MTH6107 Chaos \& Fractals

Exercises 7

Exercise 1. Let $F_{k}=\Phi^{k}\left([0,1]^{2}\right)$, where $\Phi(A)=\cup_{i=1}^{5} \phi_{i}(A)$ for subsets $A \subset \mathbb{R}^{2}$, and where the five maps $\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}$ are defined by $\phi_{i}(x, y)=\left(x_{i}, y_{i}\right)+(x / 3, y / 3)$, where $\left(x_{1}, y_{1}\right)=(0,0),\left(x_{2}, y_{2}\right)=(2 / 3,0),\left(x_{3}, y_{3}\right)=(1 / 3,1 / 3),\left(x_{4}, y_{4}\right)=(0,2 / 3)$, $\left(x_{5}, y_{5}\right)=(2 / 3,2 / 3)$.
(a) Determine the set F_{1}.
(b) If F_{k} is expressed as a union of N_{k} closed squares, where the intersection of any two squares is either a singleton set or the empty set, compute the number N_{k}.
(c) What is the common side length of each of the N_{k} squares in (b) above?
(d) What is the box dimension of $F=\cap_{k=0}^{\infty} F_{k}$?

Exercise 2. Let $C_{0}=[0,1]$. In the standard construction of the middle third Cantor set $C=\cap_{k=0}^{\infty} C_{k}$, describe briefly how the sets C_{k} are defined, and explicitly write down the sets C_{1} and C_{2}. If C_{k} is expressed as a disjoint union of N_{k} closed intervals, compute the number N_{k}, and determine the common length of each of the N_{k} closed intervals. Use this to show that, assuming the box dimension of the middle third Cantor set C exists, then it must equal $\log 2 / \log 3$

Exercise 3. If C is the middle-third Cantor set, what is the box dimension of the planar subset $C \times[0,1]=\{(x, y): x \in C, y \in[0,1]\}$?

Exercise 4. Let ϕ_{1}, ϕ_{2} be the iterated function system defined by the two maps $\phi_{1}(x)=$ $x / 10$ and $\phi_{2}(x)=(x+3) / 10$, with $\Phi(A):=\phi_{1}(A) \cup \phi_{2}(A)$, and let C_{k} denote $\Phi^{k}([0,1])$ for $k \geq 0$. Write down the sets C_{1} and C_{2}. If C_{k} is expressed as a disjoint union of N_{k} closed intervals, compute the number N_{k}, and determine the common length of each of the N_{k} closed intervals whose disjoint union equals C_{k}. Show that if the box dimension of $C=\cap_{k=0}^{\infty} C_{k}$ exists then it must equal $\log 2 / \log 10$.

Exercise 5. Let ϕ_{1}, ϕ_{2} be the iterated function system defined by the two maps $\phi_{1}(x)=$ $x / 10$ and $\phi_{2}(x)=(x+9) / 10$, with $\Phi(A):=\phi_{1}(A) \cup \phi_{2}(A)$, and let C_{k} denote $\Phi^{k}([0,1])$ for $k \geq 0$. If C_{k} is expressed as a disjoint union of N_{k} closed intervals, compute the number N_{k}, and determine the common length of each of the N_{k} closed intervals whose disjoint union equals C_{k}. Show that if the box dimension of $C=\cap_{k=0}^{\infty} C_{k}$ exists then it must equal $\log 2 / \log 10$.

Exercise 6. For C as in Exercise 5, give a description of the members of C in terms of the digits of their decimal expansion. If $f: C \rightarrow C$ is defined by $f(x)=10 x(\bmod 1)$ then find a point $x \in C$ which has minimal period 2 under f.

Exercise 7. Describe the construction of the Sierpinski triangle P, and show that if the box dimension of P exists then it must equal $\log 3 / \log 2$

