MTH6112 Actuarial Financial Engineering Coursework Week 11

- 1. An analyst is using a two-state continuous-time model to study the credit risk of zero-coupon bonds issued by different companies. The risk-neutral transition intensity function is:
 - $\widetilde{\lambda}_A(s) = 0.0148$ for Company A, and
 - $\widetilde{\lambda}_B(s) = 0.01s^2$ for Company B,

where s measures time in years from now. The analyst observes that the credit spread on a 3 year zero-coupon bond just issued by Company B is twice that on a 3-year zero-coupon bond just issued by Company A. Given that the average recovery rate in the event of default, δ , where $0 < \delta < 1$, is the same for both companies, calculate δ . What should be the relation between the recovery rates of these two companies for there not to be arbitrage in the market?

Remark. The credit spread on a zero-coupon bond is the difference between the yield on the bond and the yield on a similar bond issued by the government. I.e., for company i it is equal to $R_i(t,T) - r$, where r is the risk-free interest rate and

$$R_{i}(t,T) = -\frac{1}{T-t}\log B(t,T).$$

The price of a zero-coupon bond in a two-state model was derived in the Lecture and is equal to

$$B(t,T) = e^{-r(T-t)} \left(\delta + (1-\delta) e^{-\int_{t}^{T} \widetilde{\lambda}(s)ds} \right).$$

2. This question is covered in the Slides of this week. Please dirty your hands and do it independently to check if you are able to calculate them.

Let $\xi_i, i = 1, 2, ..., n$ be independent random variables taking the values ± 1 with probability $\mathbb{P}[\xi_1 = 1] = 1/2$.

We denote by \mathcal{F}_n the σ -algebra generated by $\xi_1, \xi_2, \ldots, \xi_n$. Further we denote

$$S_n = \sum_{j=1}^n \xi_j.$$

Finally, let τ be a random variable taking values in \mathbb{N} , with

$$\mathbb{E}\left[\tau\right]<\infty$$
,

and τ being independent of all ξ_i . Compute the following conditional expectations.

- a) $\mathbb{E}[e^{\xi_1+\xi_2-\xi_3}|\xi_1,\xi_2]$
- b) $\mathbb{E}[S_n|\mathcal{F}_{n-1}]$
- c) $\mathbb{E}[S_n^2 n | \mathcal{F}_{n-1}]$
- d) $\mathbb{E}[e^{S_n}|\mathcal{F}_{n-1}]$
- e) $\mathbb{E}[S_n^2|S_{n-1}]$
- f) $\mathbb{E}[S_{\tau}^2|\tau]$
- 3. This question is also covered in the Slides of Week 11. Make sure you are able to solve it.
 - a) Let W_t be a standard Brownian Motion/Wiener Process and $\{\mathcal{F}_t\}_{t\geq 0}$ be a corresponding natural filtration. Let $B_t = B_0 + \mu t + \sigma W_t$ be a BM with corresponding drift and volatility. Show that W_t is a martingale.
 - b) Show that under the same assumption, W_t^2 is a not martingale, but $W_t^2 t$ is.
 - c) Let $S_t = e^{B_t}$ be a Geometric Brownian Motion starting at $S_0 = e^{B_0}$ and having drift μ and volatility σ . Show that this process is not a martingale in general, but is a martingale for $\mu = -\frac{\sigma^2}{2}$.