xlab="K",ylab="ESS",pch=16,log="")
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We now explore potential values K = 2, 3, 4, 5 for clustering. We plot the data
with colors indicating clusters and in each case we do the silhouette plots.

par(mar=c(4,4,3,3),mfrow=c(2,2))
for(K in 2:5){

clus<-pam(x=X,k=K); si <- silhouette(clus)
plot(X[,1],X[,2],type="n",xlab="PC1",ylab="PC2",main=paste("K = ",K))
text(x=X[,1],y=X[,2],labels=rownames(X),cex=0.5,col=clus$clustering)
plot(si,main="")

}
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A simple summary is the average silhouette width. A direct computation gives
(20 ∗ 0.48 + 30 ∗ 0.47)/50 = 0.474 for the first clustering with K = 2. The following
is function from library factoextra does that computation for several values of K
and produces a plot to help picking a value of K. Note the low average s(i) even
for the better case.

library(factoextra); par(mar=c(4,4,1,1))
fviz_nbclust(x=X,FUNcluster=pam, method = "silhouette")
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fviz_nbclust(x=X,FUNcluster=pam, method = "wss")

50
100
150

1 2 3 4 5 6 7 8 9 10
Number of clusters k

To
ta

l W
ith

in
 S

um
 o

f S
qu

ar
e

Optimal number of clusters

We also plotted above the sum of squares with the same function. This latter
plot offers the same insight as the previous plot of ESS, but the specific values differ
due to scaling done with pam.
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Exercise 23 Use the same data of Example 20 and following to practice with the
functions kmeans and pam. In your selected case, explore different values of K and
conclude suggesting a number of clusters.

Exercise 24 Explore the function pamk from the library fpc. This function creates
a list of values of K together with values of a selected criterion. This function should
be compared against the function fviz nbclust from the library factoextra used
above.

Exercise 25 Consider again the USArrests data seen in notes. What happens to
clustering if PCA analysis is done without centering and scaling? Redo analysis,
compare and explain.

Exercise 26 This question is about the Error Sum of Squares (ESS). On a first
glance, it looks like the Sum of Squares of the Error (SSE) of ANOVA and/or
regression that you have seen before. Are they the same? Write a small paragraph
describing the similarities and differences between ESS and SSE.
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Important points and concepts of week six:

1. Become familiar with the K-means algorithm in its variants: K-means and
K-medoids.

2. Use the functions pam from library cluster and kmeans to do K-means clus-
tering of data. Suggest a number of clusters and interpret them.

3. In order to suggest a number of clusters, become familiar with scatterplots
and auxiliary plots of ESS and the silhouette.
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Week seven
Supervised learning
In supervised learning, we have a response (output or target), together with

information on p variables (predictors or features). The aim is to predict cor-
rectly these outputs or targets.

The data available looks like this (X|Y), where X is a matrix of variables with
the usual size n × p. These values could be discrete or continuous. The matrix Y
is a column vector of size n × 1 with response values.

In the following development, note the important distinction of techniques de-
pending on the nature of the levels of the response vector Y:

In classification problems, the response Y takes values from a discrete set. The
simplest case has only 0/1 values. We will only see the 0/1 case in this Module
although be aware that by no means it is the only case to appear in practice.

In regression, the response Y takes values from a potentially infinite set, com-
monly real values.

For most possible domains of interest, the number of potentially useful data
cases that we cannot observe is very large and thus it is not possible to establish
predictive accuracy beyond dispute. Common practice is to estimate predictive
accuracy of an algorithm by measuring its accuracy for a data set that has not been
used. Hence, we commonly

1. train the algorithm with part of the data to then

2. validate it using a separate instance of the data

Figure 3 illustrates the approach to splitting the data. For the process of data
splitting, sometimes the training and testing data sets are partitioned to be in
separate files. More commonly, a partition is needed before doing the analysis.
Usually this is a random partition and several options for the proportions split are
available: 1:1, 2:1, 70:30, 60:40 or other proportions.

There are three main strategies for the data split:

1. divide the data into a single training and a single test sets. This process is
shown in Figure 3. Usually the split is done at random.

2. k-fold cross-validation. The data is split into k folds and use all the folds but
one to train and the remaining fold to test. This is done k times until each
folds has been used to test. The folds are created usually at random, and
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Data

Train set → Learning algorithm

↓

Test set → Compare predictions

Figure 3: Partition of the data for training and testing.

the sizes of the folds are as even as possible. A popular choice is the 10-fold
cross-validation.

3. n-fold cross-validation. This is also known as leave-one-out cross-validation.
In each of n instances, one observation is left out of the training data, to be
subsequently used for testing.

An important point of supervised learning is to make results reproducible and
thus setting a random seed is a standard part of the analysis. Reproducibility
is achieved using a command such as the R command set.seed, before randomly
splitting the data.

In cross-validation, after fitting each of the k models and obtaining predictions,
the usual Machine Learning approach is to compute the prediction error. That is,
use the trained model over the test data in each of the instances to compute the
error. These errors would be averaged over the different instances tried. The aim is
to compare different modeling methods using with the same dataset and partitions
instances of it.

Split data

Data
1
2
3
4
5

then use


Train Test

1, 2, 3, 4 5
1, 2, 3, 5 4
1, 2, 4, 5 3
1, 3, 4, 5 2
2, 3, 4, 5 1

Figure 4: Example of 5-fold partition of the data for training and testing.
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As an example of the k-fold approach, consider the 5-fold cross-validation. Data
would be partitioned into k = 5 parts and then different instances of this partition
be used to train the model and to test. There would be k = 5 errors, one for each
instance which would be averaged. Figure 4 illustrates this.

Machine Learning and Statistics
We have presented the general approach to supervised learning. Here we briefly

comment on both Machine Learning and Statistics approaches to analysing data.
In Machine Learning there is emphasis in comparing models using prediction

capabilities. The standard approach is to first fit the model using part of the data
and then use fresh data to compute the prediction error for comparing models.

The Machine Learning approach is in contrast with the standard modelling ap-
proach in statistics. In statistics, models are usually fitted and then terms selected
using significance tests. Usually, models are not compared on the basis of their
predictive capabilities.
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4 Classification methods
The problem of classification arises when the output takes values from a discrete set.
These values are commonly referred to as labels and the interest lies in correctly
predicting these labels. The case we will consider in our Module is the simplest
when there are only two labels, although methodology has been developed for other
numbers of labels.

The two labels we will use will be referred to as 0/1. These 0/1 levels are coded
values and should be understood as a renaming of what the true values would be in
a study, that is the two levels could also be ‘No’/‘Yes’; ‘negative’/‘positive’ or −/+.
For example, in recognition of lung disease from scanned x-ray images, a ‘positive’
(coded as 1) would be a detection of a diseased lung, and a ‘negative’ (coded as 0)
would be the non-detection of irregularity in the lung.

4.1 Performance of methods - confusion matrix
Using available data and the partition strategy defined earlier, the machine learning
task of classification involves comparison of classifiers. In what follows, we will
describe the standard framework for comparing classifiers of 0/1 data.

To motivate our development, consider a case where we have split the data into
training and testing sets. We have available the data with n = 8 observations.
We have true and predicted data, and the predicted data comes from two models
Y1 and Y2. Using data, each of the models Y1 and Y2 is going to be compared
(benchmarked) against the true values available.

Ytrue Y1 Y2
1 1 1
0 1 1
1 1 0
0 0 1
0 0 1
1 0 0
0 0 1
0 1 1

Consider the above data and the first classifier Y1. The first row is an example
of true positive as it has been classified as positive and (Y1=1) indeed it was positive
(Ytrue=1). The last row is a case of a false positive as it has been classified as a
positive (Y1=1) yet it was a negative (Ytrue=0).

For the second classifier Y2, the same conclusions apply to the first and last
observations. In addition, for this classifier Y2, the third row is an example of a
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false negative as it has been classified as a negative (Y2=0) yet it was in reality a
positive (Ytrue=1).

Define the following cases based upon values of the true response (true classifi-
cation) and the predicted response (predicted classification):

Definition Y (true) Y (predicted)
True positive is a positive classified as a positive 1 1
False positive is a negative classified as a positive 0 1
False negative is a positive classified as a negative 1 0
True negative is a negative classified as a negative 0 0

For a given data set and a classifier, we count instances of each case and sum-
marize the information in order to be able to compute performance measures of a
classifier. The confusion matrix summarizes the totals of each case observed in
the data in a 2 × 2 array.

Predicted class
0 1

True class 0 TN FP N
1 FN TP P

The quantities in the cells of the confusion matrix are identified by acronyms which
are self explanatory: TP is the number of true positives; FP is the number of
false positives; FN is the number of false negatives and TN is the number of true
negatives; also P is the total number of positives and N is the number of negatives.
We have that N=TN+FP and P=TP+FN.

The confusion matrix can be written with rows and columns permuted as follows.
We can work with either version as they are equivalent, however we have a slight
preference for the first version above. Here is the second version.

Predicted class
1 0

True class 1 TP FN P
0 FP TN N

Continuing with the data given earlier, we compute the confusion matrices. The
matrices are generated by counting occurences (frequencies) of the different “true-
predicted” cases “00”, “01”, “10”, “11” for every prediction given. The values of N
and P are common in each table, taken directly from true data N= 5 and P= 3.
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Predicted Y1
0 1

True 0 3 2
1 1 2

Predicted Y2
0 1

True 0 0 5
1 2 1

4.2 Performance of methods - measures
The next step is to compare methods. Following the example with data and ta-
bles given above, the classifier Y1 appears to be best as it has correctly classified
5 observations, while Y2 has only classified correctly 1 observation. To properly
quantify this, there are a number of proposals from the literature to measure the
performance of classifiers. The next table contains some of the most common per-
formance measures.

Name Formula Description

True Positive Rate TPR = TP
P

Proportion of positives classified as
positive (aka Hit rate, recall or
Sensitivity)

False Positive Rate FPR = FP
N

Proportion of negative instances wrongly
classified as positive

False Negative Rate FNR = FN
P

Proportion of positive instances wrongly
classified as negative: 1 − TP/P

True Negative Rate TNR = TN
N

Proportion of true negatives correctly
classified as negative (also known
as Specificity): 1 − FP

N

Precision TP
TP+FP

Proportion of cases classified as positive
that are really positive (aka positive
predictive value)

Negative predictive TN
TN+FN

Proportion of cases classified as negative
value that are really negative

F1 score 2 Precision·Recall
Precision+Recall Combination of precision and recall

Accuracy TP+TN
P+N

Proportion of instances classified
correctly

Error rate FP+FN
P+N

Proportion of instances which
are incorrectly classified
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The first two measures TPR and FPR are used to compare classifiers by plotting
TPR vs FPR in a plot known as the Receiver Operating Characteristic graph
(ROC graph).

For the data of our running example we have with two classifiers, the following
table gives the measures TPR and FPR in each case.

Classifier TPR FPR
M1 (Predicted Y1) 0.666667 0.4
M2 (Predicted Y2) 0.333333 1

The result measures are shown in the ROC graph below.
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Clearly M1 is a much better classifier than M2 having simultaneously better
(higher) True Positive Rate TPR and also better (lower) False Positive Rate FPR.
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There are five regions in the ROC graph which correspond to different patterns
of classifiers:

1. the top left corner corresponds to good classifiers as they have low values of
FPR and high values of TPR.

2. on the opposite corner, the bottom right is that of badly performing clas-
sifiers with high error rates of FPR and low success rates of TPR.

3. The top right corner is that of liberal classifiers which tend to give high rates
of true positives (TPR) but in doing so, the rate of false positives is also high
(FPR).

4. The bottom left corner is that of conservative classifiers which mostly give
negative classification and as such it has low success rate for positives (TPR)
but also has low error rate FPR.

5. Finally, the central area corresponds to classifiers whose pattern of classifica-
tion is like a random classifier.

The line FPR=TPR is added to the ROC graph to help separate those classifiers
with good classification rates from those that classify otherwise.
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Exercise 27 Repeat the classification exercise for each of the following result sets.
In every case this implies to build the confusion matrix, compute TPR and FPR,
plot results in the ROC graph and interpret results, comparing classifiers.

1.

Ytrue 0 1 0 0 1 0 1 1 1 0
Y1 1 1 0 1 0 0 1 0 1 1
Y2 1 1 1 0 1 1 1 1 1 1
Y3 0 0 0 0 0 0 1 0 0 1

2.

Ytrue 1 0 0 1 0 0 0 1 0 1
Y1 0 1 1 1 0 1 0 0 0 1
Y2 1 1 1 0 1 1 1 0 1 1
Y3 0 0 0 1 0 0 0 1 0 0

3.

Ytrue 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1
Y1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1
Y2 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0
Y3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Y4 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1

4.

Ytrue 0 1 1 1 0 0 1 0 1 0 0 1 1 0 0
Y1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 0
Y2 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0
Y3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Y4 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0

Exercise 28 Consider n observations for testing a 0/1 classification model so that
the data available are true observations (labels) Yt1, Yt2, . . . , Ytn (the subindex t in
Yt stands for ‘true’ data) and predicted observations (labels) Y1, Y2, . . . , Yn.

1. Explain the rationale behind each of the following identities:

TP =
∑n

i=1 YtiYi, TN =
∑n

i=1(1 − Yti)(1 − Yi), FP =
∑n

i=1(1 − Yti)Yi,

FN =
∑n

i=1 Yti(1 − Yi), N =
∑n

i=1(1 − Yti), and P =
∑n

i=1 Yti.

As help, note that being 0/1 classification data, each of the observed Yti and
predicted Yi are integers that can only take either zero value or one for all
i = 1, 2, . . . , n. Also that n and N are different integer quantities, only related
in the inequality 0 ⩽ N ⩽ n.
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2. Prove the following result.
Theorem Let MSE be mean squared error of validation, defined as

MSE = 1
n

n∑
i=1

(Yti − Yi)2 .

Then MSE equals the error rate, that is

MSE = FP+FN
P + N

.

Exercise 29 For each of the data cases given in Exercise 27 show numerically (by
hand or using R) that the identities above hold.

Exercise 30 Ditto numerical verification for the Theorem above and data from
Exercise 27.

Exercise 31 This exercise is concerned with further identities.

1. The error rate is a linear combination of False Positive Rate and the False
Negative Rate. Find the coefficients, that is determine constants ω1, ω2 such
that

Error rate = ω1 · FPR + ω2 · FNR.

2. Ditto concerning Accuracy as linear combination of Sensitivity and Specificity,
that is find constants ω1, ω2 such that

Accuracy = ω1 · Sensitivity + ω2 · Specificity.

3. Show that
Error rate = 1 − Accuracy.
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Important points and concepts of week seven:

1. Become familiar with the concept of splitting the data in training and
testing for evaluation of a model. Ditto the concept of k-fold cross-validation
and leave-one-out cross-validation.

2. The concept of classification with binary response (positives, negatives) and
the mistakes (misclassification) that may occur.

3. Definition of the confusion matrix and computations with it for a given
data set, including the figures TN, FP, FN, TP, P, N.

4. The summary measures TPR and FPR, aka as sensitivity and (1-)specificity.

5. Computations of summary measures with a given data set and plotting them
and interpreting in the ROC graph.
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Week eight
4.3 The ROC curve and AUC
The ROC graph is used to compare classifiers. Each classifier is represented with
a point in the graph, i.e. a point in the coordinates (FPR, TPR). The point
(FPR, TPR) = (0, 1) corresponds to an ideal classifier so that the closer the classifier
is to this top left corner, the closer it is to an ideal classifier.

There are classification methods that allow for some tuning through some pa-
rameters. In such cases, the plot of points in the ROC graph depends on these
tuning parameters and the resulting plot is known as the ROC curve.

To motivate our development, consider the data set below with n = 12 observa-
tions. One explanatory variable x is available and the responses y take the usual
labels 0/1. For modeling purposes, the data is split in two instances (50 : 50) for
training and testing a classifier (model).

Training data Test data
x y
1 0
-7 0
-3 0
5 1
13 1
9 0

x y
3 0
15 1
-1 1
-5 0
11 1
7 1

Logistic regression (seen later in this Chapter) will be the classifier used to
predict labels, and the proposed classifier (model) is the standard logistic model
with linear trend β0 + β1x.

Using the training data, the estimated parameters were β̂0 = −2.0948 and β̂1 =
0.2862. For a given value x, the estimated probability P̂r(Y = 1|x) is computed
using the standard formula inverted log-odds and estimated coefficients so that

P̂r(Y = 1|x) = exp(β̂0 + β̂1x)
1 + exp(β̂0 + β̂1x)

= exp(−2.0948 + 0.2862x)
1 + exp(−2.0948 + 0.2862x)

.
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The following plot has the data (training data black dots, test data red dots)
together with the line of estimated probabilities.
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In order to study the performance of this logistic model, we need to compute
the estimated probabilities for the test data set. For x = 3, evaluate

e−2.0948+0.2862·3

1 + e−2.0948+0.2862·3 = e−1.2362

1 + e−1.2362 = 0.2251.

For x = 15, evaluate

e−2.0948+0.2862·15

1 + e−2.0948+0.2862·15 = e2.1982

1 + e2.1982 = 0.9.

For x = −1, evaluate

e−2.0948+0.2862·−1

1 + e−2.0948+0.2862·−1 = e−2.381

1 + e−2.381 = 0.0846.

For x = −5, evaluate

e−2.0948+0.2862·−5

1 + e−2.0948+0.2862·−5 = e−3.5258

1 + e−3.5258 = 0.0286.
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For x = 11, evaluate

e−2.0948+0.2862·11

1 + e−2.0948+0.2862·11 = e1.0534

1 + e1.0534 = 0.7414.

For x = 7, evaluate

e−2.0948+0.2862·7

1 + e−2.0948+0.2862·7 = e−0.0914

1 + e−0.0914 = 0.4771.

These estimated probabilities are shown in the left hand side in the table below.
To build points in the ROC curve, each probability has to be converted to 0/1 values.
This is achieved by fixing a threshold. Probabilities below the fixed threshold are
turned into a zero, and probabilities higher that this threshold are turned into one.
For each threshold we compute the confusion matrix and summary measures FPR,
TPR. If we repeat this computation as we vary the threshold in the interval [0, 1],
we retrieve the ROC curve.

Test data and probabilities Threshold and classification
xi yi Pr(Yi = 1|xi)
3 0 0.2251
15 1 0.9
-1 1 0.0846
-5 0 0.0286
11 1 0.7414
7 1 0.4771

0 0.05 0.2 0.3 1
1(FP) 1(FP) 1(FP) 0(TN) 0
1(TP) 1(TP) 1(TP) 1(TP) 0
1(TP) 1(TP) 0(FN) 0(FN) 0
1(FP) 0(TN) 0(TN) 0(TN) 0
1(TP) 1(TP) 1(TP) 1(TP) 0
1(TP) 1(TP) 1(TP) 1(TP) 0

FPR 1 0.5 0.5 0 0
TPR 1 1 0.75 0.75 0

To show how this works, this process is shown above for the values of threshold
0, 0.05, 0.2, 0.3, 1. For each case the measures FPR and TPR are computed and
given in the right hand side of the table.

For this data and model, the ROC curve is given next. In the plot, the line
FPR=TPR is added as it represents the behaviour of classifier that is equivalent to
classifying at random.

73



0.0 0.4 0.8

0.
0

0.
4

0.
8

ROC curve

FPR

T
P

R

The ROC curve shows the different patterns of classification by a classifier,
when moving the threshold. As this is computed using validation data, the changes
in (FPR, TPR) are given in fractions of P and N, the numbers of positives and
negatives in the validation data. Hence the ROC has jumps of multiples of 1/N in
the horizontal axis (FPR) and of 1/P in the vertical axis (TPR). The ROC of a
good classifier passes very close to the top left corner of the diagram.

The area under the ROC curve (AUC) is computed over all values of the
threshold and it is the area under the ROC curve for values of Sensitivity (TPR)
and Specificity (1-FPR) between zero and one. The AUC is also known as the c-
statistic and is a useful quantity to compare overall performance of a classifier under
a variety of thresholds. Furthermore, the statistic AUC is closely related to other
statistics for cathegoric data tests such as the Mann-Whitney and the Wilcoxon
statistic.

If the AUC is close to one, this signifies a very good classifier. If the AUC is close
to 0.5, this is what we would expect from a classifier that is no better than classifying
at random. A value of AUC lower than 0.5 is a sign of very poor classification.
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For our initial small example, the AUC is 0.875 so this is a good classificator.
The plot below has the AUC in shading. When dealing with real data though, it is
rare to have a value of AUC bigger than 0.7 or 0.8.
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Models for classification
In what follows we describe some classifiers. The emphasis in classification is in the
comparison between classifiers rather than on the details of the models.

4.4 Linear classifier
The simplest way to model a 0/1 response is using a linear regression model with
expectation β0 + β1x1 + . . . + βpxp. Using the fitted coefficients β̂0, β̂1, . . . , β̂p and
the test data, we could build predicted labels ŷ. A simple rule would then predict
a label on one is ŷ > 0.5 and zero otherwise.

This is a simple and intuitive regression approach to classification and it can
be shown that the estimate thus obtained ŷ is in fact an estimate of Pr(Y = 1|x).
However note that this model may not be entirely adequate as some of the label
estimates ŷ may be outside the interval [0, 1]. Another potential drawback is that
this model cannot be easily adapted to classification problems with more than two
labels.

Despite these drawbacks, linear regression is simple and widely known. In par-
ticular, note that this statistical method is relatively more robust than e.g. logistic
classifier and it may work in cases the logistic doesn’t. The linear classifier is im-
plemented in R with the lm function.

4.5 Logistic classifier
Logistic regression is an established statistical technology that belongs to a general
family of models called generalized linear models (GLM). The GLM family of
models includes amongst many, standard linear regression, regression for count data
and regression for binary data, also known as logistic regression.

A main drawback of the linear classifier was that probability estimates could
lie outside [0, 1]. To avoid this drawback, the probability p(x) = Pr(Y = 1|x)
should be modelled by a function that guarantees that probabilities lie in [0, 1] for
any value of x. The logistic model is achieved when using the Bernoulli trials to
describe data, and a special relation between covariates and Bernoulli probabilities
that guarantees the latter property.

The data yi are assumed to be independent realizations of a Bernoulli random
variable with probabilities that obbey the logistic function

p(xi) = eβ0+β1x1i+...+βpxpi

1 + eβ0+β1x1i+...+βpxpi
.
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The inversion of the logistic function represents the log-odds as a linear function of
the values of xi:

log
(

p(xi)
1 − p(xi)

)
= β0 + β1x1i + . . . + βpxpi.

This is multiple logistic regression, meaning that the log-odds are modelled as a
linear function of several variables. Estimation of the model coefficients in this
model is achieved by the method of maximum likelihood. This topic is beyond the
scope of this Module and we use its implementation as a method of estimation for
the analysis of data in R in the function glm with option family="binomial".

Once the parameter estimates β̂0, β̂1, . . . , β̂p are available, estimates of proba-
bilities of the type p(x) can be computed using e.g. a test observation xi as follows

p̂(xi) = eβ̂0+β̂1x1i+...+β̂pxpi

1 + eβ̂0+β̂1x1i+...+β̂pxpi

.

Together with existing true test observations, these probability estimates are used
to build summary measures that describe the performance of the classifier thus
obtained and to compare the logistic classifier with other classifiers.

Importantly, note that in general, statistics for testing classifiers with fresh data
(such as ROC and AUC) may not be informative about significance of variables
in terms in traditional statistical analysis. In the case of logistic regression, good
clasification performance may not relate for example to model deviance.
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4.5.1 Logistic code for the small example

Code for training the logistic model and for building predictions using test data for
the example first seen in Page 71.

DAT ## x,y values and FF identifies 1-training, 2-testing

## x y FF
## 1 1 0 1
## 2 -7 0 1
## 3 3 0 2
## 4 15 1 2
## 5 -3 0 1
## 6 5 1 1
## 7 -1 1 2
## 8 -5 0 2
## 9 11 1 2
## 10 13 1 1
## 11 7 1 2
## 12 9 0 1

##
## Indexes for the training and test data sets
Train<-DAT$FF==1
Test<-DAT$FF==2
M1<-glm(y˜x,data=DAT[Train,],family = "binomial")
M1$coefficients

## (Intercept) x
## -2.0948121 0.2861654

P1<-predict.glm(object = M1,newdata = DAT[Test,],type = "response")
P1 ## predicted probabilities

## 3 4 7 8 9 11
## 0.22507793 0.90004002 0.08463481 0.02859146 0.74135203 0.47710251
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We next compute the ROC, plot the ROC curve and compute AUC.

library(pROC)
roc(response=DAT$y[Test],predictor=P1)->RR
RR$sensitivities ## this is TPR

## [1] 1.00 1.00 0.75 0.75 0.50 0.25 0.00

RR$specificities ## this is 1-FPR

## [1] 0.0 0.5 0.5 1.0 1.0 1.0 1.0

plot(RR)
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auc(RR)

## Area under the curve: 0.875

In the plot, note the horizontal axis “Specificity”, defined as 1-FPR.
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4.5.2 Comparison glm and lm for the small example

Here we compare the logistic results with the linear classifier. We do not expect
very good performance from this classifier yet we include it as linear regression is a
standard statistical technique.

M2<-lm(y˜x,data=DAT[Train,]);
M2$coefficients

## (Intercept) x
## 0.20476190 0.04285714

P2<-predict.lm(object = M2,newdata = DAT[Test,])

Here are the predicted responses. Note the negative value, which is perfectly
valid for a linear regression but inadequate for estimating a probability.

P2

## 3 4 7 8 9 11
## 0.33333333 0.84761905 0.16190476 -0.00952381 0.67619048 0.50476190

We compute the ROC and show sensitivities, specificities and AUC below.

roc(response=DAT$y[Test],predictor=P2)->RR2

## Setting levels: control = 0, case = 1
## Setting direction: controls < cases

RR2$sensitivities ## this is TPR

## [1] 1.00 1.00 0.75 0.75 0.50 0.25 0.00

RR2$specificities ## this is 1-FPR

## [1] 0.0 0.5 0.5 1.0 1.0 1.0 1.0

auc(RR2)

## Area under the curve: 0.875

Perhaps surprisingly, the values of TPR and FPR coincide with that of the
logistic classifier, that is the two classifiers (linear and logistic) are equivalent. The
following plot shows the two ROC curves together.
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plot(RR) ## logistic
plot(RR2,add=TRUE,col="green",lty=2) ## linear
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4.5.3 Synthetic example

The plots in the following page illustrate logistic classification for a synthetic exam-
ple with n = 24 observations in p = 2 variables. The variables x1, x2 will be used
to classify. The plot shows the regions in which the space is separated, according
to the value of the threshold selected.

The region colored in black corresponds to predicted zeroes or “negatives”, while
the red region is for ones or “positives”. The observations are added, using the same
color coding. This allows for simple graphical depiction of false positives (black dot
in red region), false negatives (red dot in black region). Dots in a region of their
own color are either true positives (red) or true negatives (black).
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4.5.4 Logistic code: Default data

This code partly revisits the lab material for week eight with Default data. Recall
that this dataset has default data (persons who could not pay debt) with continuous
variables income and balance (how much money is owed) and categorical variables
student and default (the response variable). To depart from the lab material, we
consider simple predictive models for each of the three variables individually.

The analysis performed concentrates on the ROC curve and AUC statistic and
no output is given for the classifier training stage nor for the stage for building test
response (probabilities).

## select the fold
library(cvTools)
set.seed(0); n<-10000; K<-5; cvFolds(n=n,K=K)->CV
CV$subsets[CV$which!=5]->Train; CV$subsets[CV$which==5]->Test
## Train classifiers
library(ISLR)
attach(Default)
M1<-glm(default˜balance,family = "binomial",data = Default[Train,])
M2<-glm(default˜income,family = "binomial",data = Default[Train,])
M3<-glm(default˜student,family = "binomial",data = Default[Train,])
## Build validation data
predict.glm(object = M1, newdata =Default[Test,],type="response" ) -> P1
predict.glm(object = M2, newdata =Default[Test,],type="response" ) -> P2
predict.glm(object = M3, newdata =Default[Test,],type="response" ) -> P3
## ROC computation
library(pROC)
roc(response=default[Test],predictor=P1)->RR1
roc(response=default[Test],predictor=P2)->RR2
roc(response=default[Test],predictor=P3)->RR3
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In the plot below we show ROC curves for the three models. It is clear the
overwhelming superiority of M1 over the models M2 and M3 which behave like random
classifiers.

par(mar=c(4,4,1,1))
plot(RR1,col="black",main="ROC Default data") ## default˜balance
plot(RR2,col="red",add=TRUE) ## default˜income
plot(RR3,col="green",add=TRUE) ## default˜student
legend(x=0.35,y=0.3,legend=c("M1","M2","M3"),lty=1,

col=c("black","red","green"),cex=0.6)
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auc(RR1); auc(RR2); auc(RR3)

## Area under the curve: 0.961
## Area under the curve: 0.5232
## Area under the curve: 0.4895
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4.6 K nearest neighbors classifier (KNN)
In the K nearest neighbors classifier (KNN) a new observation is labeled according
to the labels of the K nearest neighbors to it. In the case of our concern with
two labels, the 0/1 label of a new observation is decided by the label of neighbors
around it that has the highest frequency and in this sense, KNN is a form of neighbor
voting. Because distance matters, if the variables do not have the same scales, this
will impact the results of the KNN classifier and thus standardizing the data is
recommended.

The KNN classification methodology does not require the usual two step of
training and testing and it is all done in a single step. Also, in a KNN classifier,
no parameter estimates are produced, and this feature is in contrast with other
classifiers (e.g. linear or logistic), which produce interpretable parameter estimates
and allow for significance testing of them.

The chosen value of K is usually odd so that for two labels it will not be possible
to have voting ties. When there is a tie among neighbor label frequencies, the label
is chosen at random. This situation may happen when classifying more than two
labels or in the 0/1 case, when K is even.

For our examples and analyses, we use the implementation of this classifier in
the function knn from the library class.

4.6.1 Synthetic example

We apply the KNN classification to the same earlier synthetic example with n = 24
observations in p = 2 variables. For values of K = 1, 2, 3, 4, the plane is split into
regions according to labels of the nearest neighbors.

The plots for each of said values of K are given in the next page. For odd values
of K the split is unambiguous, but for even values of K and depending on data,
there are regions in which the classification is performed at random. The same
description of the earlier plots about false and true positives or negatives can be
read from these plots.
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4.6.2 KNN for the Default data set

We next apply the KNN classifier for the Default data. Recall that the variables
are default, student, balance, income and that the aim is to classify individuals
that default using three other variables. Given that the variable student is cate-
gorical, the analysis will be performed using the other two variables, which will be
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standardized. The confusion matrices are shown for K = 1, 2, 3, 4, 5. For the data
split, we use the same variables CV, Train and Test as before.

X<-scale(Default[,3:4],center = TRUE,scale = TRUE) ## Standardize data
library(class)
for(K in 1:5){

knn(train = X[Train,],test = X[Test,],cl = Default$default[Train],k = K)->KN
Ytrue<-1*(default[Test]=="Yes"); YKN<-1*(KN=="Yes") ## Adapt labels to 0/1
print(paste("KNN, K = ",K)); print(table(Ytrue,YKN)) ## Print results

}

## [1] "KNN, K = 1"
## YKN
## Ytrue 0 1
## 0 1893 47
## 1 42 18
## [1] "KNN, K = 2"
## YKN
## Ytrue 0 1
## 0 1902 38
## 1 41 19
## [1] "KNN, K = 3"
## YKN
## Ytrue 0 1
## 0 1922 18
## 1 35 25
## [1] "KNN, K = 4"
## YKN
## Ytrue 0 1
## 0 1923 17
## 1 39 21
## [1] "KNN, K = 5"
## YKN
## Ytrue 0 1
## 0 1931 9
## 1 37 23

The following table summarizes the performance measures for the different in-
stances of K considered. We put these values in the ROC graph.
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K 1 2 3 4 5
FPR 0.02423 0.01959 0.00928 0.00979 0.00464
TPR 0.3 0.31667 0.41667 0.3 0.38333
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The best KNN classifier was for K = 3. This KNN classifier is better than a
random classifier yet quite modest in its performance. Although it is quite capable
of singling out negatives with a False Positive Rate (FPR) less than 1%, it has a
True Positive Rate (TPR) just above 40%.
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Exercise 32 The site archive.ics.uci.edu/ml/datasets.php is a good source of
data for Machine Learning. In each case below, download data and do a classifica-
tion analysis. Your analysis should aim to compare the performance of classifiers
for a given dataset. Data should be partitioned in training and validation/testing
data sets as we have seen in notes and earlier lab. In terms of models/classifiers, at
the very least, you should try logistic classifier and KNN classifier.

1. The sonar data. This is data from a study to train a classifier so that it
distinguishes between sonar signals bounced by a metal cylinder (M) and by
a rock (R). As a response, define the detection of a mine (metal cylinder) as
a positive and detection of a rock as negative and analyze the data. Before
attempting analysis, think of ways you would analyse a (partitioned) data set
that has n = 208 observations in p = 60 variables.

2. At the scene of a crime, glass left can be used as evidence . . . if it is correctly
identified! This is the glass data, from the USA Forensic Science Service.
There are n = 214 observations in p = 10 variables plus the response that
indentifies 6 types of glass, defined in terms of their oxide content (i.e. Na,
Fe, K, etc). Analyse this data by setting the response to be “window glass”
(positive, types of glass equal to 1, 2, 3, 4) against “non-window glass” (nega-
tive).

3. Analyze other datasets from the said site that attract your interest.
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Important points and concepts of week eight:

1. Interpret the performance of a classifier using the ROC curve and AUC.

2. Become familiar with classifiers: linear, logistic and KNN.

3. Practice data analysis with R. For this analysis, key R functions are the fol-
lowing. For splitting the data

cvFolds;

for comparisons of classifiers

table, roc and auc;

and for building classifiers

lm, glm, predict and knn.
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Week nine
Here we continue the survey of classification methods.

4.7 Classification tree
A classification tree is a structure in which leaves represent class labels and branches
represent conjunctions of variables (features) that lead to class labels. For a given
set of input values, when moving along the tree, we perform a series of decisions
involving the values of the said variables. At the end of this process we have reached
a label associated with a leaf and therefore, we have classified the given set of inputs.

As an example, consider the following decision tree below left with variables
X1, X2. Conventionally, when going down on the tree, in every decision node the
‘yes’ branch is on the left. The symbols τ1, τ2, τ3, τ4, τ5 are terminal nodes (leaves)
and they represent labels. In the diagram below right, each region Ri is attached
the label τi. Make sure you understand the partitioning induced by the tree, that
is that you can relate the branches in the tree to the regions in the diagram.

X2 ⩽ θ1

X1 ⩽ θ2

τ1 τ2

X2 ⩽ θ3

X1 ⩽ θ4

τ3 τ4

τ5

X1

X2

θ1

θ3

θ2 θ4

R1 R2

R3 R4

R5

After training, a classification tree provides a series of simple conditions that
lead into leaves associated with labels. Trees are simple to understand and
interpret, as the conditions are simple comparisons of values. Also, trees mirror
human decision making more than any other classification approaches. They are
able to handle categorical and numerical data without extensive data preparation,
do not rely on distributional assumptions and can be validated with testing data.
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However, trees can have disadvantages. An important one is that training a tree
is known to be an expensive problem and existing algorithms use greedy searches
which in turn do not necessarily guarantee finding an optimum solution. Often the
solution obtained over-fits the data and is unnecessarily complex and trees can be
very non robust and a small change in data may have huge implications on the
tree and its predictions. Despite disadvantages, trees are a valid and useful
tool to consider. We use the function tree from the library ISLR.

4.7.1 Example synthetic

In this example we use the same synthetic bivariate data seen in an earlier classifi-
cation example. This data has n = 24 points in p = 2 variables. After training the
classifier on the data, we have the following tree. Recall that ‘Yes’ labels are posi-
tives (red color in scatterplot) and ‘No’ labels are negatives (black in scatterplot).

|X2 < 0.361368

X1 < 0.74373

X1 < 0.37608

Yes

No Yes

No

This classification tree induces a partition on the plane of variables X1, X2. As in
previous analyses of the same data, we can identify true positives and true negatives
as dots with a background of the same color; false positives and false negatives are
dots that are on a background of a different color. This fit has an error rate of
3/24 created by two false positives and one false negative; see these cases in the
scatterplot diagram below.
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Note the similarities of this partition with the analysis of the same data done
earlier with the KNN classifier, especially the cases K = 1 and K = 3. Also note
the differences between this partition with the logistic classifier seen earlier and
with the linear discriminant classifier seen later in these notes.
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4.7.2 Example Default data

This is the analysis of the Default data set we have used earlier. The objective is to
classify bank customers in those who will default (positives) and those who won’t
(negatives). The classifier is a tree, and we use the same partitioning of the data as
we have done in the past for this data set .

library(ISLR) ## For the data
attach(Default)
library(cvTools) ## For the data split 80:20
set.seed(0); cvFolds(n=nrow(Default),K=5,type = "random")->CV
Train<-CV$subsets[CV$which!=5]; Test<-CV$subsets[CV$which==5]
library(tree)
tree.default<-tree(default˜.,Default[Train,]) ## Fit the tree

Once the tree has been fitted, we look at summary of the fit and plot the tree.

summary(tree.default)

##
## Classification tree:
## tree(formula = default ˜ ., data = Default[Train, ])
## Variables actually used in tree construction:
## [1] "balance"
## Number of terminal nodes: 5
## Residual mean deviance: 0.166 = 1327 / 7995
## Misclassification error rate: 0.02788 = 223 / 8000

plot(tree.default)
text(tree.default,pretty=0)
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|
balance < 1472.99

balance < 1098.76 balance < 1797.02
balance < 1971.51

No No No No Yes

The fitted tree only used balance to classify. This is not extremely surprising
as for example, the logistic classifier M1 (see notes Week 9) used it and was the only
classifier able to do the task. This tree is highly redundant with four comparisons
involving the same variable. The following simple tree is an equivalent one.

balance< 1971.51

No Yes

As with any method in supervised learning, we need to look at the predictive
abilities of the trained method. We use the fresh data we separated for this purpose.

predict(tree.default,Default[Test,],type="class")->TR
table(Default$default[Test],TR)

## TR
## No Yes
## No 1934 6
## Yes 43 17

The usual diagnostics are computed for this data and method.

## FPR TPR
## 0.003092784 0.283333333
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The performance of the tree classifier was not outstanding, indeed it was even
worse than the KNN classifier. However this data is a challenging problem.

As additional information, see the scatter plot of variables income (unused for
the tree) and balance for the training sample. We put in red those cases that were
defaulted (positive) and added a line which is the threshold value computed by the
classification tree. The separation is far from clear.
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The histogram of balance uses the same color codes and for clarity those cases
with zero balance were removed. Two histograms are provided, one with linear and
another with logarithmic vertical scale.
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Both cases highlight the difficulty of classifying this data set. We want to sepa-
rate defaults in a situation where those who defaulted are a minority and, in terms
of their covariates, are quite mixed with those who didn’t.

4.8 Linear discriminant analysis
Linear discriminant analysis is a method that uses a linear combination of vari-
ables (aka features) to characterize or separate two or more classes of objects or
events. This linear combination is used as a classifier (linear classifier).

4.8.1 Developing the classifier

The analysis assumes that the following conditional probability density functions
p(x|y = 0) and p(x|y = 1) are both (multivariate) normally distributed with mean
and covariance parameters (µ0, Σ0) and (µ1, Σ1). Recall that these multivariate
normal densities are

p(x|y = 0) = 1
(2π)p/2|Σ0|1/2 e− 1

2 (x−µ0)T Σ−1
0 (x−µ0)
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and
p(x|y = 1) = 1

(2π)p/2|Σ1|1/2 e− 1
2 (x−µ1)T Σ−1

1 (x−µ1).

In both cases above the variance-covariance matrices are assumed to be full rank.
With the assumptions above, the Bayes optimal solution is to predict points as

being from the second class (“positives”) if the log of likelihood ratio are bigger
than some threshold T . We develop the log of likelihood ratio as follows:

log
(

p(x|y = 1)
p(x|y = 0)

)
= log

(
|Σ0|1/2

|Σ1|1/2 e
1
2 (x−µ0)T Σ−1

0 (x−µ0)− 1
2 (x−µ1)T Σ−1

1 (x−µ1)
)

= 1
2
(

log |Σ0| − log |Σ1| + (x − µ0)T Σ−1
0 (x − µ0)

−(x − µ1)T Σ−1
1 (x − µ1)

)
.

From the above, we achieve the following condition

log |Σ0| + (x − µ0)T Σ−1
0 (x − µ0) − log |Σ1| − (x − µ1)T Σ−1

1 (x − µ1) > T,

where the constant 1/2 has been absorbed into the threshold T . The condition
above is known as quadratic discriminant, as the right hand side above is a quadratic
function of x when the matrices Σ0 and Σ1 are different.

4.8.2 The linear discriminant

In linear discriminant analysis, a further assumption is that the covariance matrices
are identical so that Σ := Σ0 = Σ1. After cancelling terms and developing the
inequality above, we have the following inequality

xT Σ−1 (µ1 − µ0) >
1
2
(

T + µT
1 Σ−1µ1 − µT

0 Σ−1µ0
)

,

with T a threshold that will classify (separate) cases. The above condition is just
a threshold on the dot product w · x > c with quantities w = Σ−1 (µ1 − µ0) and
c = 1

2

(
T + µT

1 Σ−1µ1 − µT
0 Σ−1µ0

)
. In other words, the observation x belongs to

a certain class depending on its location concerning a hyperplane perpendicular to
the vector w, and the location of the hyperplane is defined by c.

The canonical separating value is when T = 0 so that the constant c takes value
c = 1

2

(
µT

1 Σ−1µ1 − µT
0 Σ−1µ0

)
. When varying the value of T over the entire real

line, we scan over all different patters of classification of the fitted LDA and from
this scan, we can build the ROC curve.
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In the Bayesian version of LDA, each class has a prior probability of individuals
belonging to it. The classifiers allocates individuals according to the maximum
posterior probability. The case we study is a simple version of the Bayesian linear
discriminant analysis, equivalent to the case when the prior probabilities are equal.
To perform linear discriminant analysis, we use the function lda from the library
MASS.

4.8.3 Example synthetic

We first have a look at the method using the synthetic data of small size we have
used for other classifiers. This dataset has n = 24 points in d = 2 dimensions.

In the first plot below (left), any observations falling into the red area are classi-
fied as positives and negatives otherwise. This plot uses the canonical value T = 0.
To have a detailed look into linear discriminant analysis, the second plot below
(right) is of the same data and LD analysis, when varying the threshold T .
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4.8.4 Example Default data

This is the classification example we have analysed earlier. The aim is to predict
individuals that will default (be unable to pay) using three covariates. The first
stage of the analysis involves training the model, using the same split 80 : 20 as
earlier.

library(ISLR); attach(Default) ## Load the data
library(cvTools) ## To split data 80:20
set.seed(0); cvFolds(n=nrow(Default),K=5,type = "random")->CV
Train<-CV$subsets[CV$which!=5]; Test<-CV$subsets[CV$which==5]
library(MASS) ## Train the model
LD<-lda(default˜.,data=Default[Train,]); LD

## Call:
## lda(default ˜ ., data = Default[Train, ])
##
## Prior probabilities of groups:
## No Yes
## 0.965875 0.034125
##
## Group means:
## studentYes balance income
## No 0.2923515 808.5913 33494.87
## Yes 0.4065934 1737.8864 31489.44
##
## Coefficients of linear discriminants:
## LD1
## studentYes -1.269214e-01
## balance 2.235478e-03
## income 2.949078e-06
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Then predict using fresh data and compute the usual performance statistics.

PD<-predict(LD,Default[Test,]); table(default[Test],PD$class)

##
## No Yes
## No 1937 3
## Yes 44 16

## FPR TPR
## 0.001546392 0.266666667

The performance of this method is not extremely different than the other meth-
ods we tried previously with the same data, it is even slightly better than the logistic
with AUC of 0.96384. A ROC curve can be built for these data and displayed, to-
gether with the performance measures for the canonical case.

library(pROC); roc(response=default[Test],predictor=PD$x)->RR
plot(RR,col="black",main="ROC LDA Default data")
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Exercise 33 Consider the data and description of activities of Exercise 25 (week
nine). Do the analysis of the glass and of sonar data using the tree classifier
and the linear discriminant classifier. Compare your results with those from earlier
classification analysis.

Exercise 34 The following are six fitted classification trees. For each tree, a) sketch
the regions of [0, 1]2 that are classified as positives and as negatives and b) (Extra)
write an alternative tree that achieves the same classification. The alternative tree
can be a simplified version of the given tree.

|
X2 < 0.342507

X2 < 0.188946 X2 < 0.458579

X2 < 0.730047

Yes No

Yes

No Yes

|
X2 < 0.547213

X2 < 0.254829

X2 < 0.105401

X2 < 0.673333

No Yes

No

Yes Yes

|
X1 < 0.864027

X1 < 0.52159

X1 < 0.373341 X2 < 0.623262

Yes No

Yes Yes

No

|
X1 < 0.536518

X1 < 0.290729

X2 < 0.377111

X1 < 0.79028

No Yes

Yes

No Yes

|
X2 < 0.710118

X2 < 0.55683

X1 < 0.66122

X1 < 0.417115

No No

Yes

No

Yes

|
X1 < 0.350002

X1 < 0.230354 X2 < 0.613967

X1 < 0.712901

No Yes
No Yes

No
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Important points and concepts of week nine:

1. Become familiar with the concepts and ideas behind classifiers: classification
tree and linear discriminant analysis

2. Practice data analysis with R. The key functions for this part of the Module
are tree and lda.

103



Weeks ten and eleven

5 Lasso and regularization (Penalized likelihood)
Penalization techniques have been proposed with the objective of improving the
performance of traditional estimators. In this chapter we introduce the basics of
three penalization proposals that gravitate around regression and extensions: Ridge
regression, Lasso and penalized likelihood. In contrast with classification problems,
here the response vector has real valued entries.

5.0.1 Standard linear regression

Parameter estimation in many statistical problems is performed by minimizing the
sum of squared errors, leading to the standard least squares estimate. Consider
the linear model

Y = Xβ + ϵ, (1)
where the matrix X has dimensions n × p with n > p, and it is assumed that X is
full rank, i.e. rank(X) = p. The real-valued responses are collected in the vector Y.
For this model, the least squares estimate of β is the well known regression formula

β̂ =
(

XT X
)−1

XT Y, (2)

which minimizes the quadratic criterion

SSE = ||Y − Xβ||22.

5.0.2 Notation on norms

The symbol || · ||2 is the usual Euclidean norm as seen elsewhere in mathematics
and also known as the L2 norm. We have used this norm earlier in this Module
for clustering as a distance between two points (vectors) and as a norm it is the
distance between a vector and the origin.

The notation || · ||22 is the squared euclidean norm (squared L2 norm). The
squared euclidean norm has an appealing development in terms of vectors, indeed
for a column vector x, we have ||x||22 = xT x. In particular, we have

SSE = ||Y − Xβ||22 = (Y − Xβ)T (Y − Xβ) = YT Y − 2βT XT Y + βT XT Xβ

As for other norms, note that the general case of norm || · ||m is the Minkowski
distance (or Lm norm) and in particular || · ||1 is the Manhattan distance or L1
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norm. In all cases, the argument · of the distances are vectors, which are usually
column vectors.

Consider the vector x = (4, −1, 2)T ∈ R3. Its L2 norm (Euclidean) is ||x||2 =√
(4)2 + (−1)2 + (2)2 =

√
16 + 1 + 4 =

√
21 = 4.58258. Its squared euclidean

norm is ||x||22 = xT x = 21. Its L1 norm (‘Manhattan’) is ||x||1 = |4| + | − 1| + |2| =
4 + 1 + 2 = 7.

5.1 Ridge regression
The criterion ||Y − Xβ||22 is a measure of the distance (misfit) between data Y and
the predictor Xβ. Now suppose we are interested as well in the criterion ||β||22,
which is a measure of the size of the coefficient vector β. The goal is to find a good
fit, that is to find a value of β that achieves a small value of ||Y − Xβ||22 and in
such a way that β is not too large, that is, attaining a small value of ||β||22.

This search can be formulated as a dual objective problem in optimisation theory.
This dual problem can be scalarized to have a single objective function. After
simplification, the objective function becomes

R = ||Y − Xβ||22 + λ||β||22, (3)

to be minimised for positive λ. This is a regularized (that is, L2 regularized) least
squares problem, whose solution has the following closed form

β̂
R = β̂

R(λ) =
(

XT X + λI
)−1

XT Y. (4)

This estimator β̂
R is the ridge regression estimator.

5.1.1 The ridge trace

In optimization terminology, the solution β̂
R of ridge regression is Pareto-optimal

for any positive λ. There are two extremes: when λ → 0 and when λ → ∞. The first
instance corresponds to the ordinary least squares estimator: β̂

R = β̂ of Equation
2, and the second is the solution β̂

R = 0. Both solutions are also Pareto-optimal.
The following figure shows the behaviour of solutions to a ridge regularized

regression problem. The plane in the figure has X-Y coordinates given by the two
criteria ||Y − Xβ||22 and ||β||22. The shaded area is the set of achievable values(

||Y − Xβ||22, ||β||22
)

. The border of this area is termed the Pareto front, and the
optimal trade-off curve is achieved by the minimizer solution of Equation 3.
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The trajectory of ridge regression coefficients β̂
R as a function of λ for λ ⩾ 0

is known as the ridge trace. As has been described earlier, for each coefficient
β̂R

j the ridge trace morphs continuously the value β̂R
j between the ordinary least

squares estimate β̂j (obtained when λ = 0) and zero (when λ → ∞).

5.1.2 Ridge and other techniques

Ridge regression provides a useful alternative to least squares. As we move along
the ridge trace (increasing λ), the shrinkage of the coefficient leads to a substantial
reduction in the variance of predictions, at the expense of an increase in the bias.
It also has advantages over subset selection in regression both on the prediction
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performance and computational complexity. We must be aware that ridge regression
is not a variable selection technique, as the coefficients only shrink to zero when
λ → ∞.

Ridge regression has close links with principal component analysis. To elaborate
briefly on this, recall the singular value decomposition of the matrix of covariates
X = UDVT . We begin with the predictions of standard linear regression, which
can be easily shown as

Ŷ = Xβ̂ = HY = UUT Y,

where H = UUT is the hat matrix for predictions. Note that UT Y above are the
coordinates of Y with respect to the orthonormal basis U.

The predictions of ridge regression can be shown to be

Xβ̂
R = UD(D2 + λI)−1DUT︸ ︷︷ ︸

Hλ

Y =
p∑

j=1

uj

d2
j

d2
j + λ

uT
j Y,

where D(D2+λI)−1D is a diagonal matrix with entries d2
1/(d2

1 + λ), . . . , d2
p/(d2

p + λ);
and the matrix Hλ = X(XT X + λI)−1XT is the hat matrix for ridge predictions.
Indeed, like linear regression (see Exercise 15 in Page 22, week three), ridge re-
gression also computes the coordinates of Y with respect to the orthonomal basis
U. The coordinates are then shrank by factors d2

j /(d2
j + λ) so that greater amount

of shrinkage is performed in vectors with smaller value d2
j . Recall that dj is an

eigenvalue of the singular decomposition of X and that eigenvalues of principal
components of X are related to those of its singular value decomposition via the
relation Λ = D2/(n − 1) seen much earlier in this Module, see also Exercise 35. In
other words, small singular values correspond to directions in the column space of
X having small variance, and the ridge regression shrinks these directions the most.

5.1.3 Computations

The main problem of ridge regression is to select the value of λ. There are several
options for this. A subjective suitable value of λ would be the smallest λ such that
the coefficients stabilize in this plot. It is also possible to select λ on the basis of
selecting minimal error in a cross-validation procedure. Finally, another proposal
is to plot the ridge trace against what is known as the effective degrees of freedom,
defined as

df(λ) = trace(Hλ) =
p∑

j=1

d2
j

d2
j + λ

,

where dj are the (singular) eigenvalues of X.
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5.1.4 Example: Credit dataset

The Credit dataset has the response variable Balance (debt) which is to be mod-
elled with ridge regression using the quantitative predictor variables Income, Limit,
Rating, Cards, Age, Education. The data consists of n = 400 observations and
to select a value of λ we have split the data in K = 4 folds, three of which are used
for training the model and the last one is used for selecting λ.

library(ISLR)
DAT<-Credit[,c(2:7,12)] ## Loading the data set
DAT<-scale(x = DAT,center=TRUE,scale=TRUE) ## centering and scaling
library(cvTools) ## CV for splitting in folds
set.seed(0);
cvFolds(n=nrow(DAT),K = 4,type = "random")->CV
CV$subsets[CV$which!=4]->Train; CV$subsets[CV$which==4]->Test

For the ridge, we use a simple function which is coded below.

ridge<-function(Xtrain,Ytrain,Xval,Yval,lval){
S<-svd(x=Xtrain); ## Svd to compute ridge
N<-length(lval); ## Number of lambda values
betav<-matrix(nrow=ncol(Xtrain),ncol=N); ## Objects for the analysis and output
Ypred<-matrix(nrow=nrow(Xval),ncol=N); DF<-MSE<-matrix(ncol=N,nrow=1)
rownames(betav)<-colnames(Xtrain)
for(i in 1:N){

lambda<-lval[i]
betav[,i]<-c( (S$v)%*%diag(S$d/(S$dˆ2+lambda))%*%t(S$u)%*%matrix(ncol=1,Ytrain )) ## ridge trained
Ypred[,i]<-Xval%*%matrix(ncol=1,betav[,i]) ## Predictions
MSE[1,i]<-mean( ( Yval -Ypred[,i] )ˆ2 ) ## MSE
DF[1,i]<-sum( S$dˆ2/(S$dˆ2+lambda) ) ## Effective degrees of freedom

}
return(list("beta"=betav,"MSE"=c(MSE),"df"=DF))

}

The data was standardized in the training step and we selected values of λ
ranging from 10−4 to 106.

rangelambda<-10ˆseq(from=-4,to=6,length.out = 100) ## values of lambda
LR<-ridge(Xtrain=DAT[Train,1:6],Ytrain = DAT[Train,7],

Xval=DAT[Test,1:6],Yval=DAT[Test,7],lval=rangelambda)
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At this stage, the output LR$MSE has the prediction errors. From these values,
we select the value of λ:

which.min(LR$MSE) ## Index for the value of lambda that minimizes MSE

## [1] 48

LR$MSE[which.min(LR$MSE)] ## minimum value of MSE

## [1] 0.1348048

rangelambda[which.min(LR$MSE)]->lambdamin; lambdamin ## minimum lambda

## [1] 5.59081

The minimum value is MSE(λ̃) = 0.1348, which is achieved at λ̃ = 5.59081. We
next plot the validation MSE as well as the ridge trace.

par(mar=c(4,4,1,1),mfrow=c(1,2))
plot(x=rangelambda,y=LR$MSE,log="xy",xlab=expression(lambda),ylab="MSE",type="l")
lines(lambdamin*c(1,1),range(LR$MSE),lty=2)
plot(range(rangelambda),range(LR$beta),type="n",log="x",xlab=expression(lambda),

ylab=expression(beta(lambda))); lines(lambdamin*c(1,1),range(LR$beta),lty=2)
for(i in 1:nrow(LR$beta)) lines(rangelambda,LR$beta[i,],col=i)
legend("bottomright",legend=colnames(DAT)[1:6],lty=1,col=1:6,cex = 0.6)
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Here we give the coefficients of the selected model

LR$beta[,which.min(LR$MSE)]

## Income Limit Rating Cards Age Education
## -0.53586266 0.65104988 0.63814381 0.02997686 -0.04298134 -0.01050584

and then a plot of the ridge trace against the proportion of (squared L2) shrink-
age.

stdnorm<-apply(X = LR$betaˆ2,MARGIN = 2,FUN = sum);
stdnorm<-stdnorm/max(stdnorm) ## L2 shrinkage
plot(c(0,1),range(LR$beta),type="n",log="",xlab="L_2 shrinkage",ylab=expression(beta))
for(i in 1:nrow(LR$beta)) lines(stdnorm,LR$beta[i,],col=i)
legend("bottomleft",legend=rownames(LR$beta),lty=1,col=1:6,cex = 0.7)
lines(c(1,1)*stdnorm[which.min(LR$MSE)],range(LR$beta),lty=2)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

L_2 shrinkage

β

Income
Limit
Rating
Cards
Age
Education

110



As a final plot for the Credit data analysis, we plot the ridge trace against
effective degrees of freedom df(λ). As in the other plots, the dashed line indicates
the value of λ̃ (i.e. df(λ̃) in this plot) selected using the validation data.
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Note that along the ridge trace, the continuous transformation of β̂
R from the least

squares estimate β̂ to zero is often monotonic but not necessarily so, as is evident
in the trace for the coefficient of Income.
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Important points and concepts of weeks ten and eleven:

1. The concept of regularization and the case of ridge regression.

2. Concerning the ridge trace, understand the different versions and the compu-
tations involved.

3. Practice data analysis with R. In this section we did our own function for this
analysis as ridge.

112



Week twelve
5.2 Lasso
Despite its advantages for prediction, a clear drawback of ridge regression is that
it generally selects models that involve all the p variables, contrary to model selec-
tion techniques like best subset, forward stepwise or backward stepwise regression.
The lasso (least absolute shrinkage and selection operator) is a relatively recent
technique that overcomes this disadvantage by using L1 penalization.

Using the same principles as for ridge regression, consider a dual objective op-
timization of the criteria ||Y − Xβ||22 and ||β||1. The first quantity is the residual
sum of squares criterion as seen earlier, while the second is the L1 norm (Manhat-
tan) of the vector of parameters β. Both quantities are to be minimized and just
like in ridge regression, the problem can be scalarized into a single criterion. After
simplification, the lasso problem is the minimization of

L = 1
2

||Y − Xβ||22 + λ||β||1. (5)

This is a L1 regularized least squares problem, in which the quantity L is a convex
function for all β and positive λ. Contrary to ridge regression, there is no general
closed form solution for the minimization of lasso criterion L.

5.2.1 The lasso path

For fixed λ, the lasso estimates are the quantities β̂
L = β̂

L(λ) which minimise L.
The set of solutions to the lasso problem is known as the lasso path. In the lasso
path, the estimates β̂

L(λ) shrink linearly as function of λ, but these trajectories
are piecewise linear and not globally linear. See the later example for the detailed
construction of the path.

Mirroring the earlier development of ridge regression, β̂
L of lasso is Pareto-

optimal for any positive λ. We also have the same two extremes as for ridge:
when λ → 0 and when λ → ∞. The first instance corresponds to the ordinary least
squares estimator β̂ of Equation 2, and the second is the solution β̂

L = 0. Both
solutions are also Pareto-optimal.

Despite similarities with ridge regression, the lasso path is very different than the
ridge trace and an attractive feature of the lasso path is that coefficients effectively
shrink to zero. Indeed the shrinking all of coefficients to zero in the lasso path
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takes place at a finite λ, as opposed to ridge regression where this only happens as
λ → ∞.

For the above reason, lasso has a dual function as an estimation procedure and
a variable selection method. An advantage of this feature of lasso is that models
obtained from it are simpler to interpret than those from ridge regression as they
are sparser, that is they are smaller in size.

The following figure shows the set of achievable solutions for an example of the
dual problem described above. The figure also shows the border (Pareto front) of
this dual problem which is precisely the optimal trade-off curve that minimizes L
of Equation 5.
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As in the case of ridge regression, a paramount problem of the lasso is to select
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a value of λ. This is usually achieved by splitting the data with some form of
cross-validation and minimization of the validation error computed with fresh data.

Also, when performing lasso analyses, it is customary to standardize the data.
Specifically, after centering the response, the model fitted involves no intercept
which in most cases, is of little interest.

5.2.2 Example: Credit data

We now analyze the same Credit data set we analysed with ridge regression. The
initial part of the code with data preparation remains as before, with a 75:25 split.

library(ISLR); library(lars) ## for data and lasso
DAT<-Credit[,c(2:7,12)]; ## loading the data set
library(cvTools) ## CV for splitting in folds
set.seed(0); cvFolds(n=nrow(DAT),K = 4,type = "random")->CV
CV$subsets[CV$which!=4]->Train; CV$subsets[CV$which==4]->Test
DAT<-scale(x=DAT,center=TRUE,scale=TRUE) ## center and scale data

The machine learning algorithm is trained. We then plot the lasso path.

lars(x=DAT[Train,-c(7)],y=DAT[Train,7],type = "lasso",intercept = FALSE,
normalize=FALSE)->LS; plot(LS)
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There are two versions of the lasso path and they differ in the horizontal axis.
In either version, the vertical axes plots the values of the different coefficients so it
is a multi-axis. In one version of the path, the horizontal axis is the regularization
parameter λ, and in the second version, the horizontal axis is the proportion of
shrinkage, that is the L1 shrinkage of β̂

L, computed with respect to the largest
L1 norm of β̂L. The proportion of shrinkage is ||β(λ)||1/maxλ||β(λ)||1, which in
the plot above is labelled as |beta|/max|beta|.

This second plot is the most common version, implemented in R when plotting
the output of package lars. We will next study the lasso path in some detail.

5.2.3 Example Credit data: deconstructing the lasso path

The starting point of the lasso path is the vector of ordinary least squares. Here we
compute with the function lm these coefficients. Note removal of the intercept.
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round(lm(DAT[Train,7]˜DAT[Train,-c(7)]-1)$coefficients,5)

## DAT[Train, -c(7)]Income DAT[Train, -c(7)]Limit
## -0.58959 0.70833
## DAT[Train, -c(7)]Rating DAT[Train, -c(7)]Cards
## 0.63461 0.02745
## DAT[Train, -c(7)]Age DAT[Train, -c(7)]Education
## -0.04115 -0.00954

The end of the lasso path is at the point where the coefficients have all shrank
to zero. It can be shown that this happens at λmax = maxi{|XT Y|i} = 259.78686

abs( t(DAT[Train,-c(7)])%*%DAT[Train,7] )## |XˆTY|

## [,1]
## Income 134.98281
## Limit 259.08415
## Rating 259.78686
## Cards 22.97758
## Age 14.44241
## Education 16.62844
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The lasso path has a series of breakpoints, and between these breakpoints the
coefficients move linearly, i.e. the path is a series of piecewise linear trajectories.
The following is the table of coefficients at breakpoints. Each column is for a
coefficient, each row is for a breakpoint (λ).

The last row is the least squares estimate, and the first row consists of zeroes,
i.e. complete shrinkage of coefficients. Therefore the lasso path is represented in
the table from end (top of table) to beginning (bottom of table).

round(LS$beta,5)

## Income Limit Rating Cards Age Education
## 0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## 1 0.00000 0.00000 0.58972 0.00000 0.00000 0.00000
## 2 0.00000 0.11025 0.64203 0.00000 0.00000 0.00000
## 3 -0.37659 0.35734 0.76649 0.00000 0.00000 0.00000
## 4 -0.47360 0.41909 0.80378 0.00000 -0.01705 0.00000
## 5 -0.54395 0.57971 0.71604 0.01636 -0.03134 0.00000
## 6 -0.58959 0.70833 0.63461 0.02745 -0.04115 -0.00954
## attr(,"scaled:scale")
## [1] 1 1 1 1 1 1

The values of λ for the breakpoints are given in the list LS$lambda. To this list
we need to add λ = 0 (value of λ for the bottom row). For the current analysis
there are 6 + 1 = 7 breakpoints.

LS$lambda

## [1] 259.786861 85.353801 37.402567 14.093052 7.866418 3.124413
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The plot of coefficients can be done against λ (below) or against the proportion
of L1 shrinkage ||β(λ)||1/maxλ||β(λ)||1 (plot in Page 115).

LAMB<-c(LS$lambda,0)
plot(range(LAMB),range(LS$beta),type="n",xlab="lambda", ylab="beta(lambda)")
for(i in 1:ncol(LS$beta)) lines(LAMB,LS$beta[,i],col=i)
for(lambda in LAMB) lines(lambda*c(1,1),range(LS$beta),lty=2)
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This is the customary lasso path. In the left of the plot we have the least squares
estimates; on the right the coefficients have all shrank to zero. In between, coeffi-
cients move linearly between breakpoints.
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We now compute the proportion of shrinkage ||β(λ)||1/maxλ||β(λ)||1. Recall
that ||β(λ)||1 is the L1 norm of vector β̂(λ). In other words, add by row the table
of absolute values of LS$lambda. Then divide by the maximum, collect in a variable
and plot. The plot we constructed below is the same as that in Page 115.

(apply(abs(LS$beta),1,sum)->s); (s/max(s)->s)

## 0 1 2 3 4 5 6
## 0.0000000 0.5897186 0.7522750 1.5004130 1.7135091 1.8873984 2.0106665
## 0 1 2 3 4 5 6
## 0.0000000 0.2932951 0.3741421 0.7462267 0.8522095 0.9386929 1.0000000

plot(c(0,1),range(LS$beta),type="n",xlab="|b|/max|b|",ylab="b",main="LASSO")
for(i in 1:ncol(LS$beta)) lines(s,LS$beta[,i],col=i)
for(mu in s) lines(mu*c(1,1),range(LS$beta),lty=2)
legend(x=0.05,y=-0.05, legend=colnames(LS$beta),lty=1,col=1:6,cex = 0.4)
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5.2.4 Example Credit data set: selecting the value of λ

To construct the validation error (MSE) there are at least two possibilities. One is
to use the coefficients at breakpoints with their actual shrunk values. This is done
next.

predict(object = LS, newx = DAT[Test,-c(7)],type="fit")->PL
matrix(nrow=nrow(DAT[Test,]),ncol=ncol(PL$fit),byrow=FALSE,DAT[Test,7])->Yobs
apply((Yobs-PL$fit)ˆ2,2,mean)->MSE
which.min(MSE); min(MSE) ## breakpoint that minimizes MSE and minimum MSE
plot(PL$s,MSE,xlab="i",ylab="MSE",log="y",pch=16)
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## [1] 6
## [1] 0.1330342
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The following are the coefficients of the selected model.

LS$beta[which.min(MSE),]

## Income Limit Rating Cards Age Education
## -0.54395274 0.57970850 0.71604051 0.01635805 -0.03133861 0.00000000

Another way to estimate the error is to reestimate these coefficients to ameliorate
the bias. We next do this, noting that in the lasso path some of the variables may
have been removed from the analysis.

Continuing the current example and using the training data, we reestimate model
coefficients. Recall that variable Education has been removed from the model.

## Income Limit Rating Cards Age
## [1,] -0.5903093 0.6855393 0.65823 0.02713605 -0.04075592

With these reestimated coefficients, the updated Mean squared error using the
test data is 0.1344. Compare this value with the earlier (without reestimating
coefficients) lasso MSE of 0.13303 and with the MSE results from ridge regression.
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5.2.5 Lasso and ridge, elastic nets

Lasso and ridge regression are alternative methodologies to improve regression per-
formance. Ridge regression and lasso are solutions of different optimization prob-
lems and the paths (trajectories of coefficients) consequently differ.

For a given data set, we show this contrast by depicting the pareto fronts of L2
regularization (ridge) and of L1 regularization (lasso). For the L2 case (plot on the
left), trivially the ridge trace is optimal, while the lasso path also shown is not, and
this is shown by its position to the “northeast” of the ridge trace. The situation
reverses for L1 (plot on the right), where the lasso path is the optimal solution and
ridge trace becomes suboptimal. In both plots, the dots in lasso path correspond
to breakpoints.
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While ridge regression is known to improve prediction capability, lasso can work
as estimation and variable selection technique and thus it is an alternative to model
selection procedures. Given these relative advantages of lasso (variable selection)
and ridge (prediction) an extension of both lasso and ridge are elastic nets. These
are created by a new penalisation which is a linear combination of L1 from lasso
and L2 from ridge. For constant α and the vector of parameters β, the penalization
for elastic nets is

g(α, β) =
(

α||β||1 + (1 − α)||β||22
)

=
p∑

j=1

(
α|βj | + (1 − α)β2

j

)
.
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The penalty for elastic net g(α, β) is a weighted average between Lasso and ridge
penalties that, depending on the value of α, will lie closer to either Lasso or ridge,
or when α = 1/2 it is equidistant between them. An advantage of g(α, β) is that it
has a differentiable component which improves over Lasso while keeping close to it.
However, a drawback of elastic net is the need to specify the value of α. Observe
in the figure the morphing between the non differentiable (at the origin) absolute
value of Lasso and the smooth parabola of ridge.

We give an example of the elastic net penalisation for a single parameter β. The
figure below shows the net penalty g(α, β) =

(
α|β| + (1 − α)β2

)
as function of β

for α = 0, 1/4, 1/2, 3/4, 1. Note that for α = 1, the net penalty becomes the Lasso
penalty |β|; while the ridge penalty β2 is included by considering α = 0.
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The basic function for this analysis is glmnet of the package with the same name.
The user supplies a desired value of alpha. The parameter values of lambda can be
also specified and are otherwise automatically calculated.

The following plot shows elastic net paths for the data set smalldata.txt of the
website and α = 1, 0.66, 0.33, 0. The plots on the left column have horizontal axis
||β̂||1 and although look roughly similar, when plotted against λ we see the gradual
transition between lasso α = 1 to ridge α = 0.
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We apply the elastic net to the Credit data and α = 0.1 which is close to ridge
regression. We do two fits, one supplying λ and another without these values.

library(glmnet)
par(mar=c(4,4,1,1),mfrow=c(1,2))
EN1<-glmnet(x=DAT[Train,-c(7)],y=DAT[Train,7],lambda=rangelambda,alpha=0.1,

intercept=FALSE)
EN2<-glmnet(x=DAT[Train,-c(7)],y=DAT[Train,7],alpha=0.1,intercept=FALSE)
plot(EN1,lwd=3,main="Lambda supplied")
plot(EN2,lwd=3,main="Lambda computed")
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The elastic net penalty can be applied to any linear model, either regression or
even for classification. Other recent developments in supervised learning include
Least Angle Regression (LARS), Dantzig selector and smoothly clipped absolute
deviation (SCAD).

5.3 Penalized likelihood
The two cases of ridge regression and lasso are instances of penalisation of (log)
likelihood. Barring constants and without considering the problem of estimating
the variance of errors, the (log) likelihood for the normal model of Equation 1 is
l(β) = −||Y − Xβ||22. This likelihood is to be maximized as a function of β.
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The principle of penalised likelihood is to add a function g(β) that penalizes for
large values of the parameter vector β. The penalised likelihood lP is obtained by
combining the likelihood l(β) with the penalty function g(β) so that

lP (β) = l(β) − λg(β),

for a positive weight λ. For a range of values of λ, this quantity is to be maximised
as a function of β. Examples of penalties g(β) are L1 penalisation g(β) = ||β||1,
that is Manhattan or Lasso like penalty; and L2 penalisation g(β) = ||β||22 which is
squared Euclidean or ridge style. These are penalisations that for increasing values
of λ shrink model coefficients towards zero. It is also possible to use the elastic net
penalty g(α, β) described earlier so that for a fixed value of α and values of λ the
following criterion is to be maximized

lP (β) = l(β) − λg(α, β).

Finally, an alternative to elastic nets appears when for a given problem we
must penalise departures from a known value β0, we could use a penality such as
g(β) = ||β − β0||22. Such a penalty would move the penalised likelihood to become
close to Bayesian methodology.

An implementation of penalised likelihood using elastic nets is in the R package
glmnet. This implementation has the flexibility of working with the linear model
of Equation 1 as well as the linear predictor of the form Xβ in generalised linear
models such as logistic or multinomial model.

We now present an example of likelihood penalised with elastic net using the
Default data set seen earlier in the Module. The analysis uses the standard logistic
regression, i.e. a Bernoulli (binomial) likelihood whose probabilities are modeled
using the inverse logistic transformation of the linear predictor. With the glmnet
package, we can train this model and build paths for the elastic net fit for these data.
We use α = 0.5 which is an intermediate value between lasso and ridge penalties
and explore for a range of 40 values of λ between 0.2 and 0 (in that order). For the
analysis we use the same partition 80:20 training/validation as earlier.

library(glmnet)
alpha<-0.5; lv<-seq(from=0.2,to=0.0,length.out=40) ## lambda values
ML1<-glmnet(x=as.matrix(Default[Train,-c(1:2)]),

y = (Default[Train,1]=="Yes")*1,
family = "binomial",lambda = lv,alpha=alpha)

We look at the paths of the trained model. They shrink to zero at λ ≈ 0.13.
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par(mar=c(4,4,1,1), mfrow=c(1,2)); plot(ML1);
plot(range(lv),range(ML1$beta),type="n", xlab=expression(lambda),

ylab="Coefficients", main=paste("alpha = ",round(alpha,3)))
for(i in 1:2) lines(lv,ML1$beta[i,],col=i)

0.000 0.002 0.004

0.
00

0
0.

00
2

0.
00

4

L1 Norm

C
oe

ffi
ci

en
ts

0 1 1 1 2 2

0.00 0.10 0.20

0.
00

0
0.

00
2

0.
00

4

alpha =  0.5

λ

C
oe

ffi
ci

en
ts

We now create predictions in variable PL1 using the testing fold. They are
allocated in a matrix whose number of rows is the size of the test fold; and the
columns are indexed by the values of λ.

predict.glmnet(object = ML1, newx = as.matrix(Default[Test,-c(1:2)]),
type="response",)->PL1

dim(PL1)

## [1] 2000 40

We finish this analysis constructing a series of ROC curves, one for each of the
models in the elastic net path. In each case we also compute the statistic AUC,
which is plotted separately against λ.

library(pROC)
roc(response=default[Test],predictor=PL1[,1])->RR1
plot(RR1,col="black",main="ROC Default data") ## glm(default˜balance+income)
for(i in 2:ncol(PL1)){
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roc(response=default[Test],predictor=PL1[,i])->RR1
plot(RR1,col=i,main="ROC Default data",add=TRUE) ## glm(default˜balance+income)

}
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In this elastic net analysis of Default date we see two types of classifiers. For
small values of λ we have very good classifiers with AUC over 0.95 and very minor
variations amongst them. When λ is larger than about 0.13, the models behave
like random classifiers with AUC=0.5. This threshold between the two patterns is
clearly the shrinkage of the coefficient for balance to zero.

129



Exercise 35 (Extra) There is a close link between Principal Component Analysis
and Ridge regression. Explore it through the following, recall the singular value
decomposition of the data matrix X = UDVT .

1. If β̂
R is the ridge estimator defined in Equation 4, show that the ridge pre-

dictions are

Xβ̂
R =

p∑
j=1

d2
j

d2
j + λ

ujuT
j Y.

2. Compare the ridge prediction against the least squares prediction Ŷ = Xβ̂ =
UUT Y done in Exercise 15 and describe the influence of the factor d2

j /(d2
j + λ).

Explain the role of λ in this factor.

3. Show that df(λ) → p when λ → 0 and that df(λ) → 0 when λ → ∞.

4. (Extra) Show that β̂
R → 0 when λ → ∞.

Exercise 36 (Extra) (Hastie et al.) Consider the following augmented regression
problem: ( X√

λI

∣∣∣ Y
0

)
1. Carefully determine the dimensions of the elements involved in this regression

problem. In particular, specify what the vector of coefficients should be.

2. Solve by least squares this augmented regression problem and show its relation
to ridge regression.

Exercise 37 Consider the diabetes dataset, from the R package lars. This dataset
has blood and other measurements in a group of diabetics.

1. Split the data into training and test data set and then perform ridge and lasso
analyses for this data set. Compare the results obtained.

2. (Extra) Use the function cv.lars for repeated fit and validation analysis
(cross-validation) with lasso.

3. (Extra) Explore the library hierNet which was developed for modelling with
variable interactions within the lasso framework. Use it to fit the diabetes
data.
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Exercise 38 Explore the use of the library glmnet for the following machine learn-
ing analyses. Data will be partitioned as usual into training and testing sets before
using penalized likelihood.

1. For the classification problem with the Default dataset. This analysis uses
the logistic model with binomial option of the generalized linear model.

2. For analysing the warpbreaks data set. This is a dataset from the R package
datasets in which the variable breaks is the number of warp breaks per loom,
where a loom corresponds to a fixed length of yarn. There are two explanatory
variables wool and tension. The analysis is to be carried out using the log-
linear model associated with the poisson generalized linear model.

3. (Extra) Use the function cv.glmnet for repeated fit and validation analysis
(cross-validation) in both data sets above.

4. (Extra) Use the library hierNet for fitting logistic model with variable inter-
actions within lasso framework.

131



Important points and concepts of weeks ten to twelve:

1. The variants of regularization: ridge regression, lasso and penalized likelihood.
Understand the differences between ridge regression and lasso.

2. Concerning the ridge trace and of the lasso path, understand the different
versions of them and the computations involved.

3. The concept of elastic net penalization and its relation with the lasso and
ridge penalizations.

4. Practice data analysis with R. Key functions for this analysis are lars, ridge
(own) and glmnet.
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6 Laboratory material R
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MTH6101 Introduction to Machine Learning

Laboratory week two
The intention of this laboratory is to do a review of R, its functions and some
packages. The tasks involved are matrix computations.

1. Open the package R. This can be done in a variety of ways. You could have
downloaded it and installed it from https://cran.r-project.org/ A popu-
lar version with interactive menus is RStudio, that can be downloaded from
https://rstudio.com/products/rstudio/download/ You can run R online,
with https://rdrr.io/snippets/ that allows running with libraries. You can
access RStudio from Appsanywhere using the url appsanywhere.qmul.ac.uk.

2. Open a new R script file so that you will write your commands there. Use
“File>New File>R Script” in RStudio and “File>New script” if you use the
standard version of R. Remember to name this file and to save it in your own
folder so that you do not lose your work.

3. Do the activities of Exercise 1 for the matrix seen in lectures, which is the
matrix labelled “6”. To use the library pracma remember to install it with the
command install.packages("pracma").

4. Repeat the activities for same exercise using the matrix labelled “7”.

5. Do the activities of Exercise 3, using the matrix labelled “2”.

6. In RStudio, open a new R markdown file with “File>New File>R Markdown”
and select “pdf” output. Remember to erase everything but the header of this
new file. Commands in R must be inside the brackets ‘‘‘{r} and ‘‘‘. To
view the output you must compile the file using the “knit” button above the
document, or the sequence Ctrl+Shift+K.
To help your markdown tasks, have a look at the useful reference card https:
//cran.r-project.org/web//packages/knitr/vignettes/knitr-refcard.pdf

7. Using the code you have already run, experiment with the R markdown ca-
pability. Specifically, experiment by

(a) hiding code from view while still executing it and showing the output,
and

(b) hiding both code and standard R output to then create output as part of
the text in the markdown document.

1
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MTH6101 Introduction to Machine Learning

Laboratory week two - Comments and partial results
The intention of this laboratory is to do a review of R, its functions and some
packages. The tasks involved are matrix computations.

1. Open the package R. This can be done in a variety of ways. You could have
downloaded it and installed it from https://cran.r-project.org/ A popu-
lar version with interactive menus is RStudio, that can be downloaded from
https://rstudio.com/products/rstudio/download/ You can run R online,
with https://rdrr.io/snippets/ that allows running with libraries. You can
access RStudio from Appsanywhere using the url appsanywhere.qmul.ac.uk.

2. Open a new R script file so that you will write your commands there. Use
“File>New File>R Script” in RStudio and “File>New script” if you use the
standard version of R. Remember to name this file and to save it in your own
folder so that you do not lose your work.

Comments: Students use RStudio so this should work and we would not
need the standard R or the online version.
In the worst case scenario (online R with limited libraries), students would
only be able to do the parts of the lab that involve common R functions
such as eigen, svd and matrix operations but nothing involving libraries or
Markdown. However, these commands are the substantial part of the lab.

3. Do the activities of Exercise 1 for the matrix seen in lectures, which is the
matrix labelled “6”. To use the library pracma remember to install it with the
command install.packages("pracma").

Comments: This exercise was done in lectures so students know the re-
sults. In any case, here is the R material, and the items in the list below
are those of the said exercise.

(a) Compute the eigenvalue decomposition of the matrix.

## load and show the matrix
A<-matrix(ncol=2,nrow=2,byrow=TRUE,c(0,1,2,1)); A

## [,1] [,2]
## [1,] 0 1
## [2,] 2 1
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E<-eigen(A) ## eigenvalue decomposition
E

## eigen() decomposition
## $values
## [1] 2 -1
##
## $vectors
## [,1] [,2]
## [1,] -0.4472136 -0.7071068
## [2,] -0.8944272 0.7071068

E$vectors

## [,1] [,2]
## [1,] -0.4472136 -0.7071068
## [2,] -0.8944272 0.7071068

E$values

## [1] 2 -1

(b) Checking the reproducing property

A%*%E$vectors[,1] ## For the first eigenvalue A\lambda_1

## [,1]
## [1,] -0.8944272
## [2,] -1.7888544

E$vectors[,1]*E$values[1] ## v_1\lambda_1

## [1] -0.8944272 -1.7888544

A%*%E$vectors[,2] ## For the second eigenvalue A\lambda_2

## [,1]
## [1,] 0.7071068
## [2,] -0.7071068

E$vectors[,2]*E$values[2] ## v_2\lambda_2

## [1] 0.7071068 -0.7071068
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(c) Computing the characteristic polynomial
Normally students should be able to install the library.

library(pracma) ## the library must be loaded
charpoly(a=A)->CP
CP

## [1] 1 -1 -2

This is precisely the same polynomial seen in lectures, but only the coef-
ficients are given. We use the function poly2str to put it in a readable
form.

poly2str(p=CP)

## [1] "1*xˆ2 - 1*x - 2"

Then compute the roots of this polynomial, which are precisely the eigen-
values given and used in lectures.

polyroots(p=CP)

## root mult
## 1 2 1
## 2 -1 1

(d) Plot the characteristic polynomial.
Simple evaluation of the characteristic polynomial. Can you check by
hand?

polyval(p=CP,x=2);

## [1] 0
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Build a function and plot the characteristic polynomial. The horizontal
line shows the zeroes of it (roots of the characteristic polynomial, i.e.
eigenvalues of the matrix) which were computed earlier.

f<-function(x) polyval(p=CP,x=x)
curve(f,from=-2,to=3)
lines(c(-2,3),c(0,0),col="blue")

−2 −1 0 1 2 3

−
2

0
1

2
3

4

x

f(
x)
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4. Repeat the activities for same exercise using the matrix labelled “7”.

Comments: This computation uses the same commands as the first ex-
ercise and the only change is that the matrix involved is a matrix of size
3 × 3 thus there will be a third eigenvalue involved.

(a) Compute the eigenvalue decomposition of the matrix.

## load and show the matrix
A<-matrix(ncol=3,nrow=3,byrow=TRUE,c(-1,-2,2,1,2,-4,1,1,-3)); A

## [,1] [,2] [,3]
## [1,] -1 -2 2
## [2,] 1 2 -4
## [3,] 1 1 -3

E<-eigen(A) ## eigenvalue decomposition
E

## eigen() decomposition
## $values
## [1] -2 -1 1
##
## $vectors
## [,1] [,2] [,3]
## [1,] 1.665335e-16 -0.5773503 7.071068e-01
## [2,] -7.071068e-01 -0.5773503 -7.071068e-01
## [3,] -7.071068e-01 -0.5773503 -2.775558e-16

E$vectors

## [,1] [,2] [,3]
## [1,] 1.665335e-16 -0.5773503 7.071068e-01
## [2,] -7.071068e-01 -0.5773503 -7.071068e-01
## [3,] -7.071068e-01 -0.5773503 -2.775558e-16

E$values

## [1] -2 -1 1
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(b) Checking the reproducing property

A%*%E$vectors[,1] ## For the first eigenvalue A\lambda_1

## [,1]
## [1,] -8.881784e-16
## [2,] 1.414214e+00
## [3,] 1.414214e+00

E$vectors[,1]*E$values[1] ## v_1\lambda_1

## [1] -3.330669e-16 1.414214e+00 1.414214e+00

A%*%E$vectors[,2] ## For the second eigenvalue A\lambda_2

## [,1]
## [1,] 0.5773503
## [2,] 0.5773503
## [3,] 0.5773503

E$vectors[,2]*E$values[2] ## v_2\lambda_2

## [1] 0.5773503 0.5773503 0.5773503

A%*%E$vectors[,3] ## For the second eigenvalue A\lambda_3

## [,1]
## [1,] 7.071068e-01
## [2,] -7.071068e-01
## [3,] 1.054712e-15

E$vectors[,3]*E$values[3] ## v_3\lambda_3

## [1] 7.071068e-01 -7.071068e-01 -2.775558e-16
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(c) Computing the characteristic polynomial

library(pracma)
charpoly(a=A)->CP
CP

## [1] 1 2 -1 -2

Here only the coefficients are given. We use the function poly2str to
put it in a readable form.

poly2str(p=CP)

## [1] "1*xˆ3 + 2*xˆ2 - 1*x - 2"

Then compute the roots of this polynomial, which are precisely the eigen-
values computed earlier.

polyroots(p=CP)

## root mult
## 1 -2 1
## 2 1 1
## 3 -1 1

(d) Plot the characteristic polynomial.
Simple evaluation of the characteristic polynomial. Can you check by
hand?

polyval(p=CP,x=-2);

## [1] 0
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Build a function and plot the characteristic polynomial. The horizontal
line shows the zeroes of it (roots of the characteristic polynomial, i.e.
eigenvalues of the matrix) which were computed earlier.

f<-function(x) polyval(p=CP,x=x)
curve(f,from=-3,to=2)
lines(c(-3,2),c(0,0),col="blue")
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5. Do the activities of Exercise 3, using the matrix labelled “2”.

Comments: In lectures we have done the Karhunen-Loeve decomposition
which is precisely the same eigenvalue computation. The output of R is
given below, following the items of said exercise.

(a) Karhunen-Loeve decomposition

## Load and show the matrix
A<-matrix(ncol=3,nrow=3,byrow=TRUE,c(1,0.13333,0.26667,0.13333,

0.66667,-0.4,0.26667,-0.4,0.73333))
A

## [,1] [,2] [,3]
## [1,] 1.00000 0.13333 0.26667
## [2,] 0.13333 0.66667 -0.40000
## [3,] 0.26667 -0.40000 0.73333

## Karhunen-Loeve decomposition
eigen(A)->E
E

## eigen() decomposition
## $values
## [1] 1.2000033 0.9999967 0.2000000
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.6666678 -0.6666653 0.3333339
## [2,] -0.3333356 -0.6666694 -0.6666628
## [3,] 0.6666644 0.3333306 -0.6666703

E$vectors

## [,1] [,2] [,3]
## [1,] 0.6666678 -0.6666653 0.3333339
## [2,] -0.3333356 -0.6666694 -0.6666628
## [3,] 0.6666644 0.3333306 -0.6666703

E$values

## [1] 1.2000033 0.9999967 0.2000000
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Verifying the KL decomposition.

E$vectors%*%t(E$vectors) ## orthogonal eigenvectors

## [,1] [,2] [,3]
## [1,] 1 0.000000e+00 0.000000e+00
## [2,] 0 1.000000e+00 2.775558e-16
## [3,] 0 2.775558e-16 1.000000e+00

E$vectors%*%diag(E$values)%*%t(E$vectors) ## KL decomposition

## [,1] [,2] [,3]
## [1,] 1.00000 0.13333 0.26667
## [2,] 0.13333 0.66667 -0.40000
## [3,] 0.26667 -0.40000 0.73333

(b) A series of partial sums of the KL decomposition.
Here the only potential difficulty is to use the correct matrix operations.

E$vectors[,1]%*%t(E$vectors[,1])*E$values[1]->M1 ## a_1*a_1ˆT * lambda_1
E$vectors[,2]%*%t(E$vectors[,2])*E$values[2]->M2 ## a_2*a_2ˆT * lambda_2
E$vectors[,3]%*%t(E$vectors[,3])*E$values[3]->M3 ## a_3*a_3ˆT * lambda_3

The partial sums. The last one is the original matrix.

M1; M1+M2; M1+M2+M3

## [,1] [,2] [,3]
## [1,] 0.5333366 -0.2666696 0.5333339
## [2,] -0.2666696 0.1333355 -0.2666683
## [3,] 0.5333339 -0.2666683 0.5333313
## [,1] [,2] [,3]
## [1,] 0.9777777 0.1777743 0.3111148
## [2,] 0.1777743 0.5777821 -0.4888889
## [3,] 0.3111148 -0.4888889 0.6444401
## [,1] [,2] [,3]
## [1,] 1.00000 0.13333 0.26667
## [2,] 0.13333 0.66667 -0.40000
## [3,] 0.26667 -0.40000 0.73333
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(c) Partial sums of eigenvector products.

E$vectors[,1]%*%t(E$vectors[,1])->B1 ## a_1*a_1ˆT
E$vectors[,2]%*%t(E$vectors[,2])->B2 ## a_2*a_2ˆT
E$vectors[,3]%*%t(E$vectors[,3])->B3 ## a_3*a_3ˆT

The partial sums. The last sum is the identity matrix. Why?

B1;

## [,1] [,2] [,3]
## [1,] 0.4444459 -0.2222241 0.4444437
## [2,] -0.2222241 0.1111126 -0.2222230
## [3,] 0.4444437 -0.2222230 0.4444415

B1+B2;

## [,1] [,2] [,3]
## [1,] 0.8888885 0.2222213 0.2222238
## [2,] 0.2222213 0.5555607 -0.4444443
## [3,] 0.2222238 -0.4444443 0.5555507

B1+B2+B3

## [,1] [,2] [,3]
## [1,] 1 0.000000e+00 0.000000e+00
## [2,] 0 1.000000e+00 2.775558e-16
## [3,] 0 2.775558e-16 1.000000e+00

11



6. In RStudio, open a new R markdown file with “File>New File>R Markdown”
and select “pdf” output. Remember to erase everything but the header of this
new file. Commands in R must be inside the brackets ‘‘‘{r} and ‘‘‘. To
view the output you must compile the file using the “knit” button above the
document, or the sequence Ctrl+Shift+K.
To help your markdown tasks, have a look at the useful reference card https:
//cran.r-project.org/web//packages/knitr/vignettes/knitr-refcard.pdf

7. Using the code you have already run, experiment with the R markdown ca-
pability. Specifically, experiment by

(a) hiding code from view while still executing it and showing the output,
and

(b) hiding both code and standard R output to then create output as part of
the text in the markdown document.

Comments: Assuming Markdown works in RStudio and is able to compile,
the task here simply reuses all previous R code. Of course we are not sure if
this compilation will happen but hopefully will do, assuming you have the
required libraries and packages. Your the markdown script file should be
saved before compiling it.
For hiding instructions, use the parameter echo=FALSE so any R code is
bracketed between ‘‘‘{r,echo=FALSE} and ‘‘‘.
For hiding code and output, do as above with echo=FALSE and do not print
output. Then assuming you want to exhibit variable x inside the text, write
in the normal text ‘r x‘ .

12
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MTH6101 Introduction to Machine Learning

Laboratory week three
The intention of this laboratory is to do Principal Component Analysis (PCA) of
the air quality data of Exercise 9. The tasks involved are loading, preparing the
data and analysing it with the Karhunen-Loeve decomposition.

1. Open RStudio and create and save a new R script file for your commands. If
you have markdown on your own computer, you are welcomed to use it.

2. Load the data using the R command data(airquality) and examine the data.
To this end, see the data using airquality; see what the entries of the vari-
ables are and make notes. Also describe the data using commands such as
pairs, summary and var.

3. As part of this initial analysis, you will have noted that the first two variables
of the data set have missing values. For the rest of the analysis, these need
to be removed. Use the command complete.cases(airquality) to determine
which are the values to be removed and create a new variable by allocat-
ing airquality[complete.cases(airquality),] to this new variable, say X.
Examine X and make sure that you have removed missing values.

4. Your analysis will not use the variables day nor month which you will remove by
X<-X[,-c(5:6)]. Then center by X<-scale(x=X,center=TRUE,scale=FALSE).

5. The data is now ready for PCA. Compute the variance-covariance matrix
of X and then do the Karhunen-Loeve decomposition of it with by the now
well known commands var and eigen. Store each result in a new variable.

6. Write the eigenvalues you just obtained and compute and interpret the pro-
portional contribution of each eigenvalue to the total variability (sum of eigen-
values which of course equals the trace of the variance covariance matrix).

7. Do a pairs plot of the Principal Components and compare this with your
previous use of the command pairs for the data X. Recall that the Principal
Components are the rotated data, computed as X%*%E$vectors, assuming that
the variable E has the results of the K-L decomposition.

8. Redo all from step 4 by scaling the data as well with scale=TRUE). Compare
with the previous analysis.
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MTH6101 Introduction to Machine Learning

Laboratory week three - Comments and partial results
The intention of this laboratory is to do Principal Component Analysis (PCA) of
the air quality data of Exercise 9. The tasks involved are loading, preparing the
data and analysing it with the Karhunen-Loeve decomposition.

1. Open RStudio and create and save a new R script file for your commands. If
you have markdown on your own computer, you are welcomed to use it.

2. Load the data using the R command data(airquality) and examine the data.
To this end, see the data using airquality; see what the entries of the vari-
ables are and make notes. Also describe the data using commands such as
pairs, summary and var.

data(airquality); summary(airquality)

## Ozone Solar.R Wind Temp
## Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. :56.00
## 1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:72.00
## Median : 31.50 Median :205.0 Median : 9.700 Median :79.00
## Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :77.88
## 3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:85.00
## Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00
## NA's :37 NA's :7
## Month Day
## Min. :5.000 Min. : 1.0
## 1st Qu.:6.000 1st Qu.: 8.0
## Median :7.000 Median :16.0
## Mean :6.993 Mean :15.8
## 3rd Qu.:8.000 3rd Qu.:23.0
## Max. :9.000 Max. :31.0
##

Note missing entries shown at the bottom of summary columns. We plot the
data and compute the variance-covariance matrix.

pairs(airquality,pch=16,cex=0.5); var(airquality)
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## Ozone Solar.R Wind Temp Month Day
## Ozone NA NA NA NA NA NA
## Solar.R NA NA NA NA NA NA
## Wind NA NA 12.4115385 -15.272136 -0.8897532 0.8488519
## Temp NA NA -15.2721362 89.591331 5.6439628 -10.9574303
## Month NA NA -0.8897532 5.643963 2.0065359 -0.0999742
## Day NA NA 0.8488519 -10.957430 -0.0999742 78.5797214

The scatterplot shows clearly the structure of variables Month and Day which
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were used when collecting the samples. Note also in the scatterplot the fluc-
tuation of variables with respect to month (fifth column of the plot matrix).
When computing the variance-covariance matrix it is evident the problem of
missing data values.

3. As part of this initial analysis, you will have noted that the first two variables
of the data set have missing values. For the rest of the analysis, these need
to be removed. Use the command complete.cases(airquality) to determine
which are the values to be removed and create a new variable by allocat-
ing airquality[complete.cases(airquality),] to this new variable, say X.
Examine X and make sure that you have removed missing values.

4. Your analysis will not use the variables day nor month which you will remove by
X<-X[,-c(5:6)]. Then center by X<-scale(x=X,center=TRUE,scale=FALSE).

sum(complete.cases(airquality))/nrow(airquality)*100

## [1] 72.54902

X<-airquality[complete.cases(airquality),]
X<-X[,-c(5:6)]; X<-scale(x=X,center=TRUE,scale=FALSE)

The percentage shown is of complete data before removal of missing cases.

5. The data is now ready for PCA. Compute the variance-covariance matrix
of X and then do the Karhunen-Loeve decomposition of it with by the now
well known commands var and eigen. Store each result in a new variable.

6. Write the eigenvalues you just obtained and compute and interpret the pro-
portional contribution of each eigenvalue to the total variability (sum of eigen-
values which of course equals the trace of the variance covariance matrix).

VX<-var(X); E<-eigen(VX); E$values/sum(E$values)*100

## [1] 88.98078028 10.47105443 0.46819497 0.07997032

The first eigenvalue accounts for almost 90% of the total variability in the
dataset, while the first two account for well above 99% of the total variability.
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7. Do a pairs plot of the Principal Components and compare this with your
previous use of the command pairs for the data X. Recall that the Principal
Components are the rotated data, computed as X%*%E$vectors, assuming that
the variable E has the results of the K-L decomposition.

pairs(X%*%E$vectors,pch=16,cex=0.5)
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Note that the scatterplot of the first two components seems like a rotated
version of the first two variables, so we conjecture that the coefficients of these
are bigger than the rest for this first compontent. We look at the coefficients
(first column below).
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E$vectors

## [,1] [,2] [,3] [,4]
## [1,] -0.143014512 0.96704882 -0.202729051 0.057134580
## [2,] -0.989119298 -0.14698335 -0.004561518 -0.004254707
## [3,] 0.006117191 -0.06845434 -0.050046167 0.996379428
## [4,] -0.033947672 0.19628163 0.977944531 0.062813790

Indeed the first component is almost entirely due to the second variable
Solar.R, while the second component is mainly due to the first variable Ozone.
In all this PCA, note the importance of the second variable, seen in the diag-
onal of VX:

diag(VX)

## Ozone Solar.R Wind Temp
## 1107.29009 8308.74218 12.65732 90.82031

8. Redo all from step 4 by scaling the data as well with scale=TRUE). Compare
with the previous analysis.

X<-airquality[complete.cases(airquality),]
X<-X[,-c(5:6)]; X<-scale(x=X,center=TRUE,scale=TRUE)
VX<-var(X); E<-eigen(VX); E$values/sum(E$values)*100

## [1] 58.99747 22.36691 11.89375 6.74188

Note the sharp contrast with the first analysis. The first component only
accounts for 59% of the total variability, while the first two account for around
80% of it. We look at the coefficients

E$vectors

## [,1] [,2] [,3] [,4]
## [1,] 0.5890040 0.06279119 0.1146414 0.7974891
## [2,] 0.3169087 -0.89844744 -0.2777312 -0.1233953
## [3,] -0.4970366 -0.43021767 0.6905372 0.3017048
## [4,] 0.5528090 0.06133702 0.6579370 -0.5076996
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The first component is a comparison between the third variable Wind and the
rest, while the second component is a weighted average of the second and
third variables Solar.R and Wind.

pairs(X%*%E$vectors,pch=16,cex=0.5)
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The strong
triangular shape of the initial scatterplot of the raw data is gone in the scat-
terplot of principal components above. The scatterplot of the components
may also be useful to detect potential outliers or suggest groups of indi-
viduals, none of which are evident in the current case.
Conclusions obtained from PCA of non-scaled data do not extend
to PCA of scaled data.
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MTH6101 Introduction to Machine Learning

Laboratory week four
The intention of this laboratory is to do Principal Component Analysis (PCA) of
the olive oil data set. We mostly use the recommended function for PCA which is
prcomp.

1. Open RStudio and create and save a new R script file for your commands. If
you have markdown on your own computer, you are welcomed to use it.

2. In order to load the data, install the library pdfCluster. Once installed, load
the library and load the data using the R command data(oliveoil). Examine
the data using commands such as pairs and summary. Also read the help of
the library to find out what the data is about.

3. This dataset is complete in the sense that it has no missing values and
can be used straightaway. Your analysis will not use the first two cate-
gorical variables macro.area and region and thus you will remove them by
X<-oliveoil[,-c(1:2)]. The data is now ready for PCA.

4. Center the data but do not scale it, and compute and examine the variance-
covariance matrix, with special emphasis in the diagonal so that you can try
and predict what will happen with PCA.

5. Do PCA using the function prcomp with these data (use parameters in this
function to center but not scale the data). Print a summary of the analysis,
select a number of components and interpret them. Do a biplot and examine
what is being plotted.

6. Repeat all that you did from 4 but now with the data centered and scaled.

7. Recall the relation seen in lectures Λ = 1
n−1 D2 between eigenvalues of the

K-L expansion of Σ and eigenvalues of svd of the data X. Numerically check
that the relation holds for both analyses you did in 4 and 6.

1



MTH6101 Introduction to Machine Learning

Laboratory week four - Comments and results
The intention of this laboratory is to do Principal Component Analysis (PCA) of
the olive oil data set. We mostly use the recommended function for PCA which is
prcomp.

1. Open RStudio and create and save a new R script file for your commands. If
you have markdown on your own computer, you are welcomed to use it.

2. In order to load the data, install the library pdfCluster. Once installed, load
the library and load the data using the R command data(oliveoil). Examine
the data using commands such as pairs and summary. Also read the help of
the library to find out what the data is about.

Comments: In the past it has always been possible to install libraries so
this should be the first approach. In case it is not possible to install the
library pdfCluster, I have loaded the data in qmplus so students would
have to download and then use the command read.table.

library(pdfCluster)
data(oliveoil)
summary(oliveoil)

## macro.area region palmitic palmitoleic
## South :323 Apulia.south :206 Min. : 610 Min. : 15.00
## Sardinia : 98 Sardinia.inland: 65 1st Qu.:1095 1st Qu.: 87.75
## Centre.North:151 Calabria : 56 Median :1201 Median :110.00
## Umbria : 51 Mean :1232 Mean :126.09
## Liguria.east : 50 3rd Qu.:1360 3rd Qu.:169.25
## Liguria.west : 50 Max. :1753 Max. :280.00
## (Other) : 94
## stearic oleic linoleic linolenic
## Min. :152.0 Min. :6300 Min. : 448.0 Min. : 0.00
## 1st Qu.:205.0 1st Qu.:7000 1st Qu.: 770.8 1st Qu.:26.00
## Median :223.0 Median :7302 Median :1030.0 Median :33.00
## Mean :228.9 Mean :7312 Mean : 980.5 Mean :31.89
## 3rd Qu.:249.0 3rd Qu.:7680 3rd Qu.:1180.8 3rd Qu.:40.25
## Max. :375.0 Max. :8410 Max. :1470.0 Max. :74.00
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##
## arachidic eicosenoic
## Min. : 0.0 Min. : 1.00
## 1st Qu.: 50.0 1st Qu.: 2.00
## Median : 61.0 Median :17.00
## Mean : 58.1 Mean :16.28
## 3rd Qu.: 70.0 3rd Qu.:28.00
## Max. :105.0 Max. :58.00
##

apply(oliveoil,2,range)

## macro.area region palmitic palmitoleic stearic oleic linoleic
## [1,] "Centre.North" "Apulia.north" " 610" " 15" "152" "6300" " 448"
## [2,] "South" "Umbria" "1753" "280" "375" "8410" "1470"
## linolenic arachidic eicosenoic
## [1,] " 0" " 0" " 1"
## [2,] "74" "105" "58"

It is likely that the huge range of variable oleic will play an important role
in PCA with centered but not scaled data. The other variables that have big
ranges are linoleic and palmitic.
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pairs(oliveoil,pch=16,cex=0.5)
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Often details are hard to look at in a pairs plot with too many variables.
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3. This dataset is complete in the sense that it has no missing values and
can be used straightaway. Your analysis will not use the first two cate-
gorical variables macro.area and region and thus you will remove them by
X<-oliveoil[,-c(1:2)]. The data is now ready for PCA.

X<-oliveoil[,-c(1:2)]; pairs(X,pch=16,cex=0.5)
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In the pairs plot we see the interesting lattice pattern involving the last
three variables.Two other pairs plots are generated by coloring the scatterplot
according to the variables left out. What can you deduce from them?
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pairs(X,pch=16,cex=0.5,col=oliveoil$macro.area)
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pairs(X,pch=16,cex=0.5,col=oliveoil$region)
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4. Center the data but do not scale it, and compute and examine the variance-
covariance matrix, with special emphasis in the diagonal so that you can try
and predict what will happen with PCA.

X<-scale(x=oliveoil[,-c(1:2)],center=TRUE,scale=FALSE)
round(var(X),5)

## palmitic palmitoleic stearic oleic linoleic
## palmitic 28423.3515 7395.22412 -1055.56204 -57287.524 18857.6903
## palmitoleic 7395.2241 2755.65832 -428.57396 -18159.281 7922.9991
## stearic -1055.5620 -428.57396 1350.19025 1693.924 -1764.8517
## oleic -57287.5241 -18159.28092 1693.92402 164681.937 -83782.2136
## linoleic 18857.6903 7922.99911 -1764.85174 -83782.214 58951.4616
## linolenic 698.1829 63.38887 9.01468 -1148.198 -180.8620
## arachidic 847.9326 98.85589 -33.17244 -2860.495 1128.4771
## eicosenoic 1191.8015 307.80526 72.64391 -2424.055 304.4816
## linolenic arachidic eicosenoic
## palmitic 698.18291 847.93256 1191.80150
## palmitoleic 63.38887 98.85589 307.80526
## stearic 9.01468 -33.17244 72.64391
## oleic -1148.19809 -2860.49545 -2424.05511
## linoleic -180.86201 1128.47712 304.48161
## linolenic 168.18711 177.20362 105.62524
## arachidic 177.20362 485.33190 101.97064
## eicosenoic 105.62524 101.97064 198.33920

round(100*diag(var(X))/sum(diag(var(X))),5)

## palmitic palmitoleic stearic oleic linoleic linolenic
## 11.05905 1.07218 0.52534 64.07497 22.93702 0.06544
## arachidic eicosenoic
## 0.18883 0.07717

Given the big variances, we expect that the first PCs will feature variables
oleic then linoleic then palmitic.
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5. Do PCA using the function prcomp with these data (use parameters in this
function to center but not scale the data). Print a summary of the analysis,
select a number of components and interpret them.

MM<-prcomp(x = X, center = TRUE, scale = FALSE); summary(MM)

## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 480.150 150.96029 45.43418 27.54674 24.80339 11.98003
## Proportion of Variance 0.897 0.08867 0.00803 0.00295 0.00239 0.00056
## Cumulative Proportion 0.897 0.98568 0.99371 0.99666 0.99905 0.99961
## PC7 PC8
## Standard deviation 7.1453 6.98180
## Proportion of Variance 0.0002 0.00019
## Cumulative Proportion 0.9998 1.00000

A single component is needed to account for over 80% of the total variability
in the data, and two components already explain over 95%. Let us look at
PC loadings

MM$rotation

## PC1 PC2 PC3 PC4 PC5
## palmitic 0.284167992 0.637208452 -0.45062836 -0.03857271 -0.4524509
## palmitoleic 0.092012578 0.094554974 -0.16460885 -0.57386935 0.6690989
## stearic -0.011151773 0.014774824 0.72398889 -0.39748727 -0.4050560
## oleic -0.842808624 -0.168763310 -0.33652056 -0.09246819 -0.1991783
## linoleic 0.447210266 -0.743751915 -0.30400153 -0.06643083 -0.2472581
## linolenic 0.004751237 0.034724051 0.08433954 0.29315488 0.1110979
## arachidic 0.013770009 0.009109222 0.14165474 0.63629076 0.1923104
## eicosenoic 0.011058482 0.043240557 0.11329544 0.08614438 0.1827288
## PC6 PC7 PC8
## palmitic -0.1462473 0.2384073 0.16038084
## palmitoleic -0.3254595 0.1561341 0.21948984
## stearic -0.2542609 0.2132920 0.20805981
## oleic -0.1406756 0.2262900 0.16949136
## linoleic -0.1066613 0.2203788 0.17007665
## linolenic 0.2156815 -0.1583158 0.90652832
## arachidic -0.6648742 0.3078877 -0.03097674
## eicosenoic 0.5369327 0.8084912 -0.04905891
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The first component is a comparison between oleic and a weighted average
of variables linoleic and palmitic. In this comparison, the variable that has
the highest impact is oleic. The second component is a comparison between
palmitic and a weighted average of oleic and linoleic. In this comparison
the (opposing) weights of palmitic and linoleic are of smilar magnitude.

Comments: For interpretation, rounding the PC loadings can help in
removing those variables with very small coefficients, see next.

round(MM$rotation,1)

## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
## palmitic 0.3 0.6 -0.5 0.0 -0.5 -0.1 0.2 0.2
## palmitoleic 0.1 0.1 -0.2 -0.6 0.7 -0.3 0.2 0.2
## stearic 0.0 0.0 0.7 -0.4 -0.4 -0.3 0.2 0.2
## oleic -0.8 -0.2 -0.3 -0.1 -0.2 -0.1 0.2 0.2
## linoleic 0.4 -0.7 -0.3 -0.1 -0.2 -0.1 0.2 0.2
## linolenic 0.0 0.0 0.1 0.3 0.1 0.2 -0.2 0.9
## arachidic 0.0 0.0 0.1 0.6 0.2 -0.7 0.3 0.0
## eicosenoic 0.0 0.0 0.1 0.1 0.2 0.5 0.8 0.0
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Do a biplot and examine what is being plotted.

biplot(MM,cex=0.5)
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The biplot shows simultaneously the PC scores for the first two principal
components, and in a double axis it has the PC loadings for variables in these
first two principal components. The interpretation of arrows is exactly the
same as the one for PC loadings given earlier, while plotting the scores allows
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us to examine which induviduals (measurements as rows of the data) score
highly (or lowly) on variables.
As an extra, we plot the PC scores using as colors the variables macro.area
and region.
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6. Repeat all that you did from 4 but now with the data centered and scaled.
First the variance-covariance matrix.

X<-scale(x=oliveoil[,-c(1:2)],center=TRUE,scale=TRUE)
round(var(X),5)

## palmitic palmitoleic stearic oleic linoleic linolenic arachidic
## palmitic 1.00000 0.83560 -0.17039 -0.83734 0.46068 0.31933 0.22830
## palmitoleic 0.83560 1.00000 -0.22219 -0.85244 0.62163 0.09311 0.08548
## stearic -0.17039 -0.22219 1.00000 0.11360 -0.19782 0.01892 -0.04098
## oleic -0.83734 -0.85244 0.11360 1.00000 -0.85032 -0.21817 -0.31996
## linoleic 0.46068 0.62163 -0.19782 -0.85032 1.00000 -0.05744 0.21097
## linolenic 0.31933 0.09311 0.01892 -0.21817 -0.05744 1.00000 0.62024
## arachidic 0.22830 0.08548 -0.04098 -0.31996 0.21097 0.62024 1.00000
## eicosenoic 0.50195 0.41635 0.14038 -0.42415 0.08904 0.57832 0.32866
## eicosenoic
## palmitic 0.50195
## palmitoleic 0.41635
## stearic 0.14038
## oleic -0.42415
## linoleic 0.08904
## linolenic 0.57832
## arachidic 0.32866
## eicosenoic 1.00000

round(100*diag(var(X))/sum(diag(var(X))),5)

## palmitic palmitoleic stearic oleic linoleic linolenic
## 12.5 12.5 12.5 12.5 12.5 12.5
## arachidic eicosenoic
## 12.5 12.5

With scaled data every variable has unit variance. Thus it is no longer
possible to determine a priori the impact of variables.

13



Then PCA for these data.

MM<-prcomp(x = X, center = TRUE, scale = FALSE); summary(MM)

## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 1.9291 1.3288 1.0081 0.89045 0.57777 0.4988 0.34470
## Proportion of Variance 0.4652 0.2207 0.1270 0.09911 0.04173 0.0311 0.01485
## Cumulative Proportion 0.4652 0.6859 0.8129 0.91206 0.95378 0.9849 0.99974
## PC8
## Standard deviation 0.04563
## Proportion of Variance 0.00026
## Cumulative Proportion 1.00000

We need three to account for over 80% of the total variability in the data, and
five components to explain over 95%. Let us look at PC loadings

MM$rotation

## PC1 PC2 PC3 PC4 PC5
## palmitic 0.46074351 0.04958406 -0.11445834 -0.28043124 0.53473943
## palmitoleic 0.45022576 0.24090732 -0.14260264 -0.21182252 0.13841908
## stearic -0.09864471 -0.25837844 -0.80215910 0.47082168 0.21340068
## oleic -0.49417494 -0.15866175 0.08011486 -0.20010742 -0.01552215
## linoleic 0.36569539 0.34339930 0.08747773 0.51249093 -0.40127538
## linolenic 0.21898707 -0.60483760 0.19103316 -0.09881321 0.12507081
## arachidic 0.22830362 -0.44719396 0.42664494 0.48165441 0.14659527
## eicosenoic 0.31186781 -0.40476916 -0.30085585 -0.33222211 -0.67153429
## PC6 PC7 PC8
## palmitic -0.07699892 -0.52540418 0.35438653
## palmitoleic -0.16728954 0.78680816 0.08856309
## stearic 0.03064009 0.07722664 0.07703841
## oleic -0.11309403 0.18074878 0.79903372
## linoleic 0.30497855 -0.07768793 0.46687817
## linolenic 0.69784174 0.19096065 0.02943890
## arachidic -0.55365142 0.06527504 0.03996552
## eicosenoic -0.25657629 -0.13959613 0.04168750
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Interpretation of PC is as standard, although in this case many variables are
involved.
The first component is a comparison between oleic and a weighted average
of all the remaining variables except stearic. The weight of oleic are similar
to (opposing) weights of palmitic, palmotoleic and linoleic.
The second component is a comparison between an average of variables linolenic,
arachidic, eicosenoic, stearic and oleic against an average of the rest
of variables except palmitic. Here the bigger weights are for linolenic,
arachidic and eicosenoic.

round(MM$rotation,1)

## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
## palmitic 0.5 0.0 -0.1 -0.3 0.5 -0.1 -0.5 0.4
## palmitoleic 0.5 0.2 -0.1 -0.2 0.1 -0.2 0.8 0.1
## stearic -0.1 -0.3 -0.8 0.5 0.2 0.0 0.1 0.1
## oleic -0.5 -0.2 0.1 -0.2 0.0 -0.1 0.2 0.8
## linoleic 0.4 0.3 0.1 0.5 -0.4 0.3 -0.1 0.5
## linolenic 0.2 -0.6 0.2 -0.1 0.1 0.7 0.2 0.0
## arachidic 0.2 -0.4 0.4 0.5 0.1 -0.6 0.1 0.0
## eicosenoic 0.3 -0.4 -0.3 -0.3 -0.7 -0.3 -0.1 0.0
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The biplot is added, which is in sharp contrast with the previous result. One
striking feature of the biplot is that arrows for variables are larger which is a
result of the PC loadings for this scaled data.

biplot(MM,cex=0.5)
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As an extra, we can plot the PC scores using as colors the variables macro.area
and region.
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7. Recall the relation seen in lectures Λ = 1
n−1 D2 between eigenvalues of the

K-L expansion of Σ and eigenvalues of svd of the data X. Numerically check
that the relation holds for both analyses you did in 4 and 6.
First for non-scaled data.

X<-scale(x=oliveoil[,-c(1:2)],center=TRUE,scale=FALSE)
eigen(var(X))$values ## from Karhunen-Loeve

## [1] 230543.82788 22789.01058 2064.26492 758.82269 615.20792
## [6] 143.52118 51.05564 48.74556

(svd(X)$d)ˆ2/(nrow(X)-1) ## from svd

## [1] 230543.82788 22789.01058 2064.26492 758.82269 615.20792
## [6] 143.52118 51.05564 48.74556

Then for scaled data

X<-scale(x=oliveoil[,-c(1:2)],center=TRUE,scale=TRUE)
eigen(var(X))$values ## from Karhunen-Loeve

## [1] 3.721410009 1.765797520 1.016355435 0.792898832 0.333817667 0.248818666
## [7] 0.118820109 0.002081762

(svd(X)$d)ˆ2/(nrow(X)-1) ## from svd

## [1] 3.721410009 1.765797520 1.016355435 0.792898832 0.333817667 0.248818666
## [7] 0.118820109 0.002081762
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MTH6101 Introduction to Machine Learning

Laboratory week five
The intention of this laboratory is to do an introduction to agglomerative clustering
in R. The tasks involve the library cluster.

1. Open RStudio and a new R script. You need to install the library cluster.

2. Type the data of lectures in a matrix called X:

x1 x2
0 4
3 6
6 2
0 5
1 1

3. Load the library cluster and use the function dist to build a distance ma-
trix. With this function, build distance matrices exploring different distances
such as manhattan, euclidean and minkowski (with exponent equal to four).
Verify that you can reproduce some the distances between points one and
three. Continue exploring this function with different values of the logical
input flags diag and upper.

4. Using euclidean distance and complete linkage, perform aglomerative clus-
tering with these data. To this end, use the function agnes from the library
you just loaded and save the output in an object termed A.

5. Use plot(A,which.plot=2) to plot the dendrogram of this analysis.

6. It is clear that the first cluster is formed at distance equal to one. By manip-
ulation of the elements in the distance table, coerced to be a matrix, verify
that the (complete linkage) distance between clusters ‘14‘ and ‘2‘ is precisely
the one in the dendrogram. Recall that the distances in the dendrogram are
retrieved by A$height.

7. Consider the dataset ruspini from the same library. Do a scatterplot of these
data and use the text function to put individual labels in it.

1



8. Perform agglomerative clustering using euclidean distance and average link-
age. Plot the cluster and try an interpret the dendrogram. Large stems sug-
gest places to cut the diagram and detect clusters.

9. Compare with the dendrogram using the same distance and single linkage.
Comment on the differences and similarities.

2



MTH6101 Introduction to Machine Learning

Laboratory week five - Comments and code
The intention of this laboratory is to do an introduction to agglomerative clustering
in R. The tasks involve the library cluster.

1. Open RStudio and a new R script. You need to install the library cluster.

2. Type the data of lectures in a matrix called X:

x1 x2
0 4
3 6
6 2
0 5
1 1

3. Load the library cluster and use the function dist to build a distance ma-
trix. With this function, build distance matrices exploring different distances
such as manhattan, euclidean and minkowski (with exponent equal to four).
Verify that you can reproduce some the distances between points one and
three. Continue exploring this function with different values of the logical
input flags diag and upper.

library(cluster)
dist(x=X,method="manhattan")

## 1 2 3 4
## 2 5
## 3 8 7
## 4 1 4 9
## 5 4 7 6 5

dist(x=X,method="manhattan",diag=TRUE,upper=TRUE)

## 1 2 3 4 5
## 1 0 5 8 1 4
## 2 5 0 7 4 7

1



## 3 8 7 0 9 6
## 4 1 4 9 0 5
## 5 4 7 6 5 0

dist(x=X,method="euclidean")

## 1 2 3 4
## 2 3.605551
## 3 6.324555 5.000000
## 4 1.000000 3.162278 6.708204
## 5 3.162278 5.385165 5.099020 4.123106

## this is the (e)distance between points 1 and 3
sqrt(sum((X[1,]-X[3,])ˆ2))

## [1] 6.324555

dist(x=X,method="minkowski",p=4)

## 1 2 3 4
## 2 3.138289
## 3 6.018433 4.284572
## 4 1.000000 3.009217 6.091630
## 5 3.009217 5.031697 5.001999 4.003901

## this is the (mi) distance between points 1 and 3
sqrt(sqrt(sum((X[1,]-X[3,])ˆ4)))

## [1] 6.018433
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4. Using euclidean distance and complete linkage, perform aglomerative clus-
tering with these data. To this end, use the function agnes from the library
you just loaded and save the output in an object termed A.

library(cluster)
A<-agnes(x=X,method = "complete",metric="euclidean")

5. Use plot(A,which.plot=2) to plot the dendrogram of this analysis.

par(mar=c(4,4,1,1))
plot(A,which.plot=2,cex.main=0.4)
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6. It is clear that the first cluster is formed at distance equal to one. By manip-
ulation of the elements in the distance table, coerced to be a matrix, verify
that the (complete linkage) distance between clusters ‘14‘ and ‘2‘ is precisely
the one in the dendrogram. Recall that the distances in the dendrogram are
retrieved by A$height.

as.matrix(dist(x=X,method="euclidean",diag=TRUE,upper=TRUE))->D
D[c(1,4),2] ## the relevant distances

## 1 4
## 3.605551 3.162278

max(D[c(1,4),2]) ## the distance using complete linkage

## [1] 3.605551

A$height

## [1] 1.000000 3.605551 6.708204 5.099020
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7. Consider the dataset ruspini from the same library. Do a scatterplot of these
data and use the text function to put individual labels in it.

head(ruspini) ## the first few values of the data

## x y
## 1 4 53
## 2 5 63
## 3 10 59
## 4 9 77
## 5 13 49
## 6 13 69

par(mar=c(4,4,1,1))
plot(ruspini,type="n")
text(x=ruspini$x,y=ruspini$y,labels = row.names(ruspini),cex=0.5)
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8. Perform agglomerative clustering using euclidean distance and average link-
age. Plot the cluster and try an interpret the dendrogram. Large stems sug-
gest places to cut the diagram and detect clusters.

A<-agnes(x=ruspini,method = "average",metric="euclidean")
plot(A,which.plot=2,cex=0.5)
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9. Compare with the dendrogram using the same distance and single linkage.
Comment on the differences and similarities.

A<-agnes(x=ruspini,method = "single",metric="euclidean")
plot(A,which.plot=2,cex=0.5)
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MTH6101 Introduction to Machine Learning

Laboratory week six
The intention of this laboratory is to do a second take on clustering with functions
kmeans and pam, this second from the library cluster.

1. Open RStudio and create a new R script. Load library cluster.

2. Consider the data set USArrests of arrests statistics in states of the USA.
Load it into a variable termed X1, taking care of centering and scaling the
data. Perform kmeans clustering of X1 for values of k = 2, . . . , 10 and record
the total sum of squares within clusters. Plot this quantity.

3. Plot the data using text labels and color using the clusters you have found
($cluster). To this end do a scatterplot with type="n" and then add labels
using text. Clearly we need to select some variables for the plot so use Assault
and UrbanPop. Interpret your result.

4. You will now redo all the analysis for the Principal Component scores of this
data. To this end, redo PCA for the data USArrests (centered, scaled), select
a number of components and store the PC Scores in variable X2. Then do
cluster analysis using kmeans on the scores. Plot ESS for a selection of k
between 2 and 10.

5. Do two scatter plots with text labels, one with the variables Assault and
UrbanPop and the colors given by the clustering on PC you just did. The
second plot is of X2 which are PC scores, and the same coloring. Interpret the
results.

6. Build X3 to be the centered and unscaled iris data set (no fifth column).
Using the medoid clustering method pam cluster with k = 2, 3, 4, 5 medoids
and plot the clusters for sepal variables, coloring according to the clusters
made ($clustering). Can you suggest some clusters?

7. Repeat the previous step for X3 not just centered but scaled iris data set
without the fifth column. Are clusters neater?

8. Repeat the previous pam clustering with X4 which are first two PC scores of
the centered and scaled iris data set (no fifth column). Can you determine
how many clusters would be suitable?

1



MTH6101 Introduction to Machine Learning

Laboratory week six - Comments and code
The intention of this laboratory is to do a second take on clustering with functions
kmeans and pam, this second from the library cluster.

1. Open RStudio and create a new R script. Load library cluster.

2. Consider the data set USArrests of arrests statistics in states of the USA.
Load it into a variable termed X1, taking care of centering and scaling the
data. Perform kmeans clustering of X1 for values of k = 2, . . . , 10 and record
the total sum of squares within clusters. Plot this quantity.

X1<-scale(x=USArrests,center=TRUE,scale=TRUE); ess<-matrix(nrow=9)
for(k in 1:9) ess[k]<-kmeans(x=X1,centers=k+1)$tot.withinss
par(mar=c(4,4,1,1)); plot(2:10,ess,xlab="k",ylab="ESS",pch=16)
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It looks as if 4 clusters could represent the data. Alternatively 8 clusters
could be used but it is doubtful to have 8 clusters with 50 data points.

3. Plot the data using text labels and color using the clusters you have found
($cluster). To this end do a scatterplot with type="n" and then add labels
using text. Clearly we need to select some variables for the plot so use Assault
and UrbanPop. Interpret your result.

par(mar=c(4,4,1,1));
plot(X1[,3],X1[,2],type="n",xlab="UrbanPop",ylab="Assault")
clus<-kmeans(x=X1,centers=4)$cluster
text(x=X1[,3],y=X1[,2],labels=row.names(X1),cex=0.5,col=clus)
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4. You will now redo all the analysis for the Principal Component scores of this
data. To this end, redo PCA for the data USArrests (centered, scaled), select
a number of components and store the PC Scores in variable X2. Then do
cluster analysis using kmeans on the scores. Plot ESS for a selection of k
between 2 and 10.

A<-prcomp(x=USArrests,center=TRUE,scale=TRUE)
summary(A) ## We take two PC to explain 80% of total variability

## Importance of components:
## PC1 PC2 PC3 PC4
## Standard deviation 1.5749 0.9949 0.59713 0.41645
## Proportion of Variance 0.6201 0.2474 0.08914 0.04336
## Cumulative Proportion 0.6201 0.8675 0.95664 1.00000

X2<-A$x[,1:2]; ess<-matrix(nrow=9)
for(k in 1:9) ess[k]<-kmeans(x=X2,centers=k+1)$tot.withinss
par(mar=c(4,4,1,1)); plot(2:10,ess,xlab="k",ylab="ESS",pch=16)
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5. Do two scatter plots with text labels, one with the variables Assault and
UrbanPop and the colors given by the clustering on PC you just did. The
second plot is of X2 which are PC scores, and the same coloring. Interpret the
results.

par(mar=c(4,4,1,1),mfrow=c(1,2));
plot(X1[,3],X1[,2],type="n",xlab="UrbanPop",ylab="Assault")
clus<-kmeans(x=X2,centers=4)$cluster
text(x=X1[,3],y=X1[,2],labels=row.names(X1),cex=0.5,col=clus)
plot(X2[,1],X2[,2],type="n",xlab="PC1",ylab="PC2")
text(x=X2[,1],y=X2[,2],labels=row.names(X2),cex=0.5,col=clus)
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6. Build X3 to be the centered and unscaled iris data set (no fifth column).
Using the medoid clustering method pam cluster with k = 2, 3, 4, 5 medoids
and plot the clusters for sepal variables, coloring according to the clusters
made ($clustering). Can you suggest some clusters?

X3<-scale(x=iris[,-5],center=TRUE,scale=FALSE);
library(cluster); par(mar=c(4,4,1,1),mfrow=c(2,2));
for(i in 1:4) plot(X3[,1],X3[,2],pch=16,col=pam(x=X3,k=1+i)$clustering,

main=i+1, xlab=colnames(X3)[1], ylab=colnames(X3)[2])
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7. Repeat the previous step for X3 not just centered but scaled iris data set
without the fifth column. Are clusters neater?

X3<-scale(x=iris[,-5],center=TRUE,scale=TRUE);
library(cluster); par(mar=c(4,4,1,1),mfrow=c(2,2));
for(i in 1:4) plot(X3[,1],X3[,2],pch=16,col=pam(x=X3,k=1+i)$clustering,

main=i+1, xlab=colnames(X3)[1], ylab=colnames(X3)[2])
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8. Repeat the previous pam clustering with X4 which are first two PC scores of
the centered and scaled iris data set (no fifth column). Can you determine
how many clusters would be suitable?

A<-prcomp(x=iris[,-5],center=TRUE,scale=TRUE); X4<-A$x[,1:2]
par(mar=c(4,4,1,1),mfrow=c(2,2)); # summary(A)
for(i in 1:4) plot(X4[,1],X4[,2],pch=16,col=pam(x=X4,k=1+i)$clustering,

main=i+1, xlab="PC1", ylab="PC2")
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MTH6101 Introduction to Machine Learning

Laboratory week eight
The intention of this laboratory is to do a split of data and fit and compare three
different classifiers. We will use the dataset Default that has customer default
records for a credit card company. The aim is to predict whether a customer will
default or not.

1. Open RStudio and install the libraries ISLR and cvTools.

2. We will first create a set of indices for and 80/20 data split of data that will
be used for latter modelling. To this end, load the library cvTools then do
remember to set the random seed to a value of zero before creating the
folds. Use for this the command set.seed. Now create the folds by running
the function cvFolds for a split of n = 10000 values in K = 5 folds. Save the
output of this command in the variable CV.

3. Briefly examine and describe the contents of your newly created variable CV.

4. We will use the first four folds (values of CV$which of 1, 2, 3, 4) to train the
models. The fifth fold, (value of CV$which equal to 5) will be used to test and
compare models. To this end, associate the index CV$subsets[CV$which!=5]
to a variable called Train, and CV$subsets[CV$which==5] to a variable called
Test.

5. Load the library ISLR and examine the dataset Default: note how many
values are available, note and do a summary of the variables of the dataset,
do a pairs plot of the data. Note that the variable of interest is default. In
addition, you may want to do an advanced pairs plot with ggpairs from the
library GGally.

6. Using the function glm and using the training data (data = Default[Train,]),
build the following logistic (family = "binomial") models:

• A model to predict default as function of balance (default∼balance),
stored in M1.

• A model to predict default as function of balance and student
(default∼balance+student), stored in M2.

• A model to predict default as function of all the variables (default∼.),
stored in M3.
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7. Using the function predict.glm and using the test data (newdata =Default[Test,]),
build predictions (type="response") for each of the models M1,M2,M3 you just
built. Store your predictions in variables P1,P2,P3

8. Now we are ready to build confusion matrices for each case. Using the variable
Ytrue<-Default[Test,]$default=="Yes" and the indicators e.g. Y1<-P1>0.5,
use the command table to build a matrix for each model.

9. For each of models M1,M2,M3 compute performance measures True Positive
Rate TPR = TP

P and False Positive Rate FPR = FP
N .

10. (Extra) Using a loop, repeat all the computations you have done so that you
effectively do a 5-fold crossvalidation for the three models. The only extra
ingredient you need is a variable to keep the TPR and FPR for the different
models. Then plot TPR vs. FPR in [0, 1]2, coloring by model.
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MTH6101 Introduction to Machine Learning

Laboratory week eight - Comments and code
The intention of this laboratory is to do a split of data and fit and compare three
different classifiers. We will use the dataset Default that has customer default
records for a credit card company. The aim is to predict whether a customer will
default or not.

1. Open RStudio and install the libraries ISLR and cvTools.

2. We will first create a set of indices for and 80/20 data split of data that will
be used for latter modelling. To this end, load the library cvTools then do
remember to set the random seed to a value of zero before creating the
folds. Use for this the command set.seed. Now create the folds by running
the function cvFolds for a split of n = 10000 values in K = 5 folds. Save the
output of this command in the variable CV.

library(cvTools)
set.seed(0)
n<-10000; K<-5
cvFolds(n=n,K=K)->CV

3. Briefly examine and describe the contents of your newly created variable CV.

head(CV$which)

## [1] 1 2 3 4 5 1

head(CV$subsets)

## [,1]
## [1,] 9614
## [2,] 1017
## [3,] 8004
## [4,] 4775
## [5,] 9725
## [6,] 8462

1



Comments: The variable CV has two elements that will be used to split the
data. The first element is CV$subsets that contains a random permutation
of the data indices 1, 2, . . . , 10000, and the second element is CV$which which
indexes the five folds created with values 1, 2, 3, 4, 5.

4. We will use the first four folds (values of CV$which of 1, 2, 3, 4) to train the
models. The fifth fold, (value of CV$which equal to 5) will be used to test and
compare models. To this end, associate the index CV$subsets[CV$which!=5]
to a variable called Train, and CV$subsets[CV$which==5] to a variable called
Test.

CV$subsets[CV$which!=5]->Train
CV$subsets[CV$which==5]->Test

5. Load the library ISLR and examine the dataset Default: note how many
values are available, note and do a summary of the variables of the dataset,
do a pairs plot of the data. Note that the variable of interest is default. In
addition, you may want to do an advanced pairs plot with ggpairs from the
library GGally.

library(ISLR)
dim(Default)

## [1] 10000 4

summary(Default)

## default student balance income
## No :9667 No :7056 Min. : 0.0 Min. : 772
## Yes: 333 Yes:2944 1st Qu.: 481.7 1st Qu.:21340
## Median : 823.6 Median :34553
## Mean : 835.4 Mean :33517
## 3rd Qu.:1166.3 3rd Qu.:43808
## Max. :2654.3 Max. :73554
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head(Default)

## default student balance income
## 1 No No 729.5265 44361.625
## 2 No Yes 817.1804 12106.135
## 3 No No 1073.5492 31767.139
## 4 No No 529.2506 35704.494
## 5 No No 785.6559 38463.496
## 6 No Yes 919.5885 7491.559

pairs(Default,cex=0.35,pch=16,col=Default$default)
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library(GGally)
ggpairs(Default,ggplot2::aes(colour=Default$default))

Corr: −0.152***

 No: −0.155***

Yes: −0.166** 
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Comments: The datase has variables default, student, balance,
income. The response variable default and the variable student are cate-
gorical, while the other two variables are not. We see that only a small pro-
portion of persons in the database have defaulted. It may be that balance
can predict default, and it is not clear that students default more than the
non-students.

6. Using the function glm and using the training data (data = Default[Train,]),
build the following logistic (family = "binomial") models:

• A model to predict default as function of balance (default∼balance),
stored in M1.

• A model to predict default as function of balance and student
(default∼balance+student), stored in M2.

• A model to predict default as function of all the variables (default∼.),
stored in M3.

M1<-glm(default˜balance,family = "binomial",data = Default[Train,])
M2<-glm(default˜balance+student,family = "binomial",data = Default[Train,])
M3<-glm(default˜.,family = "binomial",data = Default[Train,])

7. Using the function predict.glm and using the test data (newdata =Default[Test,]),
build predictions (type="response") for each of the models M1,M2,M3 you just
built. Store your predictions in variables P1,P2,P3

predict.glm(object = M1, newdata =Default[Test,],type="response" ) -> P1
predict.glm(object = M2, newdata =Default[Test,],type="response" ) -> P2
predict.glm(object = M3, newdata =Default[Test,],type="response" ) -> P3

8. Now we are ready to build confusion matrices for each case. Using the variable
Ytrue<-Default[Test,]$default=="Yes" and the indicators e.g. Y1<-P1>0.5,
use the command table to build a matrix for each model.

Ytrue<-Default[Test,]$default=="Yes"
Y1<-P1>0.5
Y2<-P2>0.5
Y3<-P3>0.5
table(Ytrue,Y1) ## For M1
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## Y1
## Ytrue FALSE TRUE
## FALSE 1933 7
## TRUE 39 21

table(Ytrue,Y2) ## For M2

## Y2
## Ytrue FALSE TRUE
## FALSE 1934 6
## TRUE 36 24

table(Ytrue,Y3) ## For M3

## Y3
## Ytrue FALSE TRUE
## FALSE 1934 6
## TRUE 36 24

9. For each of models M1,M2,M3 compute performance measures True Positive
Rate TPR = TP

P and False Positive Rate FPR = FP
N .

sum( Ytrue&Y1 )/sum(Ytrue); sum( !Ytrue&Y1 )/sum(!Ytrue) ## TPR and FPR M1

## [1] 0.35
## [1] 0.003608247

sum( Ytrue&Y2 )/sum(Ytrue); sum( !Ytrue&Y2 )/sum(!Ytrue) ## TPR and FPR M2

## [1] 0.4
## [1] 0.003092784

sum( Ytrue&Y3 )/sum(Ytrue); sum( !Ytrue&Y3 )/sum(!Ytrue) ## TPR and FPR M3

## [1] 0.4
## [1] 0.003092784
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10. (Extra) Using a loop, repeat all the computations you have done so that you
effectively do a 5-fold crossvalidation for the three models. The only extra
ingredient you need is a variable to keep the TPR and FPR for the different
models. Then plot TPR vs. FPR in [0, 1]2, coloring by model.

result<-matrix(nrow=K,ncol=6) ## variable for the results
for(k in 1:K){

## selecting the folds to train and test
CV$subsets[CV$which!=k]->Train; CV$subsets[CV$which==k]->Test
## train the models
M1<-glm(default˜balance,family = "binomial",data = Default[Train,])
M2<-glm(default˜balance+student,family = "binomial",data = Default[Train,])
M3<-glm(default˜.,family = "binomial",data = Default[Train,])
## validate the models
predict.glm(object = M1, newdata =Default[Test,],type="response" ) -> P1
predict.glm(object = M2, newdata =Default[Test,],type="response" ) -> P2
predict.glm(object = M3, newdata =Default[Test,],type="response" ) -> P3
## Responses to compare
Ytrue<-Default[Test,]$default=="Yes"; Y1<-P1>0.5; Y2<-P2>0.5; Y3<-P3>0.5
## Store the performance measures
result[k,1]<-sum( Ytrue&Y1 )/sum(Ytrue) ## TPR M1
result[k,2]<-sum( !Ytrue&Y1 )/sum(!Ytrue) ## FPR
result[k,3]<-sum( Ytrue&Y2 )/sum(Ytrue) ## TPR
result[k,4]<-sum( !Ytrue&Y2 )/sum(!Ytrue) ## FPR
result[k,5]<-sum( Ytrue&Y3 )/sum(Ytrue) ## TPR
result[k,6]<-sum( !Ytrue&Y3 )/sum(!Ytrue) ## FPR

}

Comments: Note that the code for the loop just requires minor alterations
of the code done for earlier analysis. The interpretation of the scatterplot
is lecture material.

## Labelling of results for clarity
colnames(result)<-1:6
colnames(result)[c(1,3,5)]<-paste("TPRM",1:3,sep="")
colnames(result)[c(2,4,6)]<-paste("FPRM",1:3,sep="")
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result

## TPRM1 FPRM1 TPRM2 FPRM2 TPRM3 FPRM3
## [1,] 0.2343750 0.005681818 0.2656250 0.004648760 0.2656250 0.005165289
## [2,] 0.3230769 0.005684755 0.3538462 0.004651163 0.3538462 0.005167959
## [3,] 0.2804878 0.004171011 0.2682927 0.004692388 0.2682927 0.004692388
## [4,] 0.3225806 0.002579979 0.3064516 0.002579979 0.3064516 0.002579979
## [5,] 0.3500000 0.003608247 0.4000000 0.003092784 0.4000000 0.003092784

apply(result,2,mean)

## TPRM1 FPRM1 TPRM2 FPRM2 TPRM3 FPRM3
## 0.302104075 0.004345162 0.318843090 0.003933015 0.318843090 0.004139680

par(mar=c(4,4,1,1)); plot(c(0,1),c(0,1),type="l",xlab="FPR",ylab="TPR")
for(i in c(1,3,5))

points(x=result[,i+1],y=result[,i],col=(i+1)/2,pch=16,cex=0.25)
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Zoom of the previous plot in the region of results TPR, FPR. Note that axes
have very different scales.
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MTH6101 Introduction to Machine Learning

Laboratory week nine
The aim of this practice is to build different classifiers on the same data set and
to compare them. The file glass.data has measurements of 10 variables in seven
different types of glass. This file has 11 columns, and the last column is the type
of glass. We are interested in classifying headlamps (type of glass equals seven)
against all the other types of glass.

When you start your session, open RStudio and install/load the following li-
braries: cvTools, class, tree, MASS, pROC.

1. Reading the data and adapting the file for analysis.
Read the data using the command read.csv(file = "glass.data",header =
FALSE), store it in a variable termed X. Save the last column of X in a variable
called Y and remove the first column. Then center and scale the matrix X
using the command scale, saving it in X.
Now we will prepare the output for analysis. The variable Y will be used
twice, first as 0/1 variable then as “Yes”/“No”. Replace Y by (Y==7)*1 and
substitute the last column of X for this value of Y.
At this point, the first 9 columns of X have the centered values and the last
one has 0/1 values. Give names to the columns of X according to
colnames(X)<-c("RI","Na","Mg","Al","Si","K","Ca","Ba","Fe","Type")
Finally, convert the variable Y to “Yes”/“No” by the commands Y[Y==1]<-"Yes";
Y[Y==0]<-"No". Merge X and Y in a data frame called DAT by DAT<-data.frame(X,Y).

2. Now we create the partition of data into training and testing datasets. For
this, we create a partition 66:33. Set seed equal to zero and using cvFolds
from cvTools, create variables Train and Test for the training and testing
partition respectively. See the notes where this has been done in virtually
every example.

3. Using the training data, fit the logistic classifier for the response variable
Type using all but the last column of the data (i.e. DAT[Train,-11]). Save the
fitted model in variable M1. Then predict the response using the fitted model
M1 and the test partition. Save this in a variable called P1.

4. Examine the fitted classifier and identify variables that are not important for
the response. Using only those variables that were found significant in the
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first logistic model, fit a second logistic classifier and a second prediction
set. These are to be called M11 and P11.

5. Fit a K nearest neighbors classifier. Here use three nearest neighbors in
the function knn from the library class and recall that only columns 1:9 of
the data frame contain variables. Call this model M2 and recall that M2 already
contains the predicted classes.

6. Fit a tree classifier to the data using the function tree from library tree.
The response is Y and here the column ten from the data frame is not to
be used (i.e. DAT[Train,-10]). Save the fitted model in variable called M3.
Predict output with option type="class" and save it in a variable called P3.

7. Fit a linear discriminant classifier using the function lda from library
MASS. Use the training data except the last column (i.e. DAT[Train,-11]) to
fit variable Type and save the output in a variable termed M4. Using the test
data, predict output using the fitted model and save results in variable termed
P4.

8. Now we prepare to compare all classifiers. To this end, recall that we can do
ROC curve for logistic and linear discriminant classifiers. For KNN and
tree we will compute only points in ROC graph. Using the function roc from
the library pROC, compute and ROC for models M1, M11 and M4 and save the
results in variables R1, R11 and R4.

9. For each of KNN and tree classifiers, compute the confusion matrix using
the command table. In each case, compute the figures TPR and FPR. Save
results in variables TPR2,FPR2 and TPR3,FPR3.

10. In a single ROC graph, plot ROC curves for logistic and linear discrimi-
nant classifiers; add points for the KNN and tree classifiers. Compute AUC
for the classifiers M1, M11 and M4 and summarize your results.

11. (Extra) Plot the tree for classifier M3 and interpret it.
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MTH6101 Introduction to Machine Learning

Laboratory week nine - Comments and code
The aim of this practice is to build different classifiers on the same data set and
to compare them. The file glass.data has measurements of 10 variables in seven
different types of glass. This file has 11 columns, and the last column is the type
of glass. We are interested in classifying headlamps (type of glass equals seven)
against all the other types of glass.

When you start your session, open RStudio and install/load the following li-
braries: cvTools, class, tree, MASS, pROC.

1. Reading the data and adapting the file for analysis.
Read the data using the command read.csv(file = "glass.data",header =
FALSE), store it in a variable termed X. Save the last column of X in a variable
called Y and remove the first column. Then center and scale the matrix X
using the command scale, saving it in X.

X<-read.csv(file = "glass.data",header = FALSE)
dim(X)

## [1] 214 11

Y<-X[,11]; X<-X[,-1]
dim(X)

## [1] 214 10

X<-scale(x=X,center=TRUE,scale=TRUE)

Now we will prepare the output for analysis. The variable Y will be used
twice, first as 0/1 variable then as “Yes”/“No”. Replace Y by (Y==7)*1 and
substitute the last column of X for this value of Y.

(Y==7)*1->Y; X[,10]<-Y

At this point, the first 9 columns of X have the centered values and the last
one has 0/1 values. Give names to the columns of X according to
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colnames(X)<-c("RI","Na","Mg","Al","Si","K","Ca","Ba","Fe","Type")
Finally, convert the variable Y to “Yes”/“No” by the commands Y[Y==1]<-"Yes";
Y[Y==0]<-"No". Merge X and Y in a data frame called DAT by DAT<-data.frame(X,Y).

colnames(X)<-c("RI","Na","Mg","Al","Si","K","Ca","Ba","Fe","Type")
Y[Y==1]<-"Yes"; Y[Y==0]<-"No"
DAT<-data.frame(X,factor(Y)); colnames(DAT)[11]<-"Y"
attach(DAT)

Data is ready for analysis.

2. Now we create the partition of data into training and testing datasets. For
this, we create a partition 66:33. Set seed equal to zero and using cvFolds
from cvTools, create variables Train and Test for the training and testing
partition respectively. See the notes where this has been done in virtually
every example.

library(cvTools)
set.seed(0);
n<-nrow(X); K<-3;
cvFolds(n=n,K=K)->CV
CV$subsets[CV$which!=K]->Train;
CV$subsets[CV$which==K]->Test

3. Using the training data, fit the logistic classifier for the response variable
Type using all but the last column of the data (i.e. DAT[Train,-11]). Save the
fitted model in variable M1. Then predict the response using the fitted model
M1 and the test partition. Save this in a variable called P1.

M1<-glm(Type˜.,data=DAT[Train,-11],family="binomial")
P1<-predict.glm(M1,newdata = DAT[Test,],type="response")
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4. Examine the fitted classifier and identify variables that are not important for
the response. Using only those variables that were found significant in the
first logistic model, fit a second logistic classifier and a second prediction
set. These are to be called M11 and P11.
Comments: With the command summary(M1), a list of the coefficients and
associated p-values can be examined. Variables RI and Fe are not significant
and are thus discarded for M11 and P11.

M11<-glm(Type˜.-RI-Fe,data=DAT[Train,-11],family="binomial")
P11<-predict.glm(M11,newdata = DAT[Test,],type="response")

5. Fit a K nearest neighbors classifier. Here use three nearest neighbors in
the function knn from the library class and recall that only columns 1:9 of
the data frame contain variables. Call this model M2 and recall that M2 already
contains the predicted classes.

library(class)
M2<-knn(train = X[Train,1:9],test = X[Test,1:9],cl = Y[Train],k = 3)

6. Fit a tree classifier to the data using the function tree from library tree.
The response is Y and here the column ten from the data frame is not to
be used (i.e. DAT[Train,-10]). Save the fitted model in variable called M3.
Predict output with option type="class" and save it in a variable called P3.

library(tree)
M3<-tree(Y˜.,DAT[Train,-10])
P3<-predict(M3,DAT[Test,],type="class")

7. Fit a linear discriminant classifier using the function lda from library
MASS. Use the training data except the last column (i.e. DAT[Train,-11]) to
fit variable Type and save the output in a variable termed M4. Using the test
data, predict output using the fitted model and save results in variable termed
P4.

library(MASS)
M4<-lda(Type˜.,data=DAT[Train,-11])
P4<-predict(M4,DAT[Test,])
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Comments: At this point, you should have the following R variables with
outputs from classifiers.

R variables Classifier ROC curve doable?
M1, P1 Logistic, all variables Yes
M11, P11 Logistic, reduced set of variables Yes
M2 KNN No
M3, P3 Tree No
M4, P4 Linear discriminant Yes

8. Now we prepare to compare all classifiers. To this end, recall that we can do
ROC curve for logistic and linear discriminant classifiers. For KNN and
tree we will compute only points in ROC graph. Using the function roc from
the library pROC, compute and ROC for models M1, M11 and M4 and save the
results in variables R1, R11 and R4.

library(pROC)
roc(response=Type[Test],predictor=P1)->R1
roc(response=Type[Test],predictor=P11)->R11
roc(response=Type[Test],predictor=c(P4$x))->R4

9. For each of KNN and tree classifiers, compute the confusion matrix using
the command table. In each case, compute the figures TPR and FPR. Save
results in variables TPR2,FPR2 and TPR3,FPR3.

(table(Y[Test],M2)->T2) ## KNN

## M2
## No Yes
## No 63 0
## Yes 2 6

T2[2,2]/sum(T2[2,])->TPR2; T2[1,2]/sum(T2[1,])->FPR2
(table(Type[Test],P3)->T3) ## Tree

## P3
## No Yes
## 0 63 0
## 1 3 5

T3[2,2]/sum(T3[2,])->TPR3; T3[1,2]/sum(T3[1,])->FPR3
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10. In a single ROC graph, plot ROC curves for logistic and linear discrimi-
nant classifiers; add points for the KNN and tree classifiers. Compute AUC
for the classifiers M1, M11 and M4 and summarize your results.

plot(R1,col="black",main="ROC glass data")
plot(R11,col="grey",add=TRUE)
plot(R4,add=TRUE,col="blue")
points(1-FPR2,TPR2,col="red",pch=16)
points(1-FPR3,TPR3,col="green",pch=16)
## To make things simple, I do *not* write code for legend here
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following are AUC values for three of the classifiers:

auc(R1) ## logistic with all variables

## Area under the curve: 0.9802

auc(R11) ## logistic with subset of variables

## Area under the curve: 0.9405

auc(R4) ## linear discriminant classifier

## Area under the curve: 0.8889

Comments:
The best classifier in this analysis was the logistic classifier with all
variables (M1), . Removing variables to form a logistic with subset
of variables (M11) did not help the predictive capability of this logistics
classifier who came as second best. The linear discriminant analysis
classifier (M4) came in third place.
The classifiers KNN (M2) and Tree (M3) were very good in classifying
negatives, but at most were as good as the linear discriminant for classifying
positives.
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11. (Extra) Plot the tree for classifier M3 and interpret it.

plot(M3)
text(M3,pretty=0,cex=0.5)

|
Ba < 0.321696

Na < 1.33131 Na < 0.816981

No No No Yes

Comments: This tree is not minimal and can be simplified by noting that
the comparison in the left branch can be removed without changing the
result. Only two variables are used in this classifier which states:
“A piece of glass which for which its percent content of Barium is bigger
than 0.335 (0.3217 in centered and scaled units) and whose percent content
of Sodium exceeds 14.075 (0.817 in centered and scaled units) is classified
as a headlamp otherwise it is not.”
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MTH6101 Introduction to Machine Learning

Laboratory week eleven
In this lab we analyse the diabetes data set (Efron et al. 2004). The data has
n = 442 diabetes patients measured on p = 10 baseline variables. A prediction
model is needed for the response variable y (a measure of disease progression one
year after baseline). We use ridge regression, the lasso and elastic net. Before
you start your RStudio session, install and load the libraries cvTools, lars and
glmnet. Also run the function ridge as seen in the notes.

Data preparation

1. Load the data with data(diabetes) and allocate diabetes$x into variable X
and diabetes$y to variable Y. Center and scale both X and Y. Using as.matrix
and the variables create a data frame DAT which will be used as well.

2. Create validation index variables Train and Test for a 3 : 1 partition of the
data. Use the function cvFolds from library cvTools as earlier.

Ridge regression

3. Using seq, create 200 values in the range −6 to 6 which is exponentiated so
that λ ranges from 10−6 to 106. Store this sequence in variable rangelambda.
Then using the function ridge, train the ridge regression model and store it
in a variable termed M1. The function uses training and validation covariates
X[Train,], X[Test,] and responses Y[Train,], Y[Test,] respectively. This
function produces MSE, degrees of freedom, and the ridge coefficients.

4. Plot MSE against λ and indicate the location of the minimum with a vertical
line. Also plot the ridge trace. For both cases use log="x" for the horizontal
axes. Give the ridge coefficients suggested by minimum MSE.

Lasso

5. Train the lasso using the function lars and the training data. Store results
in variable M2. This output M2 needs postprocessing to create predictions.

6. Create lasso predictions with the lasso coefficients and the validation data so
that you can compute the MSE and select a point in the lasso path. Do two
plots: one with MSE and the lasso path. Give the selected coefficients.
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Elastic net

7. Analyze the data with the elastic net. Use glmnet with family="gaussian"
and α = 0.5 and the same values of λ as stored in variable rangelambda from
earlier. Store results in variable M3.

8. Postprocess M3 to predict y values and use these to compute MSE. Plot both
the MSE and the ridge trace and give the selected coefficients.

Compare results

9. Finally, compare your results against that of simple linear regression for the
same data, termed M4. For comparison, compute the least squares error using
the validation data as well.
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MTH6101 Introduction to Machine Learning

Laboratory week eleven - Comments and code
In this lab we analyse the diabetes data set (Efron et al. 2004). The data has
n = 442 diabetes patients measured on p = 10 baseline variables. A prediction
model is needed for the response variable y (a measure of disease progression one
year after baseline). We use ridge regression, the lasso and elastic net. Before
you start your RStudio session, install and load the libraries cvTools, lars and
glmnet. Also run the function ridge as seen in the notes.

Data preparation

1. Load the data with data(diabetes) and allocate diabetes$x into variable X
and diabetes$y to variable Y. Center and scale both X and Y. Using as.matrix
and the variables create a data frame DAT which will be used as well.

## Libraries and function ridge required
library(cvTools); library(lars); library(glmnet)
ridge<-function(Xtrain,Ytrain,Xval,Yval,lval){

YTrain<-matrix(ncol=1,Ytrain )
S<-svd(x=Xtrain); ## Svd to compute ridge
N<-length(lval); ## Number of lambda values
betav<-matrix(nrow=ncol(Xtrain),ncol=N); ## Objects for the analysis and output
Ypred<-matrix(nrow=nrow(Xval),ncol=N); DF<-MSE<-matrix(ncol=N,nrow=1)
rownames(betav)<-colnames(Xtrain)
for(i in 1:N){

lambda<-lval[i]
betav[,i]<-c( (S$v)%*%diag(S$d/(S$dˆ2+lambda))%*%t(S$u)%*%Ytrain) ## ridge trained
Ypred[,i]<-Xval%*%matrix(ncol=1,betav[,i]) ## Predictions
MSE[1,i]<-mean( ( Yval -Ypred[,i] )ˆ2 ) ## MSE
DF[1,i]<-sum( S$dˆ2/(S$dˆ2+lambda) ) ## Effective degrees of freedom

}
return(list("beta"=betav,"MSE"=c(MSE),"df"=DF))

}
## Loading the data
data(diabetes)
X<-as.matrix(diabetes$x); Y<-as.matrix(diabetes$y)
X<-scale(x=X,center=TRUE,scale = TRUE); Y<-scale(x=Y,center=TRUE,scale=TRUE)
DAT<-data.frame(cbind(X,Y)); colnames(DAT)<-c(colnames(X),"Y")
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2. Create validation index variables Train and Test for a 3 : 1 partition of the
data. Use the function cvFolds from library cvTools as earlier.

set.seed(0);
n<-nrow(X); K<-4;
cvFolds(n=n,K=K)->CV
CV$subsets[CV$which!=K]->Train; CV$subsets[CV$which==K]->Test

Ridge regression

3. Using seq, create 200 values in the range −6 to 6 which is exponentiated so
that λ ranges from 10−6 to 106. Store this sequence in variable rangelambda.
Then using the function ridge, train the ridge regression model and store it
in a variable termed M1. The function uses training and validation covariates
X[Train,], X[Test,] and responses Y[Train,], Y[Test,] respectively. This
function produces MSE, degrees of freedom, and the ridge coefficients.

rangelambda<-10ˆseq(from=-6,to=6,length.out=200)
M1<-ridge(Xtrain = X[Train,],Ytrain = Y[Train],Xval = X[Test,],

Yval = Y[Test],lval = rangelambda)

4. Plot MSE against λ and indicate the location of the minimum with a vertical
line. Also plot the ridge trace. For both cases use log="x" for the horizontal
axes. Give the ridge coefficients suggested by minimum MSE.

lambdamin<-rangelambda[which.min(M1$MSE)]
par(mar=c(4,4,1,1),mfrow=c(1,2))
## The MSE
plot(rangelambda,M1$MSE,log="xy",type="l",xlab=expression(lambda),

ylab="MSE",main="MSE")
abline(v=lambdamin,col="red",lty=2)
## The ridge trace
plot(range(rangelambda),range(M1$beta),log="x",xlab=expression(lambda),

ylab=expression(beta),type="n", main="Ridge trace")
abline(v=lambdamin,col="red",lty=2)
for(i in 1:nrow(M1$beta)) lines(rangelambda,M1$beta[i,],col=i)
legend("bottomright",legend = rownames(M1$beta),cex=0.5,

col=1:nrow(M1$beta),lty=1)
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## Results below will be shown later
betaridge<-M1$beta[,which.min(M1$MSE)]
MSEridge<-min(M1$MSE)

Lasso

5. Train the lasso using the function lars and the training data. Store results
in variable M2. This output M2 needs postprocessing to create predictions.

M2<-lars(x=X[Train,],y = Y[Train],type = "lasso",
normalize = FALSE,intercept = FALSE)

6. Create lasso predictions with the lasso coefficients and the validation data so
that you can compute the MSE and select a point in the lasso path. Do two
plots: one with MSE and the lasso path. Give the selected coefficients.

P2<-predict.lars(object = M2,newx = X[Test,],type = "fit")
Yobs<-matrix(nrow=nrow(P2$fit),ncol=ncol(P2$fit),

byrow=FALSE,Y[Test])
MSE2<-apply((Yobs-P2$fit)ˆ2,2,mean)
par(mar=c(4,4,1,1),mfrow=c(1,2))
plot(MSE2) ## the MSE
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abline(v=which.min(MSE2),col="red",lty=2)
plot(M2) ## The lasso path
## Results to be shown later
betalasso<-M2$beta[which.min(MSE2),]
shrinklasso<-sum(abs(betalasso))/sum(abs(M2$beta[nrow(M2$beta),]))
abline(v=shrinklasso,col="red",lty=2)

2 4 6 8 10 12 14

0.
6

0.
7

0.
8

0.
9

1.
0

Index

M
S

E
2

** ** * ** ** * * * ** *

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

|beta|/max|beta|

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

** ** *
** ** * * * ** *

**

**
* ** ** * * * ** *

** **
*

** ** * * * ** *

** ** * ** *
*

* *
*

**
*

** ** * ** ** * * *

**
*

** **
*

** ** * * *

** *** ** * ** ** * *
* ** *

**

**
* ** ** * * *

** *

** ** * ** ** * * * ** *

LASSO

5
2

1
8

4
3

9

0 2 4 6 9 11 12

MSElasso<-min(MSE2)

Elastic net

7. Analyze the data with the elastic net. Use glmnet with family="gaussian"
and α = 0.5 and the same values of λ as stored in variable rangelambda from
earlier. Store results in variable M3.

M3<-glmnet(x=X[Train,],y=Y[Train],family="gaussian",alpha = 0.5,
lambda = rangelambda)

8. Postprocess M3 to predict y values and use these to compute MSE. Plot both
the MSE and the ridge trace and give the selected coefficients.
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P3<-predict.glmnet(object = M3,newx = X[Test,],type="response")
Yobs<-matrix(nrow=nrow(P3),ncol=ncol(P3),

byrow=FALSE,Y[Test])
MSE3<-apply((Yobs-P3)ˆ2,2,mean)
lambdanet<-rangelambda[which.min(MSE3)]
par(mar=c(4,4,1,1),mfrow=c(1,2)) ## The MSE
plot(rangelambda,MSE3,type="l",log="x")
abline(v=lambdanet,col="red",lty=2)
plot(M3) ## The elastic net path
## Results to be shown later
betanet<-M3$beta[,which.min(MSE3)]
abline(v=sum(abs(betanet)),col="red",lty=2)
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MSEnet<-min(MSE3)

Compare results

9. Finally, compare your results against that of simple linear regression for the
same data, termed M4. For comparison, compute the least squares error using
the validation data as well.
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M4<-lm(Y˜.-1,data=DAT[Train,])
P4<-predict.lm(object = M4,newdata = DAT[Test,],type="response")
betaols<-M4$coefficients
MSEols<-mean( (Y[Test]-P4)ˆ2)

Comparison of results ridge, lasso, elastic net and ols.

MSEall<-cbind(MSEridge,MSElasso,MSEnet,MSEols) ## the MSE
betaall<-cbind(betaridge,betalasso,betanet,betaols) ## Coefficients
round(MSEall,4);

## MSEridge MSElasso MSEnet MSEols
## [1,] 0.5624 0.5822 0.5878 0.5901

round(betaall,4)

## betaridge betalasso betanet betaols
## age -0.0050 0.0000 0.0000 -0.0362
## sex -0.1048 -0.0967 -0.0806 -0.1564
## bmi 0.2503 0.3176 0.3045 0.3216
## map 0.1311 0.1109 0.1054 0.1582
## tc -0.0091 -0.0448 0.0000 -0.4063
## ldl -0.0529 0.0000 -0.0169 0.2151
## hdl -0.1102 -0.1081 -0.1139 0.0223
## tch 0.0718 0.0000 0.0000 0.0713
## ltg 0.2519 0.3769 0.3403 0.5206
## glu 0.0763 0.0153 0.0180 0.0497

The skrinkage achieved with respect to L1 and L2 norms.

L1s<-apply(X = abs(betaall),MARGIN = 2,FUN = sum)
L2s<-apply(X = betaallˆ2,MARGIN = 2,FUN = sum)
shrink<-rbind(L1s[1:3]/L1s[4],L2s[1:3]/L2s[4]);
rownames(shrink)<-c("L1","L2"); round(100*shrink,2)

## betaridge betalasso betanet
## L1 54.32 54.68 50.04
## L2 27.97 43.21 37.18
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