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7. Hedging within the framework of the MPBM
and the GBM model

We have considered hedging in the context of the One-Period Binomial Model.
We shall see that the formulae derived there will be instrumental for the analysis of
Multi-Period Binomial Model (MPBM).
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7.1. Hedging within the framework of the MPBM

We start with the statement of the problem.

Suppose that the price of a share S(j), 0 ≤ j ≤ n, follows a MPBM with parameters
s, u, d , r .
As usual, the no-arbitrage condition d < 1 + r < u is supposed to be satisfied.

Recall that there are n + 1 possible values of S(n): sdn, sudn−1, ..., suidn−i , ..., sun.

Consider a derivative on this share with the payoff time n and the payoff function V . We
shall consider payoff functions which depend only on S(n) - the price of the share at time
n, that is

V (suidn−i ) = Vn,i , 0 ≤ i ≤ n.

In words: if at time n the price of the share is S(n) = suidn−i then the owner of the
derivative is paid Vn,i . (The price goes up i times)

Denote by C the no arbitrage price of this derivative.
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7.1. Hedging within the framework of the MPBM

Question 1. What is the price C of this derivative?

Question 2. How should the trader who sells this derivative invest the C
so that at time n, s/he is able to meet the obligation to payoff Vn,i

whatever the i , 0 ≤ i ≤ n, turns out to be?
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7.1. Hedging within the framework of the MPBM

Answer to Question 1.
The price C of such a derivative is given by

C = (1 + r)−n
n∑

i=0

(
n

i

)
piqn−iVn,i , where p =

1 + r − d

u − d
, q =

u − 1− r

u − d
.
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7.1. Hedging within the framework of the MPBM

Proof:
A sequence of prices S(1), ...,S(n) with S(n) = suidn−i has the risk-neutral probability
(r-np for short) piqn−i (the price goes up i times and it goes down n − i times).
Each such sequence is uniquely defined by i time moments j1, ..., ji such that
S(jk) = S(jk−1)u.
The total number of these sequence is equal to

(n
i

)
which is the number of possibilities to

choose i time-moment out of n.
Therefore, the r-np P̃(S(n) = suidn−i ) =

(n
i

)
piqn−i .

Hence also P̃(V = Vn,i ) =
(n
i

)
piqn−i and Ẽ(V ) =

∑n
i=0

(n
i

)
piqn−iVn,i .

By Theorem 5.2.

C = (1 + r)−nẼ(V ) = (1 + r)−n
n∑

i=0

(
n

i

)
piqn−iVn,i

□
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7.1. Hedging within the framework of the MPBM

We shall now answer Question 2 which is the main goal of this section.

At each time moment j ≥ 0, the trader is allowed to buy shares and to deposit money
into the bank.
It is natural to expect that the number of shares and the total capital the trader must
have at time j depends on S(j) = suid j−i - the value of the price of the underlying share.

We thus introduce the following notation: given that S(j) = suid j−i ,
Xj ,i denotes the number of shares in the portfolio at time j ,
Vj ,i the total value of the trader’s portfolio at time j .
Then Vj ,i − Xj ,i su

id j−i is the amount of money that should be deposited in the bank at
time j .

Exercise: Draw the timeline.
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7.1. Hedging within the framework of the MPBM

Lemma 7.1

For each j, 0 ≤ j ≤ n − 1, the values (Xj ,i , Vj ,i ), 0 ≤ i ≤ j , are computed as follows.

Vj ,i = (1 + r)−1 (pVj+1,i+1 + qVj+1,i ) , Xj ,i =
Vj+1,i+1 − Vj+1,i

S(j)(u − d)
(1)
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7.1. Hedging within the framework of the MPBM
Proof:
Recall that Vj+1,i+1 and Vj+1,i is the capital the seller of the derivative must have at time
j + 1
in order to be able to meet the payoff obligations at time n
given that S(j + 1) = sui+1d j−i and S(j + 1) = suid j respectively.

If S(j) = suid j−i then either S(j + 1) = S(j)u = sui+1d j−i or S(j + 1) = S(j)d = suid j

and hence Vj ,i must be such that the capital at time j + 1 becomes Vj+1,i+1 and Vj+1,i

respectively.

Hence we are in the setting of the one-period binomial model (OPBM) and Equation (1)
are the same as the corresponding formulae for OPBM (we Equation (3) and (5)in the
slides of Week 2): we replace V1, V2, P in these formulae by Vj+1,i+1, Vj+1,i , Vj ,i

respectively). □

10 / 57



7.1. Hedging within the framework of the MPBM

X0,0, V0,0:

We thus can do the following: Step 1. Use (1) to compute Xn−1,i and Vn−1,i ,
0 ≤ i ≤ n − 1, from known values Vn,i , 0 ≤ i ≤ n.

Step 2. Similarly, compute Xn−2,i and Vn−2,i , 0 ≤ i ≤ n − 2, from Vn−1,i , 0 ≤ i ≤ n − 1

Continue these calculations until, moving from the values found for time j + 1 to values
at time j . After n steps, we shall compute X0,0, V0,0.
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7.1. Hedging within the framework of the MPBM

The hedging strategy now works as follows.

1. At time t = 0, buy X0,0 shares and deposit V0,0 − X0,0s (the rest of the initial capital)
into the bank.

2. At time t = 1, your total capital is V0,0S(1) + (V0,0 − X0,0s)(1 + r) and is either V1,1

or V1,0 (depending on whether S(1) = su or S(1) = sd .)
Use it to buy the corresponding number of shares (which will be either X1,1 or X1,0

respectively) and deposit the rest into the bank.

3. At each next time moment, say j you act as follows.
If the price S(j) = suid j−i then the total value of your portfolio is Vj ,i .
Use it to buy Xj ,i shares and deposit Vj ,i − Xj ,iS(j) into the bank.
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7.1. Hedging within the framework of the MPBM

Question.
What is the relationship between C and V0,0?
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7.1. Hedging within the framework of the MPBM

Remark.
Note that C = V0,0. Indeed, we have two investments.

Investment 1: buy the derivative for C .
Investment 2: Invest V0,0 in the way prescribed by the hedging strategy.

Both investments produce the same result at time n. Hence, by the Law of One Price,
their cost should be the same.
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7.2. Hedging within the framework of the GBM

Throughout this section we suppose that
the price of a share follows the Geometric Brownian Motion (GBM)
S(t) = Seµt+σW (t), t ≥ 0,
where S , µ, σ are the parameters of the GBM,
W (t) is the standard Brownian motion.
The interest rate compounded continuously is r .
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7.2. Hedging within the framework of the GBM

We consider a derivative on this asset with a payoff function G (S(T )) and the payoff
time T .
We know (Theorem 5.3) that the price C of such a derivative is given by

C = e−rTE[G (S̃(T ))] = e−rT

∫ ∞

−∞
G
(
S(0)eµ̃T+σ

√
Tx

)
f (x)dx , (2)

where f (x) = 1√
2π
e−

x2

2 is the p.d.f. of the standard normal random variable.
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7.2. Hedging within the framework of the GBM

Question. Can the seller of the derivative invest C so that to be able to meet the payoff
obligation at time T?
The seller is allowed to buy the underlying shares and to deposit the money into the bank.

The answer is: Yes, by continually reinvesting the portfolio.
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7.2. Hedging within the framework of the GBM

To make this answer precise, we have to answer two more questions.
Question (a). What should be the total value of the portfolio at time t, 0 ≤ t ≤ T?
Question (b). How many shares should be in the portfolio at time t, 0 ≤ t ≤ T?
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7.2. Hedging within the framework of the GBM

Answer to Question (a). The total value of the portfolio should be equal to the price
C (S(t), t) of the derivative at time t, given that the price of the share is S(t).

We thus have introduced a new notation, C (S(t), t) – the price of the derivative which is
a function of two variables, S(t) and t. The important fact is that we can compute this
price.
Namely, since the conditions of the market allow the investor to buy the derivative at any
time t, 0 ≤ t ≤ T , C (S(t), t) can be computed in the same way as C in (2). The only
difference is that the starting price of the share now is S(t) and the payoff takes place in
T − t units of time. Thus

C (S(t), t) = e−r(T−t)

∫ ∞

−∞
G
(
S(t)eµ(T−t)+σ

√
T−tx

)
f (x)dx . (3)
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7.2. Hedging within the framework of the GBM

Answer to Question (b). The number of shares in the portfolio at time t should be

∆(t) =
∂C (S , t)

∂S
, where S = S(t). (4)

Remark. (4) explains why the term Delta-hedging is used in finance.
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7.2. Hedging within the framework of the GBM
The hedging strategy is:

• At each time t, have ∆(t) shares and keep [C (S(t), t)−∆(t)S(t)] in the bank.
• This can be achieved by re-investing the total capital in our portfolio at times
0, h, 2h, ...,T , where h as a short period of time as possible.

• At time 0, we own C (S(0)) and use them to buy ∆(0) shares and deposit the rest of
the capital in the bank.

• At time h, we change the number of shares in the portfolio to ∆(h) and deposit the
rest of the capital in the bank. We can do that because we know the price S(h)
(from our observation of the development in the market of shares) and we can use
S(h) to carry out the necessary calculations.

• The same operation is then repeated ta times 2h, 3h, ...,T .
• If h is very small then this process looks like a continual reinvestment of the portfolio.
• This strategy is designed so that to make sure that at time T the value of our
portfolio is R(S(T )) which means we can meet our financial obligations.
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7.2. Hedging within the framework of the GBM

Example. If, in the above formulae, G (x) = (x − K )+ then this is case of the call option
Call(K ,T ). In this case we know the explicit expressions for C (S , t) and ∆(t). Namely,
using Black-Scholes formula, we obtain that the value of the portfolio at time t should be

C (S(t), t) = S(t)Φ(ω(t))− Ke−r(T−t)Φ(ω(t)− σ
√
T − t) , (5)

where

ω(t) =
ln S(t)

K + r(T − t)

σ
√
T − t

+
1

2
σ
√
T − t

and Φ(x) is the cumulative distribution function of a standard Normal random variable,
that is

Φ(x) =

∫ x

−∞

1√
2π

e−u2/2 du .
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7.2. Hedging within the framework of the GBM

Example (cont.). Thus, in this example the number of shares ∆(t) which should be in
the portfolio at time t is

∆(t) =
∂C (S , t)

∂S

∣∣∣
S=S(t)

= Φ(ω(t)). (6)

The last formula is due to the property we mentioned last week in Section 6 The Greeks,
∂C
∂S = Φ(ω).

Finally, we have a simple expression for the amount Y(t) of money that should be
deposited in the bank:

Y (t) = C (S(t), t)− S(t)∆(t) = −Ke−r(T−t)Φ(ω(t)− σ
√
T − t).
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7.2. Hedging within the framework of the GBM

Remark.
In this example, ∆(t) is always strictly positive, while the cash Y (t) is strictly negative.
This means that at each moment t the amount −Y (t) is borrowed from the bank and
invested in shares (together with C (S(t), t)).
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7.2. Hedging within the framework of the GBM
Explanation of the reason for (4) (not examinable):
To simplify the calculations and the formulae, suppose that µ = 0, that is S(t) = eσW (t).
If at time t the price of the share is S(t) then at time t + h the price will be,

approximately, either S(t)eσ
√
h or S(t)e−σ

√
h. So, the price of the derivative at time t + h

will be either C (S(t)eσ
√
h, t + h) or C (S(t)e−σ

√
h, t + h). We know from the discussion

of hedging for the One-Period Binomial Model that the number of shares that should be
in the portfolio at time t is given by

C (S(t)eσ
√
h, t + h)− C (S(t)e−σ

√
h, t + h)

S(t)(eσ
√
h − e−σ

√
h)

.

As h → 0, we obtain

∆(t) = lim
h→0

[
C (S(t)eσ

√
h, t + h)− C (S(t)e−σ

√
h, t + h)

S(t)(eσ
√
h − e−σ

√
h)

]
=

∂C (S , t)

∂S
, where S = S(t).
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7.2. Hedging within the framework of the GBM

Remark.
The proof of the last relation easily follows from the fact that
F (b)− F (a) = F ′(ξ)(b − a), where ξ ∈ (a, b). You should know this formula from the
Calculus I course. Applying it to the difference in the numerator of the fraction we obtain

C (Seσ
√
h, t + h)− C (Se−σ

√
h, t + h) =

∂C (S , t + h)

∂S

∣∣∣∣
S=ξ

(Seσ
√
h − Se−σ

√
h),

where ξ ∈ (Seσ
√
h, Se−σ

√
h). It is now obvious that

∆(t) = lim
h→0

[
∂C (S , t + h)

∂S

∣∣∣∣
S=ξ

]
=

∂C (S , t)

∂S
, where S = S(t).
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8. Dividends

So far, we have not taken into account a very important aspect of the behaviour of
financial assets - the existence of dividends.

What is a dividend?

Definition 8.1

Dividend is a sum of money
paid regularly by a company to its shareholders
out of its profits (or reserves).

We want to answer the following two questions concerned with assets paying dividends.
Question 1. What are the different types of dividends and what are the ways in which
the dividends can be modelled mathematically?
Question 2: What is the price of an option on an asset paying dividends?
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8.1. Examples of models for dividend payments

The following examples answer Question 1 in a way which is sufficient for the purposes of
this module.

1. Discrete absolute dividends: at times t1 < · · · < tn a certain known amount
D1, . . . ,Dn is paid.

2. Discrete proportional dividends: at times t1 < · · · < tn the amount
d1S(t1), . . . , dnS(tn) is paid, where S(t) is the price of the underlying share at time t.

3. Continuous proportional dividends: If ∆t > 0 is a small time interval, then from
time t to t +∆t the amount paid is qS(t +∆t)∆t per each share, where q > 0.
Exercise. Usually q is between 0.02 - 0.05. Explain why q can’t be lager than 1.

The dividends are usually paid either in cash or in shares.
We shall always suppose that a dividend is re-invested in the underlying share (which is
just another way of saying that it is paid in shares).
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8.2. Continuous dividend rates: how many shares
do we own?

Suppose that dividend is paid continuously as described in Example 3 and is re-invested in
the underlying share:
if between times t and t +∆t the dividend is qS(t +∆t)∆t per share,
then this money is used to buy shares for the price of S(t +∆t) per share (which is
simply its market price at time t +∆t).
Our model is now completely defined and the following lemma tells us how many shares
we shall own at time t if at time 0 we had 1 share.

Lemma 8.1

Suppose that the dividend is paid continuously and is reinvested in the underlying share
as described above.
Denote by N(t) the number of shares in the portfolio at time t. Then N(t) = eqt .
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8.2. Continuous dividend rates: how many shares
do we own?

Proof of the lemma is not examinable.
Proof:
If N(t) is the number of shares we have at time t, then at time t +∆t, where ∆t > 0 is
a very small positive number, they cost N(t)S(t +∆t). We thus are paid
qN(t)S(t +∆t)∆t and hence the number of shares we buy is

qN(t)S(t +∆t)∆t

S(t +∆t)
= qN(t)∆t.

But then the number of shares we have at time t +∆t is

N(t +∆t) = N(t) + N(t)q∆t.
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8.2. Continuous dividend rates: how many shares
do we own?

Proof (cont.):
Hence

N(t +∆t)− N(t)

∆t
= qN(t) (7)

and as ∆t → 0, we obtain
N ′(t) = qN(t) .

We know that this differential equation has the following general solution:

N(t) = Aeqt , whereA is any constant.

We also know that N(0) = 1 and hence 1 = A. We thus see that N(t) = eqt .□
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8.2. Continuous dividend rates: how many shares
do we own?

Remarks.

• The above proof is not rigorous because, strictly speaking, the dividend paid (per
share) for the period from t to t +∆t is

q · S(t +∆t)∆t + o(∆t),

where o(∆t) (pronounced “o small of delta t”) is much smaller than ∆t in the
following sense:

lim
∆t→0

o(∆t)

∆t
= 0.

Taking this into account, one can make the above proof completely rigorous.
However, you are not required to do that in this module.
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8.2. Continuous dividend rates: how many shares
do we own?

Remarks.

• Note that we don’t use any specific properties of S(t) such as it being a geometric
Brownian motion. So this lemma is an example of a statement which is
model-independent.

• Exercise. Explain the following statement: if at tome t = 0 the number of shares in
the portfolio is k then the number of shares at time t > 0 is keqt and the total cost
of these shares is keqtS(t).
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend

The goal of this section is to answer Question 2.

Let us state this question more precisely:
given that dividends are paid continuously at rate q
and that the continuously compounded interest rate is r ,
what is, at time t = 0, the price C of a derivative with the payoff function R(S(t))?
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend

We know (see Theorem 5.2 from Slides Week 3-4) that

C = e−rtẼ(R(S(t))), (8)

where Ẽ denotes the expectation over the risk-neutral probability.
To be able to use (8), we have to know this risk-neutral probability.
This probability depends on the choice of a concrete model for S(t).
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend
However, we start with a fact which will be used later and which does not depend on the
choice of the model.

Lemma 8.2

Consider a share with continuously paid dividend of rate q which is reinvested into the
share.

Let S(0) be the price of 1 share at time t = 0 and let M(t) be the cost at time t > 0 of
the portfolio which at time t = 0 consists of 1 share.
Suppose that the continuously compounded interest rate is r . Then

Ẽ(M(t)) = S(0)ert , (9)

where the expectation Ẽ is taken over the risk-neutral probability.
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend
Proof.
Obviously, M(t) = N(t)S(t) = eqtS(t).
If we decide to sell our shares at time t then M(t) is the payoff we get.
Our return at time t is M(t)− S(0)ert and hence, by the Arbitrage Theorem the
following relations hold:

Ẽ(M(t)− S(0)ert) = 0 or, equivalently, Ẽ(M(t)) = S(0)ert .

□

Price: S(0)

Cost/Payoff: M(0)

0

S(t) = S(0)ert

M(t) = eqtS(t)

t
T
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend

Corollary 8.1

Suppose that the conditions of Lemma 8.2 are satisfied. Then

Ẽ(S(t)) = S(0)e(r−q)t . (10)

Proof.
Equation (9) can be rewritten as

Ẽ(eqtS(t)) = S(0)ert (11)

which implies eqtẼ(S(t)) = S(0)ert . Dividing both sides of the last equality by eqt , we
obtain (10).□
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend

Let us return to the question about the risk-neutral probability.
The answer depends on the choice of the model and we assume S(t) follow the geometric
Brownian motion.

Theorem 8.1

Suppose that
(a) The price of a share follows the geometric Brownian motion with parameters S , µ, σ,
that is S(t) = Seµt+σW (t). The continuously compounded interest rate is r .
(b) The dividend is paid continuously at rate q and is reinvested in the share;
Then the risk-neutral probability is the one corresponding to the GBM given by

S̃(t) = Seµ̃t+σW (t), where µ̃ = r − q − σ2

2
.
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend
Before discussing the proof of this theorem, we state the following corollary.

Corollary 8.2

Suppose that that the conditions of Theorem 8.1 are satisfied. Consider a derivative with
the payoff function R(S(t)) and the payoff time is t. Then

Ẽ(R(S(t))) = E(R(S̃(t)))

and the price of this derivative is given by

C = e−rtE(R(S̃(t))) = e−rt

∫ ∞

−∞
R(Seµ̃t+σ

√
tx)f (x)dx ,

where f (x) is the standard normal density: f (x) = 1√
2π
e−

x2

2 .
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend

Corollary 8.2 (cont.):

In particular, if R(S̃(T )) = (S(T )− K )+ the we obtain the price of a Call(K ,T ):

C = e−rTE(S(T )− K )+ = e−rT

∫ ∞

−∞
(Seµ̃T+σ

√
Tx − K )+f (x)dx .
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend
Proof of Theorem 8.1.
The statement of the theorem can be divided into two parts. Namely,
Statement 1: The risk-neutral process has the form S̃(t) = Seµ̃t+σW (t).

Statement 2: µ̃ is as stated in the theorem: µ̃ = r − q − σ2

2 .
Statement 1 requires a relatively difficult proof and we shall simply believe it. However,
we shall use it in order to prove the second statement.
The idea is to compute Ẽ(S(t)) in the way suggested by Statement 1 and to compare the
result with the one in (10).
Namely, the first statement of the theorem means that in order to compute Ẽ(S(t)) we
have to replace S(t) by S̃(t) and then carry out the computation of the usual expectation
E(S̃(t)). So

Ẽ(S(t)) = E(S̃(t)) = E(Seµ̃t+σW (t)) = Seµ̃tE(eσW (t))
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8.3. Risk-neutral process for an asset with
proportional continuously paid dividend
Proof of Theorem (cont.).
We know (see Slides Week 1) that

E(eσW (t)) = e
σ2

2
t and hence Ẽ(S(t)) = Seµ̃te

σ2

2
t = Se(µ̃+

σ2

2
)t .

Comparing this with (10), we obtain

Se(µ̃+
σ2

2
)t = Se(r−q)t

and therefore µ̃+ σ2

2 = r − q and finally

µ̃ = r − q − σ2

2
.

□
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8.4. One application of Theorem 8.1: computing
the price of the call option

Suppose that the price of a share follows the GBM, S(t) = Seµt+σWt .
Suppose also that the dividend is paid continuously at rate q.
What is the price of a European Call(K , t)?
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8.4. One application of Theorem 8.1: computing
the price of the call option

Denote by Cq(S , t,K , σ, r) the price of the European call option on a share paying
dividend at rate q as above
and by C (S , t,K , σ, r) the price of the standard European call option (no dividend is
paid).

Theorem 8.2

Suppose that
1. The price of a share is S(t) = Seµt+σWt .
2. The interest rate compounded continuously is r .
3. The dividend is paid continuously at rate q. Then

Cq(S , t,K , σ, r) = C (e−qtS , t,K , σ, r).
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8.4. One application of Theorem 8.1: computing
the price of the call option
Proof.
In both cases, the payoff function is R((S(t)) = (S(t)− K )+ (the standard payoff for the
European call option).
Hence, by the general formula (see Theorem 5.2 in Slides Week 3-4)

Cq(S , t,K , σ, r) = e−rtẼ(S(t)− K )+.

By Theorem 8.1, Ẽ(S(t)− K )+ = E(S̃(t)− K )+ and we obtain

Cq(S , t,K , σ, r) = e−rtE(S̃(t)− K )+

= e−rtE
[(

Se(r−q−σ2

2
)t+σWt − K

)+
]

= e−rtE
[(

(Se−qt)e(r−
σ2

2
)t+σWt − K

)+
]
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8.4. One application of Theorem 8.1: computing
the price of the call option

Proof. (cont.)
We also know that if S(t) = S̄eµt+σWt and no dividend is paid then

C ≡ C (S̄ , t,K , σ, r) = e−rtE
(
S̄e(r−

σ2

2
)t+σWt − K

)+

.

Comparing the formulae for Cq and C we see that if S̄ = e−qTS0 then
Cq(S , t,K , σ, r) = C (e−qtS , t,K , σ, r). □
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8.5. Discrete proportional dividends

We shall now turn to a particular case of Example 2 defined in section 8.1.

Recall that, according to this model, at times 0 ≤ t1 < t2 < ... < tn the dividends
d1S(t1), d2S(t2), ..., dnS(tn) are paid.
Here S(t) is the price of the underlying share (or,more generally, asset) and 0 < dj < 1
for all j , 1 ≤ j ≤ n.

In the following model we will discuss n = 1. So:
1. At time t0 the amount dS(t0) is paid.
2. The dividend dS(t0) is reinvested in the underlying share (‘immediately’ after time t0),
where 0 < d < 1.
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8.5. Discrete proportional dividends

Question: What happens to the price of the share shortly after t0?

It is natural to suggest that, for very small ϵ > 0, during the period of time between (t0
and t0 + ϵ), the price of the share will drop to S(t0)− dS(t0) = (1− d)S(t0).
One explanation of this statement is that if the share “gives away” a part of its cost, its
price drops by this amount.
One can state this more precisely: we suggest that

lim
ϵ>0, ϵ→0

S(t0 + ϵ) = S(t0)− dS(t0) = (1− d)S(t0).
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8.5. Discrete proportional dividends

The following exercise provides a more fundamental reason for this suggestion.

Exercise.

1. Prove that if S(t) > (1− d)S(t0) for all t ∈ [t0, t0 + ϵ), where ϵ > 0, then there is
an arbitrage opportunity.

2. Prove that if S(t) < (1− d)S(t0) for all t ∈ [t0, t0 + ϵ), where ϵ > 0, then there is
an arbitrage opportunity.
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8.5. Discrete proportional dividends
Solution to part 2 of the Exercise.
First, recall that to short-sell a share means:
(a) Borrow a share from, say, a bank, and sell it (you can now use the money you get).
(b) At the time determined by the contract, return the share (not its cost!) together with
the dividend the share would have paid to its owner.

Now, the arbitrage is achieved as follows.
1. Short-sell the share at time t = t0 for S(t0).
2. At time t̄, t0 < t̄ < t0 + ϵ buy the share for S(t̄) and return it to the owner of the
share together with the dividend d S(t0) the owner would have been paid.
Your return now is

S(t0)− S(t̄)− d S(t0) = (1− d)S(t0)− S(t̄) > (1− d)S(t0)− (1− d)S(t0) = 0.

You thus have not invested any of your money but got a positive return (and that is the
arbitrage). □
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8.5. Discrete proportional dividends

(Ignore interest rate because ϵ is very small.)

S(t0)

t0

−S(t̄)− d S(t0)

t̄ t0 + ϵ

Cash flow:

0
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8.5. Discrete proportional dividends

The following lemma summarizes several simple properties of the price of a share paying
discrete proportional dividend.

Lemma 8.3

1. Shortly after the dividend has been paid, the share price is (1− d)S(t0). More
precisely,

lim
t≥t0, t→t0

S(t) = (1− d)S(t0).

2. When we reinvest the dividend in shares, we buy d
1−d additional shares (the

reinvestment takes place straight after t0!)

3. The value of the portfolio (consisting of 1 share) is S(t) at time t ≤ t0 and it is
1

1−d S(t) at time t > t0.
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8.5. Discrete proportional dividends

Proof.

1. We have explained statement 1 above.

2. For a very small positive ϵ the price of the share at time t0 + ϵ is
S(t0 + ϵ) = (1− d)S(t0) and d S(t0) is the amount we reinvest. Hence the number
of shares we buy is

d S(t0)

S(t0 + ϵ)
=

d S(t0)

(1− d)S(t0)
=

d

1− d
.

3. When t ≤ t0, we have 1 share and its cost is S(t) (which is the value of the
portfolio).
When t > t0, we have 1 + d

1−d = 1
1−d shares and so the value of the portfolio is

1
1−d S(t).
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8.6. Risk-neutral process for an asset paying
discrete proportional dividend

Note that all previous statements of concerning the model with a discrete proportional
dividend were model-independent.
The risk-neutral process cannot be model-independent.
The following theorem describes this process for the case when the price of an asset
follows a GBM.
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8.6. Risk-neutral process for an asset paying
discrete proportional dividend

Theorem 8.3

Suppose that
1. The price of an asset follows the geometric Brownian motion, S(t) = Seµt+σW (t).
2. Discrete proportional dividend is paid at time t0 at rate d, 0 < d < 1.
3. The continuously compounded interest rate is r .
Then the risk-neutral process is

S̃1(t) =

{
S̃(t), if t ≤ t0

(1− d)S̃(t), if t > t0.

Where S̃(t) = Seµ̃t+σW (t) and µ̃ = r − σ2

2 .
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8.6. Risk-neutral process for an asset paying
discrete proportional dividend

This theorem allows one to compute the expectations with respect to the risk-neutral
probability in the usual way, e.g Ẽ(R(S(t))) = E(R(S̃1(t))).

Exercise.
Write down, in terms of the integral the formula for the price of a European Call(K , t)
for t > t0 and for t ≤ t0.
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