MTH5103 Complex Variables

Week 2 Practice Exercies

These exercises are for your daily practice.

- 1. Write down the definition for the convergence/absolute convergence/conditional convergence of a real infinite series. Can you give examples of each kind? Prove $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges absolutely for all $x \in \mathbb{R}$.
- 2. Verify the identity $\cos z + i \sin z = e^{iz} = \cosh(iz) + \sinh(iz)$.
- 3. Rewrite the following complex functions as real mappings: $\frac{3z}{\overline{z}}=1, \Im(z^3)=5, |z|=\Re z+\frac{1}{2}.$
- 4. What is the image of a horizontal line $y=k\in\mathbb{R}$ under the mapping $w=z^2$?
- 5. Prove that the mapping $f(z) = \frac{1}{z}$ satisfies the following:
 - (a) The unit circle is mapped to itself.
 - (b) In the first quadrant, the interior of unit circle maps to the exterior of unit circle in the fourth quadrant.
 - (c) In the second quadrant, the exterior of unit circle maps to the interior of unit circle in the third quadrant.
 - (d) Complete the remaining cases (as depicted in the diagram in lecture with regions $1, \ldots, 8$ mapping to regions $1', \ldots, 8'$.
- 6. Complete the squares appropriately to determine the radius of the circle given by the equation $a(x^2+y^2)+bx+cy+d=0$. Here, we assume $a\neq 0$.
- 7. Verify that the half plane above the horizontal line y=k is mapped into the interior of the circle centred at $\left(0,\frac{-1}{2k}\right)$ of radius $\frac{1}{2k}$ under the mapping $z\mapsto\frac{1}{z}$.
- 8. Verify that the composition of two Möbius transformations is another Möbius transformation. Verify also that the inverse of the Möbius transformation having associated matrix M is given by M^{-1} , the inverse matrix.
- 9. (Harder) show that given any three distinct points z_1, z_2, z_3 in the z-plane, and any three points w_1, w_2, w_3 in the w-plane, there exists a Möbius transformation sending $z_j \mapsto w_j$ for each j=1,2,3.