MTH5126 - Statistics for Insurance

Worksheet 3 - Solutions

Q1. Compound distribution

S has a compound distribution with Poisson parameter 4. The individual claim amounts are either 1 , with probability 0.3 , or 3 , with probability 0.7 .
Calculate the probability that $S=4$.
We need to consider how we could get to an aggregate claim amount of 4 .
This could happen in two ways:

2 claims, one for 1 and one for 3 .
4 claims, all for an amount of 1 .

The probability of this happening is therefore:

$$
\begin{array}{r}
P(S=4)=P(N=2) P\left(X_{1}=1\right) P\left(X_{2}=3\right)+P(N=2) P\left(X_{1}=3\right) P\left(X_{2}=1\right) \\
+P(N=4) P\left(X_{1}=1\right) P\left(X_{2}=1\right) P\left(X_{3}=1\right) P\left(X_{4}=1\right)
\end{array}
$$

Since the X_{i} 's are identical this simplifies to:

$$
\begin{aligned}
P(S=4) & =2 P(N=2) P(X=1) P(X=3)+P(N=4)[P(X=1)]^{4} \\
& =2 \times \frac{e^{-4} 4^{2}}{2!} \times 0.3 \times 0.7+\frac{e^{-4} 4^{4}}{4!} \times 0.3^{4}=0.06312
\end{aligned}
$$

Q2. Moments of compound distributions

An insurance portfolio contains policies for three categories of policyholder: A, B and C . The number of claims in a year, N, on an individual policy follows a Poisson distribution with mean λ. Individual claim sizes are assumed to be exponentially distributed with mean 4 and are independent from claim to claim. The distribution of λ, depending on the category of the policyholder, is:

Category	Value of λ	Proportion of policyholders
A	2	20%
B	3	60%
C	4	20%

Denote by S the total amount claimed by a policyholder in oneyear.

1. Prove that $E(S)=E[E(S \mid \lambda)]$
2. \quad Show that $E(S \mid \lambda)=4 \lambda$ and $\operatorname{Var}(S \mid \lambda)=32 \lambda$
3. Calculate $E(S)$
4. Calculate $\operatorname{Var}(S)$
5. Let $f(s)$ denote the marginal probability density for S and let $f(s \mid \lambda)$ denote the conditional probability density for $S \mid \lambda$.

Starting with the RHS of the equation:

$$
\begin{aligned}
& E[E(S \mid \lambda)] \\
& =E\left[\int_{0}^{\infty} s f(s \mid \lambda) d s\right] \\
& =\sum_{i=1}^{3} p\left(\lambda_{i}\right) \int_{0}^{\infty} s f\left(s \mid \lambda_{i}\right) d s \\
& =\int_{0}^{\infty} s \sum_{i=1}^{3} p\left(\lambda_{i}\right) f\left(s \mid \lambda_{i}\right) d s, \text { switching integration and summation }
\end{aligned}
$$

But $\sum_{i=1}^{3} p\left(\lambda_{i}\right) f\left(s \mid \lambda_{i}\right)=f(s)$ by definition. and so:

$$
E(E(S \mid \lambda))=\int_{0}^{\infty} s f(s) d s=E(S)
$$

2. Using the results for compound distributions we get:
$E(S \mid \lambda)=E(N \mid \lambda) E(X \mid \lambda)$, using formula for the mean of compound distributions

$$
\begin{aligned}
& =E(N \mid \lambda) E(X), \text { since } X \text { is independent of } \lambda \\
& =\lambda .4=4 \lambda
\end{aligned}
$$

$\operatorname{Var}(S \mid \lambda)=E(N \mid \lambda) \operatorname{Var}(X \mid \lambda)+\operatorname{Var}(N \mid \lambda)[E(X \mid \lambda)]^{2}$, using formula for the variance of compound distributions

$$
\begin{aligned}
& =E(N \mid \lambda) \operatorname{Var}(X)+\operatorname{Var}(N \mid \lambda)[E(X)]^{2}, \text { since } X \text { is independent of } \lambda \\
& =\lambda \times 16+\lambda \times 4^{2} \\
& =32 \lambda
\end{aligned}
$$

3.

$E(S)=E[E(S \mid \lambda)]$, using results from part 1(by the law of total expectation)
$=E(4 \lambda)$, using results from part 2
$=4 E(\lambda)$
$=4 \times(0.2 \times 2+0.6 \times 3+0.2 \times 4)$
$=4 \times 3$
$=12$
4. First note that $E(\lambda)=3$ and
$\operatorname{Var}(\lambda)=E\left(\lambda^{2}\right)-[E(\lambda)]^{2}=0.2 \times 2^{2}+0.6 \times 3^{2}+0.2 \times 4^{2}-3^{2}=0.4$
$\operatorname{Var}(S)=\operatorname{Var}[E(S \mid \lambda)]+E[\operatorname{Var}(S \mid \lambda)]$, by the law of total variance
$=\operatorname{Var}(4 \lambda)+E(32 \lambda)$, using results from part 2
$=16 \times \operatorname{Var}(\lambda)+32 E(\lambda)$
$=16 \times 0.4+32 \times 3$
$=102.4$

Q3. R

Before answering this question, generate the vector, X, in R using the following code:

```
set.seed(1027); X = rexp(n=1000, rate=0.01)
```

The vector X represents the gross claim sizes of 1,000 claims. The payments are to be split between an insurance company and its reinsurer under an Excess of Loss reinsurance arrangement with a retention level $M=400$.
(i) Determine the proportion of the claims that are fully covered by the insurer.

Hint: The following code might help.

```
length(X[X<=M])/length(X)
```

(ii) Generate an additional vector, Y, which is of the same length as X, such that Y represents the amounts to be paid by the insurer for each component of X.

Hint: Use the pmin function.
(iii) Generate an additional vector, Z, which is of the same length as X, such that Z represents the amounts to be paid by the reinsurer for each component of X.

An actuary assumes that the underlying gross claims distribution follows an exponential distribution of some unknown rate λ. The actuary needs to estimate λ using only the claim amounts recorded in vector Y.
(iv) Construct R code that calculates the log-likelihood, as a function of the parameter λ, given the claim amounts data in vector Y.

Hint: This is estimation when sample is censored, see lecture slides.
(v) Using the function nlm , determine the value of λ at which the log-likelihood function reaches its maximum.

Hint: The nlm function performs minimisation, not maximisation. However, maximising the log-likelihood function is the same as minimising the negative loglikelihood. So, we first define the function that we want to hand to nlm to be minimised.

Solution:

```
#Q(i) Proportion of claims fully covered by the insurer
set.seed(1027)
X=rexp (1000,0.01)
M=400
> length(X[X<=M])/ length(X)
[1] 0.987
```

So the proportion of claims fully covered by the insurer is 98.7%.

```
#Q(ii) Vector Y, same length as X, represents the amounts to
be paid by the insurer for each component of X.
```

```
Y=pmin(X,M)
```

The following code and output show that Y is indeed the same length as X, i.e. the length of Y is also 1000 .

```
> length(Y)
```

[1] 1000

```
#Q(iii) Vector Z represents the amounts to be paid by the
reinsurer for each component of X.
```

$Z=X-Y$

The following code and output show that Z is indeed the same length as X , i.e. the length of Z is also 1000 .

```
> length(Z)
```

[1] 1000

```
#OR
```

$Z=\operatorname{pmax}(0, X-M)$

The following code and output show that Z is indeed the same length as X , i.e. the length of Z is also 1000 .

```
> length(Z)
[1] 1000
#Q(iv) Sample is censored. See lecture notes on how the
complete likelihood function is made up of two parts.
#The first part relates to the }987\mathrm{ claims, the second part
relates to the 13 claims.
#We assume all claims are independent.
```

\#So the likelihood function for 987 claims $=$
(lambda^987)*exp (-lambda*sum_of_987_claims)
\#And the likelihood function for 13 claims $=[P(X>M)]^{\wedge} 13=$ [exp (-lambda*M*13)
\#And the complete likelihood function, L = Product of the two likelihood functions above
\#Note that sum_of_987_claims $+13 * M$ is simply the sum of all the components in vector Y.

Final answer is:
$S=\operatorname{sum}(Y)$
logLikelihood<-function(lambda) \{
987*log(lambda) -lambda*S
\#Q(v) Find the value of lambda at which the logLikelihood is at its maximum.
\#The following graph plotting is not required by the question but it helps us to think about where the maximum is.
\#Plot the logLikelihood just to get an idea of how it looks like.
\#If necessary, adjust the graph so that we can roughly see where the max is.
\#We see this happens at around lambda $=0.01$.
1 ambda $=\operatorname{seq}(0.0001,0.05, b y=0.0001)$
plot(lambda, logLikelihood(lambda))

\#We find lambda using numerical algorithm such as nlm. \#Note that $n l m$ performs minimisation, not maximisation. \#However, maximising logLikelihood is the same as minimising the -logLikelihood.
\#So we define the function that we want to hand to nlm to be minimised.

Function $=$ function(lambda) \{
-logLikelihood(lambda)
\}
\#To find out more about nlm, we run the following and look at the notes under Help.
? nlm
\#p is our starting value for the iterative algorithm. From the graph we know the max is around 0.01 , so set $p=0.01$.
nlm(f=Function, $\mathrm{p}=0.01$)
$>$ nlm(f=Function, $\mathrm{p}=0.01$) \$estimate
[1] 0.01023209
So, the estimate for lambda is 0.01023209 .

