
Actuarial Financial Engineering
Week 3-4

Dr. Lei Fang
School of Mathematical Sciences
Queen Mary, University of London

January 16, 2023

1 / 47



Overview of this week

4. The Central Limit Theorem (CLT) and the Geometric
Brownian Motion (GBM)
4.1 Central Limit Theorem
4.2 Why does the GBM describe the behaviour of the prices?

Construction of the approximating binomial models
Convergence of Binomial approximations to the GBM

5. Convergence of the risk-neutral probabilities
5.1 The B-S model

The assumptions underlying the B-S model
Generalization of the B-S model

5.2 Examples
The European Call Option and the B-S Formula
The European Put Option
The derivative with payoff R(T ) = 1

T

∫ T

0
S(t)dt

6. The Greeks

2 / 47



4. CLT and GBM

The Binomial model can be viewed as an approximation of a continuous model
according to which the price of an asset (say share) is governed by the Geometric
Brownian Motion (GBM).

In this section, we first state an important version of the Central Limit Theorem (CLT)
and then use it to explain how the GBM arises as a natural choice of a model describing
the behaviour of the price of an asset.
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4. CLT and GBM

Recall that the GBM is a model according to which the price of an asset (say, a share) is
given by S(t) = S(0)eµt+σWt ,
where Wt is the standard Wiener process and µ, σ are the drift and the volatility
parameters of the Brownian motion Y (t) = µt + σWt .

Our aim is to show that the random process S(t) can be obtained as a limit of a
sequence of discrete processes describing the behaviour of the prices.
More precisely, we shall construct a sequence of binomial models Sn(t) which converge to
S(t) as n → ∞.
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4.1 Central Limit Theorem

Theorem 4.1 (Central Limit Theorem)

Let Y1,Y2, · · · ,Yn be a sequence of i.i.d. random variables,
E(Yn) = a, Var(Yn) = σ2, |Yn| < C .
Then the sequence

Zn =

∑n
j=1 Yj − na
√
nσ

converges in distribution, as n → ∞, to the standard normal random variable.
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4.1 Central Limit Theorem

Central Limit Theorem (cont.):

Namely

1. For all x limn→∞ P(Zn < x) = Φ(x), where Φ(x) = 1√
2π

∫ x
−∞ e−

y2

2 dy .

2. Let g : R → R be a continuous function satisfying, for some constants
c1 > 0, c2 > 0, the estimate |g(x)| < c1e

c2|x |. Then

lim
n→∞

E(g(Zn)) = E(g(Z ))

where Z ∼ N (0, 1) (has the standard normal distribution). In other words, we have

lim
n→∞

E(g(Zn)) =
1√
2π

∫ ∞

−∞
g(x)e−

x2

2 dx
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4.1 Central Limit Theorem

• The two statements in this theorem are equivalent (each of them implies the other
one).

• The proof of the above theorem as well as of the equivalence of its two statements is
beyond the scope of this course. However, we are going to use this theorem and you
are required to know its statement and to be able to apply it as it is done in the
proofs explained below.
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4.2 Why does the GBM describe the behaviour of
the prices?

Recall that the GBM is a model according to which the price of an asset (say, a share) is
given by S(t) = S(0)eµt+σWt ,
where Wt is the standard Wiener process and µ, σ are the drift and the volatility
parameters of the Brownian motion Y (t) = µt + σWt .

Our aim is to show that the random process S(t) can be obtained as a limit of
a sequence of discrete processes describing the behaviour of the prices.
More precisely, we shall construct a sequence of binomial models Sn(t) which converge to
S(t) as n → ∞.
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4.2.1. Construction of the approximating binomial
models
The construction of the process approximating our GBM is carried out in two steps.

Step 1. Divide [0,T ] into n equal intervals of length h = T
n and define for each time of

the form jh the value Sn(jh) as follows:
1. At time t = 0, Sn(0) = S(0), where S(0) is the same as in the GBM.
2. At time t = jh, 1 ≤ j ≤ n, set

Sn(jh) = S(0)eµhj+σ
√
h(Y1+Y2+...Yj ) = S(0)eµt+σ

√
h
∑j

k=1 Yk , (1)

where Y1, Y2, ...,Yn, ... is a sequence of independent identically distributed random
variables each taking either value 1 or −1 with probability 1

2 :

P(Yj = 1) =
1

2
, P(Yj = −1) =

1

2
.

0 t = jh T = nh
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4.2.1. Construction of the approximating binomial
models
Step 2. For t ∈ [0,T ] set

Sn(t) = Sn(jh) where j is such that jh ≤ t < (j + 1)h . (2)

Remarks.
1. For every fixed n, the sequence of prices Sn(jh), j = 0, 1, 2, ..., n, evolves according to
a binomial model.
Indeed, Sn(jh) = Sn((j − 1)h)eµh+σ

√
hYj .

We can therefore say that

either Sn(jh) = Sn((j − 1)h)u or Sn(jh) = Sn((j − 1)h)d , (3)

where u = eµh+σ
√
h (which corresponds to Yj = 1) and d = eµh−σ

√
h (which corresponds

to Yj = −1).
As we know, relations (3) is the one defining the binomial model.
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4.2.1. Construction of the approximating binomial
models

Remarks. (cont.)
2. The additional feature of this binomial model:
each sequence of prices Sn(jh), j = 0, 1, 2, ..., n occurs with a certain real life probability,
namely with probability 2−n (prove this statement!).
This fact plays a very important role for the theorems we discuss in this section.
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4.2.1. Construction of the approximating binomial
models
Remarks. (cont.)
3. We thus suppose that at each time the change of the price is driven by the product of

two factors: one is eµh and e±σ
√
h.

• eµh: is not random and would usually be pushing the price up: it is natural to expect
that µ > 0 (can you explain why?).

• e±σ
√
h: is random and can push the price both up and down with the same

probability.

Note that when h is small,
√
h is much larger than h (in the sense that

√
h
h → ∞ as

h → 0).
So, at each particular step the influence of the second factor is much stronger than that
of the first one. However, in a long run, with probability which is close to one, the first
factor accumulates a much stronger influence on the price because of the cancelations in
the second sum. 12 / 47



4.2.1. Construction of the approximating binomial
models

Figure: Source: LCV Advisors
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4.2.2. Convergence of Binomial approximations to
the GBM

Now we show the convergence of Binomial approximations to the GBM.

Theorem 4.2 (Sn(t) → S(t))

When n → ∞, the process Sn(t) → S(t) in the following sense:
if g(z1, · · · , zk) is a ”good enough” function of k variables (say, continuous, and growing
no faster than exponentially in each variable)
and
0 < t1 < t2 · · · < tk ≤ T are time moments,
then

lim
n→∞

E[g(Sn(t1), Sn(t2), · · · Sn(tk))] = E[g(S(t1),S(t2), · · · S(tk))] (4)
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4.2.2. Convergence of Binomial approximations to
the GBM
Proof.
We prove this theorem only for the case k = 1, and so we can simplify our notation and
write t in place of t1. We thus have to show that if 0 < t ≤ T then, as n → ∞,

E(g(Sn(t))) → E(g(S(t))) (CLT 2.)
=

1√
2π

∫ ∞

−∞
g(S(0)eµt+σ

√
tx)e−

x2

2 dx .

Note that according to (2), for every t there is a j such that jh ≤ t < (j + 1)h. To
simplify (slightly) the further steps of the proof, suppose that t = jh. Then h = t

j and

Sn(t)
Step2,Eq(2)

= Sn(jh)
Eq(1)
= S(0)eµjh+σ

√
h(Y1+Y2+...Yj )

(∗)
= S(0)e

µt+σ
√

t
j

∑j
k=1 Yk ,

where (∗) is due to the fact that we can replace jh by t and
√
h by

√
t
j . Now, h → 0

when n → ∞ and therefore also j → ∞.
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4.2.2. Convergence of Binomial approximations to
the GBM

Proof (cont.).
Since Yi are independent with E(Yj) = 1× 1

2 − 1× 1
2 = 0 and

Var(Yj) = E(Y 2
j )− (EYj)

2 = 1, we can now make use of CLT in order to be able to

control the behaviour of
√

t
j

∑j
k=1 Yk .

Namely, according to CLT√
t

j

j∑
k=1

Yk =
√
t × 1√

j

j∑
k=1

Yk →
√
tZ as j → ∞.

where Z is the standard normal random variable, Z ∼ N (0, 1) and the convergence is
understood as explained by CLT (n = j in Theorem 4.1).
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4.2.2. Convergence of Binomial approximations to
the GBM

Proof (cont.).
For a “good” function g we have

E

(
g

(
1√
j

j∑
k=1

Yk

))
→ E(g(Z )), where Z ∼ N(0, 1).

In particular, as n → ∞,

E(g(Sn(t)))
Eq(5)
= E

(
g(S(0)e

µt+σ
√
t 1√

j

∑j
k=1 Yk )

)
→ E

(
g(S(0)eµt+σ

√
tZ )
)

CLT 2.
=

1√
2π

∫ ∞

−∞
g(S(0)eµt+σ

√
tx)e−

x2

2 dx .□
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5.1.1. The assumptions underlying the B-S model

1. The price of the underlying share follows a Geometric Brownian Motion (GMB),
i.e. dS(t) = S(t)(µdt + σdWt)

2. There are no risk-free arbitrage opportunities.

3. The risk-free rate of interest is constant, the same for all maturities and the same for
borrowing or lending.(Not critical and can be relaxed.)

4. Unlimited short selling (that is, negative holdings) is allowed.
So, we are allowed to sell unlimited amounts of securities that we do not own.

5. There are no taxes or transaction costs.
(This is important since we will need to continuously rebalance some risk-free
portfolios.)

6. The underlying asset can be traded continuously and in infinitesimally small numbers
of units.
(Infinite divisibility of securities is necessary to ensure that perfect hedges can be
achieved.)
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5.1.1. The assumptions underlying the B-S model

The key general implication of the underlying assumptions is that the market in the
underlying share is complete:
all derivative securities have payoffs which can be replicated.

This consequence is at odds with the real world and implies problems with the underlying
assumptions.

Exercise: List the main defects of the assumptions of the Black-Scholes model.
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5.1.1. The assumptions underlying the B-S model

Despite all of the potential flaws in the model assumptions, analyses of market derivative
prices indicate that the Black-Scholes model does give a very good approximation to
the market.

It is worth stressing here that all models are only approximations to reality.
It is always possible to take a model and show that its underlying assumptions do not
hold in practice.

This does not mean that a model has no use.
A model is useful if, for a specified problem, it provides answers which are a good
approximation to reality or if it provides insight into underlying processes.
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5.1.2. Generalization of the B-S model

Recall:

Sn(jh) = S(0)eµhj+σ
√
h(Y1+Y2+...Yj ) = S(0)eµt+σ

√
h
∑j

k=1 Yj , (5)

either Sn((j − 1)h)u or Sn(jh) = Sn((j − 1)h)d , (6)

where u = eµh+σ
√
h (which corresponds to Yj = 1) and d = eµh−σ

√
h (which corresponds

to Yj = −1).

As we have just seen in the previous section, the real life probability on the space of
functions Sn(t) (defined by (5) and (6)) converges to a probability corresponding to the
Geometric Brownian motion.
What can we say about the convergence of the risk-neutral probabilities defined on the
space of sequences (5) and thus also on the space of functions (6)?
The answer is given by the following statement.
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5.1.2. Generalization of the B-S model

Theorem 5.1 (S(t) → (Sn(t)) → S̃(t))

Suppose that S(t) = Seµt+σWt and let r be the interest rate compounded continuously.
Then the risk-neutral probability defined on the space of functions Sn(t) converges to a
risk neutral probability on the space of trajectories of the GBM given by

S̃(t) = Seµ̃t+σWt , where µ̃ = r − 1

2
σ2. (7)

Definition 5.1

The process S̃(t) = Seµ̃t+σWt is called the risk-neutral Geometric Brownian motion.

Proof. Is not examinable.
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5.1.2. Generalization of the B-S model

Before considering the first application of Theorem 5.1, let us recall the following general
principle which allows one to compute the no-arbitrage price of a derivative in terms of
the risk-neutral probability.

This theorem was discussed in the FMI course and should be known to you.
However, since it is a very important principle which we shall use also in the future, we
shall prove it here - the proof is very short and simple.
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5.1.2. Generalization of the B-S model

Theorem 5.2 (C = e−rT Ẽ )

Suppose that
1. The payoff function of a derivative on a share is R(T ),
2. The payoff time is T .
3. The interest rate compounded continuously is r .
Then the price C of this derivative is

C = e−rT Ẽ[R(T )], (8)

where Ẽ is the expectation over the risk-neutral probability (RNP for short).

Please pay attention to the position of ∼.
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5.1.2. Generalization of the B-S model
Proof.
If we buy the derivative for C then our return at time T is

R(T )− CerT

(which is simply the difference between the payoff and our debt to the bank). The
Arbitrage Theorem states that the expectation of the return over the RNP should be
zero, that is

Ẽ(R(T )− CerT ) = 0 or, equivalently, Ẽ(R(T ))− CerT = 0.

Hence
C = e−rT Ẽ[R(T )].□

Borrow from the bank C

to buy the derivative −C

0

−CerT

R(T )

1
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5.1.2. Generalization of the B-S model
The following statement is in fact a corollary of Theorems 5.1 and 5.2.

Theorem 5.3 (C = e−rTE (∼))

Suppose that
1. The price of a share follows the GBM: S(t) = Seµt+σWt

2. The payoff function of a derivative on this share is R(S(t1),S(t2), · · · ,S(tk)), where
0 ≤ t1 < t2 < ... < tk ≤ T .
3. The payoff time is T .
4. The interest rate compounded continuously is r .
Then the price C of this derivative is

C = e−rTE[R(S̃(t1), S̃(t2), · · · , S̃(tk))], (9)

where S̃(t) = Seµ̃t+σWt , µ̃ = r − 1
2σ

2.

Please pay attention to the position of ∼ in Equation 9 (move ∼ inside E [ ]). 27 / 47



5.1.2. Generalization of the B-S model
Proof.
The payoff of our derivative at time T is

R(T ) = R(S(t1), S(t2), · · · ,S(tk)).
By Theorem 5.2,

C = e−rT Ẽ [R(S(t1),S(t2), · · · ,S(tk))] . (10)

where Ẽ is the expectation computed over the risk-neutral probability. By Theorem 5.1,
the risk-neutral probability on the space of paths of the GBM is that corresponding to
S̃(t). This means that in order to compute the expectation in (10) over the risk-neutral
probability we have to replace S(t1),S(t2), · · · , S(tk) by S̃(t1), S̃(t2), · · · , S̃(tk), that is:

Ẽ [R(S(t1),S(t2), · · · ,S(tk))] = E
[
R(S̃(t1), S̃(t2), · · · , S̃(tk))

]
.

This proves that
C = e−rTE[R(S̃(t1), S̃(t2), · · · , S̃(tk))],

where S̃(t) = Seµ̃t+σWt , µ̃ = r − 1
2σ

2. □
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5.2. Examples

The three example below show how to use the theorems mentioned above for the
derivation of formulae two of which are known from the FMI course.
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5.2.1. The European Call Option and the B-S
Formula

The first example:
Recall the following notation: we write Call(K ,T ) instead of saying European call option
with strike price K and expiration time T .

The payoff function for the Call(K ,T ) is R(S(T )) = (S(T )− K )+.
This means that we should use Equation (9) with k = 1 and t1 = T .
The price C of this option is therefore given by

C = e−rTE(S̃(T )− K )+. (11)
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5.2.1. The European Call Option and the B-S
Formula

This formula is thus a very particular case of (9).
Yet (11) is the main part of the calculation which leads to the famous Black-Scholes
formula:

C = C (S ,T ,K , σ, r) = SΦ(ω)− Ke−rTΦ(ω − σ
√
T ) , (12)

where

ω =
ln S

K + rT

σ
√
T

+
1

2
σ
√
T

and Φ(x) is the cumulative distribution function of a standard Normal random variable,
that is

Φ(x) =

∫ x

−∞

1√
2π

e−u2/2 du .
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5.2.1. The European Call Option and the B-S
Formula

Remark.
In this module, the expression ‘the Black-Scholes Formula’ (BS formula for short) is
usually associated with formula (12) (which is the most classical form of this formula).
Also,in financial literature the name BS formula is often referring to more complicated
versions of (12).

However, (12) is an easy corollary of another, and in fact more important form of the BS
formula, namely (11).
Indeed, once (11) has been established, we can write it as an integral

C = e−rT

∫ ∞

−∞
(Seµ̃T+σ

√
Tx − K )+

1√
2π

e−
x2

2 dx (13)

and the rest is a Calculus 2 exercise.
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5.2.2. The European Put Option

The second example:
As you will know, the European put option Put(K ,T ) allows you to sell the underlying
share for £K at the pre-negotiated time T (which is its expiry time).

To compute the gain, consider 2 cases.
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5.2.2. The European Put Option

1. If S(T ) ≥ K then your option is useless and you have to return to the bank £CerT

which is the value at time T of the £C you have borrowed from the bank at time
t = 0 to buy the option. Hence your gain is −CerT .

Borrow from the bank C

to buy the option −C

0

−CerT

0

1

2. If S(T ) < K , then (a) you buy the share for £S(T ) and sell it for £K (because you
have the put option),
(b) you return to the bank £CerT (as in the first case).
Your gain thus is (K − S(T ))− CerT .

Borrow from the bank C

to buy the option −C

0

(b) −CerT

(a) buy the share −S(T ), and sell the share at K

1
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5.2.2. The European Put Option

In other words, your payoff function is R(S(T )) = (K − S(T ))+ (and your gain is
(K − S(T ))+ − CerT ).
So, by Equation 9, we obtain

C = e−rTE(K − S̃(T ))+.

This expression can be transformed into a formula which is similar to the one obtained for
the price of a European call option.
The calculations are similar to those for the Call(K ,T ).
However, the Call-Put parity formula provides a much shorter derivation.
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5.2.3. The derivative with payoff R(T ) = 1
T

∫ T

0 S(t)dt

The third example:
Suppose that the price of an asset is driven by a GBM: S(t) = Seµt+σWt . Consider a
derivative on this asset with a payoff function

R(T ) =
1

T

∫ T

0
S(t)dt.

What is the risk-neutral price C of this derivative?
Note the particularity of this example: the payoff function depends on all values of S(t),
t ∈ [0, T ].
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5.2.3. The derivative with payoff R(T ) = 1
T

∫ T

0 S(t)dt

The answer follows from Theorems 5.2 and 5.3. Namely, by Theorem 5.2 and by the
definition of R(T ),

C = e−rT Ẽ
(

1

T

∫ T

0
S(t)dt

)
=

e−rT

T
Ẽ
(∫ T

0
S(t)dt

)
. (14)

By Theorem 5.3,

Ẽ
(∫ T

0
S(t)dt

)
= E

(∫ T

0
S̃(t)dt

)
.

The remarkable fact is that it is possible to change the order of the two operations:

E
(∫ T

0
S̃(t)dt

)
=

∫ T

0
E
(
S̃(t)

)
dt.

In other words, rather than first computing the integral and then the expectation, we can
first compute the expectation and after that compute the integral.
We shall use this fact now and also later in the course but its proof is beyond our means.
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5.2.3. The derivative with payoff R(T ) = 1
T

∫ T

0 S(t)dt

The rest is simple because we know (see Week 1) that

E
(
S̃(t)

)
= E

(
Seµ̃t+σWt

)
(∗)
= Seµ̃t+

σ2

2
t .

Since µ̃+ σ2

2 = r (Theorem 5.1), we have

E
(
S̃(t)

)
= Sert

and we obtain

E
(∫ T

0
S̃(t)dt

)
=

∫ T

0
Sertdt =

S

r
(erT − 1).

Finally we obtain from (14):

C =
e−rTS

rT
(erT − 1) =

S

rT
(1− e−rT ).
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5.2.3. The derivative with payoff R(T ) = 1
T

∫ T

0 S(t)dt

(*) is because of Theorem 1.1.

Theorem 1.1 (revisit):
If S(t) is a Geometric Brownian Motion with drift µ and volatility σ then

E (S(t)) = S(0)eµt+
σ2t
2 .
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6. The Greeks

4. The Central Limit Theorem (CLT) and the Geometric
Brownian Motion (GBM)
4.1 Central Limit Theorem
4.2 Why does the GBM describe the behaviour of the prices?

Construction of the approximating binomial models
Convergence of Binomial approximations to the GBM

5. Convergence of the risk-neutral probabilities
5.1 The B-S model

The assumptions underlying the B-S model
Generalization of the B-S model

5.2 Examples
The European Call Option and the B-S Formula
The European Put Option
The derivative with payoff R(T ) = 1

T

∫ T

0
S(t)dt

6. The Greeks

40 / 47



6. The Greeks

In this section we shall study the dependence of the Black-Scholes price

C = C (S ,T ,K , σ, r) = e−rTE((S(T )− K )+)

on the parameters S , T , K , σ, and r .

More precisely, we shall compute the first order partial derivatives of C with respect to
each of the parameters.
The value of each such derivative shows the sensitivity of the price to small changes in
the parameter.
And if we know just that a derivative is positive (negative) then we also know that C is
growing (decaying) when the parameter is growing.
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6. The Greeks

Let us introduce the names for these derivatives. First of all they have a collective name -
they are called the Greeks. The reason for this term is that these derivatives are denoted
by Greek letters. Here are the most common of them:

∆ =
∂C

∂S
is called delta

ν =
∂C

∂σ
is called vega (see remark below) → volatility

ρ =
∂C

∂r
is called rho → return

θ =
∂C

∂T
is called theta → time
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6. The Greeks

Remark.
Vega is not the name of any Greek letter. The letter we actually use is called nu.
Nevertheless, this is how this derivative is called in financial literature - presumably
because ν looks similar to the Latin V (vee).
The very fact that these names were invented and are widely used shows how important
these derivatives are.
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6. The Greeks

You are not required to remember the calculations presented below.
I do however strongly suggest that you understand them.
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6. The Greeks

In what follows, we shall use the Black & Scholes formula for the price of the call option
given by

C = C (S ,T ,K , σ, r) = SΦ(ω)− Ke−rTΦ(ω − σ
√
T )

where

ω =
ln S

K + rT

σ
√
T

+
1

2
σ
√
T and Φ(x) =

∫ x

−∞

1√
2π

e−u2/2 du . (15)

Observe that the price C of the call option does NOT depend on the drift parameter µ of
the GBM which describes the behaviour of the price S(T ) of the underlying share.
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6. The Greeks
We shall show that C = C (S ,T ,K , σ, r) is a decreasing function of K (while all other
parameters remain constant) and it is an increasing function of all other parameters, that
is of S , T , σ, r . These properties follow from the following lemma:

The partial derivatives of C = C (S ,T ,K , σ, r) = e−rTE((S(T )− K )+) are:

∂C

∂K
= −e−rTΦ(ω − σ

√
T )

∂C

∂S
= Φ(ω)

∂C

∂r
= KT e−rTΦ(ω − σ

√
T )

∂C

∂σ
= S

√
TΦ′(ω)

∂C

∂T
=

σ

2
√
T
SΦ′(ω) + Kre−rTΦ(ω − σ

√
T ) .
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6. The Greeks

The above formulae show that ∂C
∂K < 0 and all other derivatives are positive, namely

∂C
∂S > 0, ∂C

∂r > 0, ∂C
∂σ > 0, ∂C

∂T > 0. Hence C is indeed a decreasing function in K and
increasing function in all other parameters.
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