MTH6112 Actuarial Financial Engineering
Coursework Week 9

1. Assume that the risk-free interest rate is governed by the Vasicek model.
Historical data of short time risk-free interest rate is given in the table for a
period January-May 2019

Date | 01/01 | 01/02 | 01/03 [ 01/04 [ 01/05
re | 3.56% | 4.02% | 3.84% | 4.00% | 4.18%

There are three zero-coupon bonds (see the table for their parameters) avail-
able at the market paying £1 on a corresponding maturity day.

‘ Issue date ‘ Maturity date ‘ Price on issue date ‘

Bond 1| 01/01 01,03 £0.92
Bond 2 | 01/02 01/04 £0.86
Bond 3| 01/03 01,/05 ?

Find the price of Bond 3.

Solution: The formula for a zero-coupon bond price, in the context of Va-
sicek model, has an important property: functions A and B depend only on
7 =T —t as a parameter. All three bonds given in the problem have the
time period they are issued for equal to 2 months. This yields that we can

write their prices as
B(t,T,r) = e~ 4tB,

where A := A (%) and B:= B (%) Taking into account prices of the Bonds
1 and 2 we can set up the system of equations
{Bl — o A00356+B  _ ()99

B2 — e—A~0.0402+B = 0.86

Solving the system we arrive to

{—A 10.0356 + B = log0.92 {A -0.0046 = log 22

0.86
—A-0.0402+ B = log0.86 B= 1og 0.86 + A - 0.0402

A= 14.661
=
B = 10.439



By using the above we can calculate the price of Bond 3

By — o~ 14:661:0.038450430 _ ,—0124 _ p() g

2. Let W, be a standard Brownian Motion. The simplest version of the Ornstein-
Uhlenbeck process X; is defined by

X, = e "W, for some constant § > 0.

a

b

) Does this process have independent increments?
)

c) What is the distribution of the increment X; — X for ¢ > s7
)
)

Is X; a Brownian Motion?

d) Compute p,, := E[(X;)™] for all integer m > 0.
e) Compute Cov { Xy, X,}.

Solution

a) Increments Xy,,, — X, can be expressed in terms of the Brownian motion
as follows:

Xy — Xty = e Won,, — e "W,

= e_(%’ur1 (We2oti+1 - We29fz‘) + (e—0t¢+1 - e_eti) We%ti'

i+1

It is clear that the first term in this expression is independent from all
previous history of the Brownian motion (see properties of a Brownian
motion). However, the second one is not. To formally prove that the
increments are not independent, let us take three different times t <
s < r and calculate the covariance Cov [ X, — X, X5 — Xi].

Cov[X, — X, X, — Xy] = Cov[X,, X ]+ Cov [X, X{]
—Cov [X,, X;] — Cov [ X, X]
= e "5 Cov [Waor, W] + e %79 Cov [Weaer, Wio2os]
—e 7 Cov [Waer, Wezer] — e 2*Var [W,204]
_ fs=Or | (Bi—bs _ =0 _ 4
_ (e—er _ e—95) (ees _ eet) 0.

b) It follows from the above that X; does not have independent increments,
so it is not a Brownian Motion.



c)

An increment X; — X, can be written as a sum of two independent
Gaussian random variables. Indeed

X — Xy = e % [Won — Weos] + (7% — e7%) [Weaes — W)

Thus, X; — X, is a Gaussian random variable with mean zero and vari-
ance

Var [Xt _ Xs] — 20t (e29t o 6295)—|—(e_9t _ e—es)2 e20s — 9 (1 _ e_e(t_s)) .
For the m-th moment we use the formula derived in lectures:

0, if m is odd,

—2p0ot (2p)! e20tp _ (2p)!
2Pp!  2pply

fm = E [e_met gget} = {

e if m = 2p (is even).

Interestingly, these moments do not depend on ¢, the time of the process.

Finally, for the covariance (which in fact has been computed above) one
has:

Cov [Xt7 Xs] — e—@t—@sCOV [We%t? We295] _ e—@t—6‘3629m1n(t,s) _ e—e\t_s|.

The covariance vanishes on as [t — s| — oo and thus the values Y; and
Y, of the OU process are almost independent when the time distance
between them is large.

Remark. One can extract from the above an interesting property of
the Ornstein-Uhlenbeck (OU) process.

Note that E(X;) = 0 and Var(X;) = 1 (derive this fact from the above
results!). Also, its increments are Gaussian random variables whose
variance is bounded from above. This means that typically, even at a
large time scale, the OU process would stay at a bounded distance from
its average. In contrast, the BM often deviates from its mean value
(that is, from 0) by a distance "proportional” to v/%.



