MTH6112 Actuarial Financial Engineering Coursework Week 9

1. Assume that the risk-free interest rate is governed by the Vasicek model. Historical data of short time risk-free interest rate is given in the table for a period January-May 2019

Date	01/01	01/02	01/03	01/04	01/05
r_t	3.56%	4.02%	3.84%	4.00%	4.18%

There are three zero-coupon bonds (see the table for their parameters) available at the market paying £1 on a corresponding maturity day.

	Issue date	Maturity date	Price on issue date
Bond 1	01/01	01/03	£0.92
Bond 2	01/02	01/04	£0.86
Bond 3	01/03	01/05	?

Find the price of Bond 3.

Solution: The formula for a zero-coupon bond price, in the context of Vasicek model, has an important property: functions A and B depend only on $\tau = T - t$ as a parameter. All three bonds given in the problem have the time period they are issued for equal to 2 months. This yields that we can write their prices as

$$B\left(t,T,r_{t}\right) = e^{-Ar_{t}+B},$$

where $A := A\left(\frac{1}{6}\right)$ and $B := B\left(\frac{1}{6}\right)$. Taking into account prices of the Bonds 1 and 2 we can set up the system of equations

$$\begin{cases} B_1 = e^{-A \cdot 0.0356 + B} &= 0.92 \\ B_2 = e^{-A \cdot 0.0402 + B} &= 0.86 \end{cases}$$

Solving the system we arrive to

$$\begin{cases} -A \cdot 0.0356 + B = \log 0.92 \\ -A \cdot 0.0402 + B = \log 0.86 \end{cases} \Rightarrow \begin{cases} A \cdot 0.0046 = \log \frac{0.92}{0.86} \\ B = \log 0.86 + A \cdot 0.0402 \end{cases}$$
$$\Rightarrow \begin{cases} A = 14.661 \\ B = 0.439 \end{cases}$$

By using the above we can calculate the price of Bond 3

$$B_3 = e^{-14.661 \cdot 0.0384 + 0.439} = e^{-0.124} = £0.88.$$

2. Let W_t be a standard Brownian Motion. The simplest version of the Ornstein-Uhlenbeck process X_t is defined by

$$X_t = e^{-\theta t} W_{e^{2\theta t}}, \text{ for some constant } \theta > 0.$$

- a) Does this process have independent increments?
- b) Is X_t a Brownian Motion?
- c) What is the distribution of the increment $X_t X_s$ for t > s?
- d) Compute $\mu_m := \mathbb{E}[(X_t)^m]$ for all integer m > 0.
- e) Compute Cov $\{X_t, X_s\}$.

Solution

a) Increments $X_{t_{i+1}} - X_{t_i}$ can be expressed in terms of the Brownian motion as follows:

$$X_{t_{i+1}} - X_{t_i} = e^{-\theta t_{i+1}} W_{e^{2\theta t_{i+1}}} - e^{-\theta t_i} W_{e^{2\theta t_i}}$$

$$= e^{-\theta t_{i+1}} (W_{e^{2\theta t_{i+1}}} - W_{e^{2\theta t_i}}) + (e^{-\theta t_{i+1}} - e^{-\theta t_i}) W_{e^{2\theta t_i}}.$$

It is clear that the first term in this expression is independent from all previous history of the Brownian motion (see properties of a Brownian motion). However, the second one is not. To formally prove that the increments are not independent, let us take three different times t < s < r and calculate the covariance $\text{Cov}[X_r - X_s, X_s - X_t]$.

$$\operatorname{Cov}\left[X_{r} - X_{s}, X_{s} - X_{t}\right] = \operatorname{Cov}\left[X_{r}, X_{s}\right] + \operatorname{Cov}\left[X_{s}, X_{t}\right]$$

$$-\operatorname{Cov}\left[X_{r}, X_{t}\right] - \operatorname{Cov}\left[X_{s}, X_{s}\right]$$

$$= e^{-\theta r - \theta s} \operatorname{Cov}\left[W_{e^{2\theta r}}, W_{e^{2\theta s}}\right] + e^{-\theta t - \theta s} \operatorname{Cov}\left[W_{e^{2\theta t}}, W_{e^{2\theta s}}\right]$$

$$-e^{-\theta t - \theta r} \operatorname{Cov}\left[W_{e^{2\theta t}}, W_{e^{2\theta r}}\right] - e^{-2\theta s} \operatorname{Var}\left[W_{e^{2\theta s}}\right]$$

$$= e^{\theta s - \theta r} + e^{\theta t - \theta s} - e^{\theta t - \theta r} - 1$$

$$= \left(e^{-\theta r} - e^{-\theta s}\right) \left(e^{\theta s} - e^{\theta t}\right) > 0.$$

b) It follows from the above that X_t does not have independent increments, so it is not a Brownian Motion.

c) An increment $X_t - X_s$ can be written as a sum of two independent Gaussian random variables. Indeed

$$X_t - X_s = e^{-\theta t} \left[W_{e^{2\theta t}} - W_{e^{2\theta s}} \right] + \left(e^{-\theta t} - e^{-\theta s} \right) \left[W_{e^{2\theta s}} - W_0 \right].$$

Thus, $X_t - X_s$ is a Gaussian random variable with mean zero and variance

$$Var[X_t - X_s] = e^{-2\theta t} (e^{2\theta t} - e^{2\theta s}) + (e^{-\theta t} - e^{-\theta s})^2 e^{2\theta s} = 2 (1 - e^{-\theta (t-s)}).$$

d) For the *m*-th moment we use the formula derived in lectures:

$$\mu_m = \mathbb{E}\left[e^{-m\theta t}W_{e^{2\theta t}}^m\right] = \begin{cases} 0, & \text{if } m \text{ is odd,} \\ e^{-2p\theta t}\frac{(2p)!}{2^pp!}e^{2\theta tp} = \frac{(2p)!}{2^pp!}, & \text{if } m = 2p \text{ (is even).} \end{cases}$$

Interestingly, these moments do not depend on t, the time of the process.

e) Finally, for the covariance (which in fact has been computed above) one has:

$$\operatorname{Cov}[X_t, X_s] = e^{-\theta t - \theta s} \operatorname{Cov}[W_{e^{2\theta t}}, W_{e^{2\theta s}}] = e^{-\theta t - \theta s} e^{2\theta \min(t, s)} = e^{-\theta |t - s|}.$$

The covariance vanishes on as $|t - s| \to \infty$ and thus the values Y_t and Y_s of the OU process are almost independent when the time distance between them is large.

Remark. One can extract from the above an interesting property of the Ornstein-Uhlenbeck (OU) process.

Note that $\mathbb{E}(X_t) = 0$ and $\operatorname{Var}(X_t) = 1$ (derive this fact from the above results!). Also, its increments are Gaussian random variables whose variance is bounded from above. This means that typically, even at a large time scale, the OU process would stay at a bounded distance from its average. In contrast, the BM often deviates from its mean value (that is, from 0) by a distance "proportional" to \sqrt{t} .