MTH6112 Actuarial Financial Engineering Coursework Week 9

1. Assume that the risk-free interest rate is governed by the Vasicek model. Historical data of short time risk-free interest rate is given in the table for a period January-May 2019

Date	$01 / 01$	$01 / 02$	$01 / 03$	$01 / 04$	$01 / 05$
r_{t}	3.56%	4.02%	3.84%	4.00%	4.18%

There are three zero-coupon bonds (see the table for their parameters) available at the market paying $£ 1$ on a corresponding maturity day.

	Issue date	Maturity date	Price on issue date
Bond 1	$01 / 01$	$01 / 03$	$£ 0.92$
Bond 2	$01 / 02$	$01 / 04$	$£ 0.86$
Bond 3	$01 / 03$	$01 / 05$	$?$

Find the price of Bond 3 .
Solution: The formula for a zero-coupon bond price, in the context of Vasicek model, has an important property: functions A and B depend only on $\tau=T-t$ as a parameter. All three bonds given in the problem have the time period they are issued for equal to 2 months. This yields that we can write their prices as

$$
B\left(t, T, r_{t}\right)=e^{-A r_{t}+B}
$$

where $A:=A\left(\frac{1}{6}\right)$ and $B:=B\left(\frac{1}{6}\right)$. Taking into account prices of the Bonds 1 and 2 we can set up the system of equations

$$
\left\{\begin{array}{l}
B_{1}=e^{-A \cdot 0 \cdot 0356+B}=0.92 \\
B_{2}=e^{-A \cdot 0 \cdot 0402+B}=0.86
\end{array}\right.
$$

Solving the system we arrive to

$$
\begin{array}{r}
\left\{\begin{array} { l l }
{ - A \cdot 0 . 0 3 5 6 + B = } & { \operatorname { l o g } 0 . 9 2 } \\
{ - A \cdot 0 . 0 4 0 2 + B = } & { \operatorname { l o g } 0 . 8 6 }
\end{array} \Rightarrow \left\{\begin{array}{ll}
A \cdot 0.0046= & \log \frac{0.92}{0.86} \\
B= & \log 0.86+A \cdot 0.0402
\end{array}\right.\right. \\
\Rightarrow \begin{cases}A= & 14.661 \\
B= & 0.439\end{cases}
\end{array}
$$

By using the above we can calculate the price of Bond 3

$$
B_{3}=e^{-14.661 \cdot 0.0384+0.439}=e^{-0.124}=£ 0.88
$$

2. Let W_{t} be a standard Brownian Motion. The simplest version of the OrnsteinUhlenbeck process X_{t} is defined by

$$
X_{t}=\mathrm{e}^{-\theta t} W_{\mathrm{e}^{2 \theta t}}, \quad \text { for some constant } \theta>0 .
$$

a) Does this process have independent increments?
b) Is X_{t} a Brownian Motion?
c) What is the distribution of the increment $X_{t}-X_{s}$ for $t>s$?
d) Compute $\mu_{m}:=\mathbb{E}\left[\left(X_{t}\right)^{m}\right]$ for all integer $m>0$.
e) Compute $\operatorname{Cov}\left\{X_{t}, X_{s}\right\}$.

Solution

a) Increments $X_{t_{i+1}}-X_{t_{i}}$ can be expressed in terms of the Brownian motion as follows:

$$
\begin{aligned}
X_{t_{i+1}}-X_{t_{i}} & =\mathrm{e}^{-\theta t_{i+1}} W_{\mathrm{e}^{2 \theta t_{i+1}}}-\mathrm{e}^{-\theta t_{i}} W_{\mathrm{e}^{2 \theta t_{i}}} \\
& =\mathrm{e}^{-\theta t_{i+1}}\left(W_{\mathrm{e}^{2 \theta t_{i+1}}}-W_{\mathrm{e}^{2 \theta t_{i}}}\right)+\left(\mathrm{e}^{-\theta t_{i+1}}-\mathrm{e}^{-\theta t_{i}}\right) W_{\mathrm{e}^{2 \theta t_{i}}} .
\end{aligned}
$$

It is clear that the first term in this expression is independent from all previous history of the Brownian motion (see properties of a Brownian motion). However, the second one is not. To formally prove that the increments are not independent, let us take three different times $t<$ $s<r$ and calculate the covariance $\operatorname{Cov}\left[X_{r}-X_{s}, X_{s}-X_{t}\right]$.

$$
\begin{aligned}
\operatorname{Cov}\left[X_{r}-X_{s}, X_{s}-X_{t}\right]= & \operatorname{Cov}\left[X_{r}, X_{s}\right]+\operatorname{Cov}\left[X_{s}, X_{t}\right] \\
& -\operatorname{Cov}\left[X_{r}, X_{t}\right]-\operatorname{Cov}\left[X_{s}, X_{s}\right] \\
= & \mathrm{e}^{-\theta r-\theta s} \operatorname{Cov}\left[W_{\mathrm{e}^{2 \theta r}}, W_{\mathrm{e}^{2 \theta s}}\right]+\mathrm{e}^{-\theta t-\theta s} \operatorname{Cov}\left[W_{\mathrm{e}^{2 \theta t}}, W_{\mathrm{e}^{2 \theta s}}\right] \\
& -\mathrm{e}^{-\theta t-\theta r} \operatorname{Cov}\left[W_{\mathrm{e}^{2 \theta t}}, W_{\mathrm{e}^{2 \theta r}}\right]-\mathrm{e}^{-2 \theta s} \operatorname{Var}\left[W_{\mathrm{e}^{2 \theta s}}\right] \\
= & \mathrm{e}^{\theta s-\theta r}+\mathrm{e}^{\theta t-\theta s}-\mathrm{e}^{\theta t-\theta r}-1 \\
= & \left(\mathrm{e}^{-\theta r}-\mathrm{e}^{-\theta s}\right)\left(\mathrm{e}^{\theta s}-\mathrm{e}^{\theta t}\right)>0 .
\end{aligned}
$$

b) It follows from the above that X_{t} does not have independent increments, so it is not a Brownian Motion.
c) An increment $X_{t}-X_{s}$ can be written as a sum of two independent Gaussian random variables. Indeed

$$
X_{t}-X_{s}=\mathrm{e}^{-\theta t}\left[W_{\mathrm{e}^{2 \theta t}}-W_{\mathrm{e}^{2 \theta s}}\right]+\left(\mathrm{e}^{-\theta t}-\mathrm{e}^{-\theta s}\right)\left[W_{\mathrm{e}^{2 \theta s}}-W_{0}\right] .
$$

Thus, $X_{t}-X_{s}$ is a Gaussian random variable with mean zero and variance
$\operatorname{Var}\left[X_{t}-X_{s}\right]=\mathrm{e}^{-2 \theta t}\left(\mathrm{e}^{2 \theta t}-\mathrm{e}^{2 \theta s}\right)+\left(\mathrm{e}^{-\theta t}-\mathrm{e}^{-\theta s}\right)^{2} \mathrm{e}^{2 \theta s}=2\left(1-\mathrm{e}^{-\theta(t-s)}\right)$.
d) For the m-th moment we use the formula derived in lectures:

$$
\mu_{m}=\mathbb{E}\left[\mathrm{e}^{-m \theta t} W_{\mathrm{e}^{2 \theta t}}^{m}\right]= \begin{cases}0, & \text { if } m \text { is odd } \\ \mathrm{e}^{-2 p \theta t} \frac{(2 p p)!}{2^{p}!!} \mathrm{e}^{2 \theta t p}=\frac{(2 p)!}{2^{p p!}}, & \text { if } m=2 p \text { (is even) }\end{cases}
$$

Interestingly, these moments do not depend on t, the time of the process.
e) Finally, for the covariance (which in fact has been computed above) one has:

$$
\operatorname{Cov}\left[X_{t}, X_{s}\right]=\mathrm{e}^{-\theta t-\theta s} \operatorname{Cov}\left[W_{\mathrm{e}^{2 \theta t}}, W_{\mathrm{e}^{2 \theta s}}\right]=\mathrm{e}^{-\theta t-\theta s} \mathrm{e}^{2 \theta \min (t, s)}=\mathrm{e}^{-\theta|t-s|} .
$$

The covariance vanishes on as $|t-s| \rightarrow \infty$ and thus the values Y_{t} and Y_{s} of the OU process are almost independent when the time distance between them is large.
Remark. One can extract from the above an interesting property of the Ornstein-Uhlenbeck (OU) process.
Note that $\mathbb{E}\left(X_{t}\right)=0$ and $\operatorname{Var}\left(X_{t}\right)=1$ (derive this fact from the above results!). Also, its increments are Gaussian random variables whose variance is bounded from above. This means that typically, even at a large time scale, the OU process would stay at a bounded distance from its average. In contrast, the BM often deviates from its mean value (that is, from 0) by a distance "proportional" to \sqrt{t}.

