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Question 1 [14 marks]. A six-sided die has an unknown number of faces marked with a 

six. Let k be this unknown number, which we would like to estimate. Our prior distribution 

for k is

P(k = j) =

8>><
>>:

5/8, j = 1 

1/16, j = 0,2,3,4,5,6.

When the die is thrown each face has an equal chance of showing. The observed data is that 

the die was thrown twice, and it showed a six exactly once.

(a) Write down the likelihood for the observed data. What is the maximum likelihood 

estimate for k? [4]

(b) Derive the normalized posterior distribution for k. What is the posterior mean for k? [6]

(c) Find the posterior predictive probability that if the die is thrown again, it will not show a 

six. [4]

Question 2 [24 marks].
Suppose that we have data y = (y1, . . . ,yn). Each data-point yi is assumed to be generated by a 

distribution with the following probability density function:

p(yi | ✓) =
✓2

y3

i
exp

 
� ✓

yi

!
, yi � 0.

The unknown parameter is ✓, with ✓ > 0.

(a) Write down the likelihood for ✓ given y. Find an expression for the maximum likelihood 

estimate (MLE) ✓̂. [5]

(b) A Gamma(↵, �) distribution is chosen as the prior distribution for ✓. Derive the resulting 

posterior distribution for ✓ given y. [6]

(c) We would like to choose the gamma prior distribution parameters so that ↵ = 1, and

P(✓ > 50+B) = 0.05,

where B is the second-to-last digit of your ID number. Find the value of � that is needed. [5]

(d) The data are y = (4,4,8,8,4,C+3), where C is the last digit of your ID number, with

n = 6.

(i) What is the MLE ✓̂? [3]

(ii) Using the prior distribution from part (c), what are the parameters of the posterior 

distribution for ✓? [3]

(iii) What are the posterior mean and standard deviation for ✓? [2]
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Question 3 [20 marks].
We want to estimate a single unknown parameter ✓ in a certain model. Assume that in R we 

have defined a function log post to calculate the log of the unnormalized posterior density as 

a function of ✓. This function and the data y being analysed are not shown in the code extract 

below. The posterior density is p(✓ | y). Consider the following R code:

nm = 10000
theta = vector(length=nm)
s = 0.4
theta0 = 2
log post0 = log post(theta0)
for(i in 1:nm){

theta1 = theta0 + s*rnorm(1)
log post1 = log post(theta1)
if(log(runif(1)) < log post1-log post0){

theta0 = theta1
log post0 = log post1

}
theta[i] = theta0

}
quantile(theta, probs=c(0.5, 0.025, 0.975))

An explanation in words is all that is needed for this question.

(a) What is the name of the algorithm that the code is carrying out? [2]

(b) Explain what the command theta1 = theta0 + s*rnorm(1) is doing in the context 

of the algorithm. [4]

(c) When the code has run, what will the vector theta contain? [3]

(d) In statistical terms, what will the last line of code output? [5]

Suppose that the data y was a sample from an exponential distribution with parameter ✓. The 

code below follows from the preceding code.

v = rexp(length(theta), rate=theta)
mean(v>5 & v<10)

(e) When this code has run, what will v contain? [3]

(f) What will the last line of code output (in statistical terms)? [3]
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Question 4 [26 marks].
The observed data is y = (y1, . . . ,yn), a sample from a negative binomial distribution with 

parameters q and r, where r is assumed to be known.

The prior distribution for q is Beta(↵, �). Suppose that y1 = · · · = yn = 0. Take n = 10+A, 

where A is the third-to-last digit of your ID number; ↵ = 5+B,where B is the second-to-last 

digit of your ID number; r = 3; and � = 1.

(a) What is the posterior probability density function for q? [5]

(b) Find an expression for the quantile function for this posterior distribution, and hence 

find a 95% credible interval for q. [6]

(c) Let x be a new data-point generated by the same negative binomial distribution with 

parameters q and r. Find P(x = 0 | y), the posterior predictive probability that x is 0. [5]

Suppose now that we want to compare two models. Model M1 is the model and prior 

distribution described above. Model M2 assumes that the data follow a negative binomial 

distribution with q known to be q0 = 0.9.

(d) Find the Bayes factor B12 for comparing the two models. [6]

(e) We assign prior probabilities of 1/3 that M1 is the true model, and 2/3 that M2 is the 

true model. Find the posterior probability that M1 is the true model. [4]
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Question 5 [16 marks].
We have observed data

y = {yi j : i = 1, . . . ,n, j = 1, . . . ,mi}.
Each yi j is the number of times a certain type of machine needs to be repaired during length of 

time Ti j, where j = 1, . . . ,mi are the machines in factory i, for i = 1, . . . ,n, with n � 2.

A hierarchical model is used to model the data. We assume that

yi j ⇠ Poisson(Ti jµi). 

µi is the repair rate for factory i, which varies between factories according to a gamma 

distribution

µi ⇠ Gamma(↵, �), i = 1, . . . ,n.

The parameters ↵ and � are given prior distributions, p(↵) and p(�).
Suppose that we have generated a sample of size M from the joint posterior distribution

p(µ1, . . . , µn, ↵, � | y).

(a) Explain how to estimate the following using the joint posterior sample:

(i) The posterior mean of ↵.

(ii) The posterior median of ⌫ =
↵

�
.

(iii) A 95% equal tail credible interval for ⌫.

[6]

(b) Explain how to generate a sample from the posterior predictive distribution of the 

number of repairs during time U for a machine not in our dataset, in each of the 

following two cases:

(i) If the factory containing this machine is in our dataset. [4]

(ii) If the factory is not in our dataset. Also explain how to estimate the posterior 

predictive probability that such a machine will not need any repairs during time U. [6]

End of Paper – An appendix of 1 page follows.
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Appendix: common distributions
For each distribution, x is the random quantity and the other symbols are parameters.

Discrete distributions

Distribution Probability 

mass function 

Range of parameters 

and variates 

Mean Variance 

Binomial

 
n 

x

!
qx

(1�q)
n�x 0  q  1

x = 0,1, . . . ,n 

nq nq(1�q) 

Poisson
�xe��

x!

� > 0

x = 0,1,2, . . . 
� �

Geometric q(1�q)
x 0 < q  1

x = 0,1,2, . . .
(1�q)

q
(1�q)

q2

Negative 

binomial

 
r+ x�1

x

!
qr

(1�q)
x 0 < q  1, r > 0

x = 0,1,2, . . .
r(1�q)

q 

r(1�q)

q2

Continuous distributions

Distribution Probability 

density function 

Range of parameters 

and variates 

Mean Variance 

Uniform 

1

b�a
�1 < a < b <1
a < x < b 

a+b
2 

(b�a)
2

12 

Normal N(µ, �2
) 

1p
2⇡�2

exp

 
� (x�µ)2

2�2

!
�1 < µ <1, � > 0

�1 < x <1 µ �2

The 95th and 97.5th percentiles of the standard N(0,1) distribution are 1.64 and 1.96, respectively. 

Exponential �e��x � > 0

x > 0 

1

�

1

�2

Gamma
�↵x↵�1e��x

�(↵)

↵ > 0, � > 0

x > 0

↵

� 

↵

�2

Beta
�(↵+�)

�(↵)�(�)
x↵�1

(1� x)
��1

↵ > 0, � > 0 

0 < x < 1

↵

↵+� 

↵�

(↵+�)2(↵+�+1)

End of Appendix.
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