
MTH5126 - Statistics for Insurance  
 

 

Worksheet 3 - Solutions 
  

 
 
Q1. Compound distribution 

S has a compound distribution with Poisson parameter 4. The individual claim amounts are 
either 1, with probability 0.3, or 3, with probability 0.7. 
Calculate the probability that S = 4. 
 
We need to consider how we could get to an aggregate claim amount of 4. 
This could happen in two ways: 
 

2 claims, one for 1 and one for 3. 
4 claims, all for an amount of 1. 
 

The probability of this happening is therefore: 
 

P(S = 4) = P(N = 2)P(X1 = 1)P(X2 = 3) + P(N = 2)P(X1 = 3)P(X2 = 1) 

+P(N = 4)P(X1 = 1)P(X2 = 1)P(X3 = 1)P(X4 = 1) 

Since the Xi’s are identical this simplifies to: 

P(S = 4) = 2P(N = 2)P(X = 1)P(X = 3) + P(N = 4)[P(X = 1)]4 

 

 

 

  



Q2. Moments of compound distributions 

An insurance portfolio contains policies for three categories of policyholder: A, B and C.  
The number of claims in a year, N, on an individual policy follows a Poisson distribution 
with mean λ. Individual claim sizes are assumed to be exponentially distributed with 
mean 4 and are independent from claim to claim. The distribution of λ, depending on the 
category of the policyholder, is: 
 

Category Value of λ Proportion of policyholders 
A 2 20% 
B 3 60% 
C 4 20% 

 
Denote by S the total amount claimed by a policyholder in one year. 

1. Prove that E(S) = E [E(S|λ )] 
2. Show that E(S|λ ) = 4λ and Var(S|λ ) = 32λ 
3. Calculate E(S) 
4. Calculate Var(S) 
 

1. Let f (s) denote the marginal probability density for S and let f (s|λ ) denote the 
conditional probability density for S|λ . 
 
Starting with the RHS of the equation: 
 
E [E(S| λ )] 
 

= E [ ] 
 

 
 

, switching integration and summation 
 
 

 

2. Using the results for compound distributions we get: 

E(S|λ ) = E(N|λ )E(X|λ ),   using formula for the mean of compound distributions 

 = E(N|λ )E(X ),   since X is independent of  λ 

 = λ. 4 = 4λ 



Var(S|λ ) = E(N|λ )Var(X|λ ) + Var(N|λ )[E(X|λ )]2, using formula for the variance of 
compound distributions  

 = E(N|λ )Var(X ) + Var(N|λ )[E(X )]2 , since X is independent of  λ 

= λ × 16 + λ × 42 

= 32λ 
 

3. 
E(S) = E [E (S|λ)], using results from part 1(by the law of total expectation) 

= E (4λ),  using results from part 2 

= 4 E(λ)  

= 4 × (0.2 × 2 + 0.6 × 3 + 0.2 × 4) 

= 4 × 3 

= 12 

 

4. First note that E(λ ) = 3 and 
 

Var(λ ) = E(λ2) -  [ E(λ)] 2 = 0.2 × 22 + 0.6 × 32 + 0.2 × 42 − 32 = 0.4 

 

Var(S) = Var[E(S|λ )] + E[Var(S|λ )], by the law of total variance 

= Var(4λ ) + E(32λ ), using results from part 2 

= 16 × Var(λ ) + 32E(λ ) 

= 16 × 0.4 + 32 × 3 

= 102.4 
 

Q3. R 

Before answering this question, generate the vector, X, in R using the following code: 

set.seed(1027); X = rexp(n=1000, rate=0.01) 

The vector X represents the gross claim sizes of 1,000 claims. The payments are to be split 
between an insurance company and its reinsurer under an Excess of Loss reinsurance 
arrangement with a retention level M = 400. 

(i) Determine the proportion of the claims that are fully covered by the insurer. [2] 

Hint: The following code might help. 



length(X[X<=M])/length(X) 

 

(ii) Generate an additional vector, Y, which is of the same length as X, such that Y 

represents the amounts to be paid by the insurer for each component of X.   [1] 

Hint: Use the pmin function. 

 

(iii) Generate an additional vector, 𝑍, which is of the same length as X, such that 𝑍 

represents the amounts to be paid by the reinsurer for each component of X.  [1] 

 

An actuary assumes that the underlying gross claims distribution follows an exponential 
distribution of some unknown rate λ. The actuary needs to estimate λ using only the claim 
amounts recorded in vector Y. 

(iv) Construct R code that calculates the log-likelihood, as a function of the parameter λ, 
given the claim amounts data in vector Y.                [10] 

Hint: This is estimation when sample is censored, see lecture slides. 

 

(v) Using the function nlm, determine the value of λ at which the log-likelihood function 
reaches its maximum.                [6] 

Hint: The nlm function performs minimisation, not maximisation. However, 
maximising the log-likelihood function is the same as minimising the negative log-
likelihood. So, we first define the function that we want to hand to nlm to be minimised. 

    

Solution: 

#Q(i) Proportion of claims fully covered by the insurer 

set.seed(1027) 

X=rexp(1000,0.01) 

M=400 

> length(X[X<=M])/ length(X) 

[1] 0.987 

So the proportion of claims fully covered by the insurer is 98.7%. 

 

#Q(ii) Vector Y, same length as X, represents the amounts to 
be paid by the insurer for each component of X. 



Y=pmin(X, M) 

The following code and output show that Y is indeed the same length as X, i.e. the length of 
Y is also 1000. 

> length(Y) 

[1] 1000 

 

#Q(iii) Vector Z represents the amounts to be paid by the 
reinsurer for each component of X. 

Z=X-Y 

The following code and output show that Z is indeed the same length as X, i.e. the length of Z 
is also 1000. 

> length(Z) 

[1] 1000 

 

#OR 

Z=pmax(0,X-M) 

The following code and output show that Z is indeed the same length as X, i.e. the length of Z 
is also 1000. 

> length(Z) 

[1] 1000 

 

#Q(iv) Sample is censored. See lecture notes on how the 
complete likelihood function is made up of two parts.  

#The first part relates to the 987 claims, the second part 
relates to the 13 claims.  

#We assume all claims are independent. 

 

 

 

 

 

 

 



  

#So the likelihood function for 987 claims = 
(lambda^987)*exp(-lambda*sum_of_987_claims) 

 

 

 

 

 

 

 

#And the likelihood function for 13 claims = [P(X>M)]^13 = 
[exp(-lambda*M*13) 

#And the complete likelihood function, L = Product of the two 
likelihood functions above 

 

 

 

 

 

 

#Note that sum_of_987_claims + 13*M is simply the sum of all 
the components in vector Y. 

 

 

 

 

 

 

Final answer is: 

S = sum(Y) 

logLikelihood<-function(lambda){ 

  987*log(lambda)-lambda*S 



} 

 

 

#Q(v) Find the value of lambda at which the logLikelihood is 
at its maximum.  

#The following graph plotting is not required by the question 
but it helps us to think about where the maximum is. 

#Plot the logLikelihood just to get an idea of how it looks 
like. 

#If necessary, adjust the graph so that we can roughly see 
where the max is.  

#We see this happens at around lambda = 0.01. 

lambda=seq(0.0001,0.05,by=0.0001) 

plot(lambda,logLikelihood(lambda)) 

 

 

#We find lambda using numerical algorithm such as nlm.  

#Note that nlm performs minimisation, not maximisation.  

#However, maximising logLikelihood is the same as minimising 
the -logLikelihood. 

#So we define the function that we want to hand to nlm to be 
minimised. 

Function = function(lambda){ 

  -logLikelihood(lambda) 



} 

 

#To find out more about nlm, we run the following and look at 
the notes under Help. 

?nlm 

 

#p is our starting value for the iterative algorithm. From the 
graph we know the max is around 0.01, so set p=0.01. 

nlm(f=Function,p=0.01) 

 

> nlm(f=Function,p=0.01)$estimate 

[1] 0.01023209 

So, the estimate for lambda is 0.01023209. 


