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Ø Up until now we have studied aggregate claims over a single time period.
Ø We will now take this a step further by considering claims generated by a portfolio over 

successive time periods.
Ø We need some new notation:

• N(t ) is	the	number of	claims	generated	by	the	portfolio	in	the	time	interval	[0,t ],	for	all	t ≥ 0
• Xi is	the	amount	of	the	ith claim,	i = 1,2,3,...
• S(t ) is	the	aggregate	claims	in	the	time	interval	[0,t ] for	all	t ≥ 0

Ruin theory
Introduction
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Ø The stochastic process {S(t )} t≥0 is known as the aggregate claims process for the risk.
Ø The random variables N(1) and S(1) represent the number of claims and the aggregate 

claims respectively from the portfolio in the first unit of time.
Ø These two random variables correspond to what we have been calling N and S, 

respectively.
Ø So we have just taken the idea of a compound distribution and generalised it to cover 

different time periods.

Ruin theory
Introduction
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Ø The insurer of the portfolio will receive premiums from the policyholders.
Ø We will assume throughout this section that premium income is received 

continuously and at a constant rate:
Ø c = the rate of premium income per unit time

Ø This means that the total income we receive in the time interval [0, t ] is ct .
Ø We will also assume that c is strictly positive.

Ruin theory
Introduction
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Ø Suppose that at time 0 the insurer has an amount of money set aside for a particular portfolio.
Ø This amount of money is called the initial surplus and is denoted by U. It will always be 

assumed that U ≥ 0.
Ø The insurer needs this initial surplus because the future premium income on its own may not 

be sufficient to cover the future claims. Here we are ignoring expenses.
Ø The insurer’s surplus at any given future time t with t > 0 is a random variable since its value 

depends on the claims experience up to time t .
Ø The insurer’s surplus at time t is denoted by U(t ). The following formula for U(t ) can be 

written:

U(t ) = U + ct − S(t )

Ø In words this says that the insurer’s surplus at time t is the initial surplus, plus the premium 
income up to time t , minus the aggregate claims up to time t .

The surplus process
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Ø Notice that the initial surplus and the premium income are not random variables 
since they are determined before the risk process starts.

Ø The surplus formula is valid for t ≥ 0 with the understanding that U(0) = U.
Ø For a given value of t , U(t ) is a random variable because S(t ) is a random variable.
Ø Hence {U(t )} t≥0 is a stochastic process, which is known as the cash flow process or 

surplus process.

The surplus process
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When surplus falls below zero the insurer has run out money we say that ruin has occurred.

Ø In our simplified model, the insurer will want to keep the probability of this event, that is, the 
probability of ruin, as small as possible.

Ø Ruin can be thought of as meaning insolvency in this instance (in practice determining whether 
or not an insurance company is, in fact, insolvent, is quite complex).

Ø Another way of looking at the probability of ruin is to think of it as the probability that, at some
future time, the insurance company will need to provide more capital to finance this particular 
portfolio.

The probability of ruin in continuous time
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Being more precise we define two probabilities:

ψ(U) = P[U(t ) < 0, for some t, 0 < t <∞]
ψ(U, t) = P[U(𝜏) < 0, for some 𝜏, 0 < 𝜏 < t ]

Ø ψ(U) is the probability of ultimate ruin (given initial surplus U) and
Ø ψ(U, t ) is the probability of ruin within time t (given initial surplus U).

These probabilities are sometimes referred to as the probability of ruin in infinite time and the 
probability of ruin in finite time.

The probability of ruin in continuous time
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Ø Here are some important logical relationships between these two probabilities for 
0 < t1 ≤ t2 <∞ and for 0 ≤ U1 ≤ U2.

1. ψ(U2, t ) ≤ ψ(U1, t )
2. ψ(U2) ≤ ψ(U1)
3. ψ(U,t1) ≤ ψ(U,t2) ≤ ψ(U) 
4. lim t→∞ ψ(U,t ) = ψ(U)

Question. What is the limU→∞ ψ(U, t )?
Answer: Zero! With unlimited initial surplus we won’t ever have to worry about ruin!

The probability of ruin in continuous time
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Ø The two probabilities of ruin we have considered so far have been in continuous time but in 
practice it may only be possible (or even desirable) to check for ruin at discrete time intervals.

For a given interval of time, denoted by h, the following two discrete time probabilities of ruin are 
defined:

ψh(U) = P[U(t ) < 0, for some t , t = h,2h,3h, . . . ]
ψh(U, t ) = P[U(𝜏 ) < 0, for some 𝜏,𝜏 = h,2h,3h, . . . , t − h, t ]

The probability of ruin in discrete time
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Ø Here are some important logical relationships between these two probabilities for 
0 ≤ t1 ≤ t2 <∞ and for 0 ≤ U1 ≤ U2.

1. ψh(U2, t ) ≤ψh(U1, t )
2. ψh(U2) ≤ψh(U1)
3. ψh(U,t1) ≤ψh(U,t2) ≤ψh(U) 
4. lim t→∞ ψh(U,t ) = ψh(U)
5. ψh(U,t ) ≤ ψ(U,t )

Regarding the relationship 5:
ψ(U,t ) involves checking for ruin at all possible times(up to t). Since the more often 
we check for ruin, the more likely we are to find it, we would expect that ψ(U,t )would 
be greater than (or equal to) ψh(U,t ).

The probability of ruin in discrete time
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In this section we will make some assumptions about the claim number process {N(t )} t≥0 and the 
claim amounts process {S(t )} t≥0 and the claim amounts

Ø The claim number process will be assumed to be a Poisson process, leading to a compound
Poisson process {S(t )} t≥0 for aggregate claims.

Ø The assumptions made here will hold for the rest of the module.
Ø The Poisson process is an example of a counting process. Here the number of claims arising from 

a risk is the quantity of interest.
Ø Since the number of claims is being counted over time, the claim number process {N(t )} t≥0 must 

satisfy the following conditions:
1. N(0) = 0, i.e., there are no claims at time 0 

2. for any t > 0, N(t ) must be integer valued
3. when s < t , N(s) ≤ N(t ), i.e., the number of claims over time is non-decreasing
4. when s < t , N(t ) − N(s) represents the number of claims occurring in the time interval (s, t ]

The Poisson process
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Ø The claim number process {N(t )} t≥0 is defined to be a Poisson process with parameter λ if the 
following conditions are satisfied:
1. N(0) = 0 and N(s) ≤ N(t ) when s < t 

2. P(N(t + h) = r |N(t ) = r ) = 1− λh + o(h) 

P(N(t + h) = r + 1|N(t ) = r ) = λh + o(h) 

P(N(t + h) > r + 1|N(t ) = r ) = o(h)
3. When s < t , the number of claims in the time interval (s, t ] is independent of the number of 

claims up to time s

Ø Note that a function f (x ) is described as being o(x ) as x goes to zero, if:

The Poisson process
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Ø When studying a Poisson process the distribution of the time to the first claim and the times 
between claims is often of particular interest.

Let the random variable, T1 denote the time of the first claim. Then, for a fixed value of t , if no 
claims have occurred by time t , T1 > t .
Hence:

P(T1 > t ) = P(N(t ) = 0) = e−λt,
since N(t ) has a Poisson distribution with parameter λt. And

P(T1 ≤ t ) = 1 - e−λt

So T1 has an exponential distribution with parameter λ.

The Poisson process
Time to the first claim
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For i = 1,2,3 . . . let the random variable Ti denote the time between the (i − 1)th and the ith claims. Then:

𝑃 𝑇$%& > 𝑡 + 𝑟 ∑ 𝑇, = 𝑟$
,%& = P(0𝑇, = 𝑡 + 𝑟

$1&

,%&

|0𝑇, = 𝑟
$

,%&

)

= P(N(t + r ) = n|N(r ) = n)
= P(N(t + r ) − N(r ) = 0|N(r ) = n).

Using the fact that claim numbers in different time periods are independent we get:
P(N(t + r ) − N(r ) = 0|N(r ) = n) = P(N(t + r ) − N(r ) = 0)

Finally, since the number of claims in a time interval of length t does not depend on when that time interval 
starts:

P[N(t + r ) − N(r ) = 0] = P(N(t ) = 0) = e−λt

So the time between claims (known as inter-event times) also have an exponential distribution with 
parameter λ.

The Poisson process
Time between claims
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If reported claims follow a Poisson process with rate 5 per day (and the insurer has a 24 hour hotline), 
calculate:
i. The probability that there will be fewer than 2 claims reported on a given day
ii. The probability that another claim will be reported during the next hour.

Answer:
i) The expected number of claims reported on a given day is 5 so the number of claims reported on a
given day has a Poisson(5) distribution and the probability that there will be fewer than 2 claims is:

P(N < 2)
= P(N = 0) + P(N = 1)

= e−5 + 5e−5

= 0.040 (or 4%)

The Poisson process
Example
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If reported claims follow a Poisson process with rate 5 per day (and the insurer has a 24 hour hotline), 
calculate:
(i)The probability that there will be fewer than 2 claims reported on a given day
(ii)The probability that another claim will be reported during the next hour.

Answer (continued):

(ii) The waiting time until the next event has an Exponential(5) distribution. So the probability that 
there will be a claim during the next hour (= &

45
) of a day is:

P(T < t ) = 1− e−λt

P(T < &
45

) = 1− e−5(1 /24) = 0.1881 (or 18.8%)

The Poisson process
Example
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We now combine the Poisson process for the number of claims with a claim amount distribution to
give a compound Poisson process for the aggregate claims.

Ø We will make the following three, important, assumptions:

1) the random variables             are independent and identically distributed
2) the random variables             are independent of N(t ) for all t ≥ 0

3) the stochastic process {N(t )} t≥0 is a Poisson process whose parameter is denoted λ

The last assumption means that for any t ≥ 0, the random variable N(t ) has a Poisson distribution 
with parameter λt , so that:

With these assumptions the aggregate claims process {S(t )} t≥0 is called a compound Poisson 
process with Poisson parameter λ.

The compound Poisson process
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So then for a fixed value of t , S(t ) has a compound Poisson distribution with Poisson parameter 
λt.
Ø Note the terminology change: “Poisson parameter λ” becomes “Poisson parameter λt ” when

we switch from the process to the distribution.

Ø The common distribution function of the Xi ’s will be denoted by F (x ) and it will be assumed that 
F (0) = 0 so that all claims are for positive amounts.

Ø The probability density function of the Xi ’s, if it exists, will be denoted by f (x ) and the kth

moment about zero of the Xi ’s, if it exists, will be denoted by mk , so that:

mk = E [Xk ], k = 1, 2, 3, . . .

Ø Whenever the common moment generating function of the Xi ’s exists, its value at the point r will 
be denoted by MX (r ).

The compound Poisson process
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Since, for a fixed value of t, S(t ) has a compound Poisson distribution it follows that the process 
{S(t)} t≥0 has mean λtm1, variance λtm2 and moment generating function MS (r ), where:

MS (r ) = exp {λt (MX (r ) − 1}

Ø For the rest of our ruin theory conversations, we now make the following (intuitively reasonable) 
assumption about the rate of premium income.

c > λm1

Question: Why is this intuitively reasonable?
Answer: So that the insurer’s premium income (per unit time) is greater than the expected claims 
outgo (per unit time).

The compound Poisson process
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The aggregate claims arising during each year from a particular type of annual insurance policy 
are assumed to follow a normal distribution with mean 0.7P and standard deviation 2.0P, where 
P is the annual premium.

Claims are assumed to arise independently, and insurers assess their solvency position at the 
end of each year.
A small insurer with an initial surplus of £0.1m expects to sell 100 policies at the beginning of the 
coming year in respect of identical risks for an annual premium of £5,000. The insurer incurs 
expenses of 0.2P at the time of writing each policy.

Calculate the probability that the insurer will prove to be insolvent at the end of the coming year.
(You can ignore interest.)

The compound Poisson process
Example
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Answer: Using the information given in the question we can see that the insurer’s surplus at 
the end of the coming year will be:

U(1) = initial surplus + premiums− expenses− claims
= 0.1m + 100× 5,000 − 100 × 0.2 × 5,000− S(1)

= 0.5m− S(1)
The distribution of S(1) is:

S(1) ∼ N(100×0.7×5,000, 100×(2.0×5,000)2) = N(0.35m, (0.1m)2)

So the probability that the surplus will be negative is:

P(U(1) < 0) = P(S(1) > 0.5m)= P(N(0.35m, (0.1m)2) > 0.5m)

The compound Poisson process
Example
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For a compound Poisson process S(t ), the mean and variance of the total claim amount are 
given by:

E (S(t )) = λt E (X )
var (S(t )) = λt E (X 2)

The moment generating function of the process is given by:

MS(t )(r ) = e λt (MX (r)−1)

The compound Poisson process
Mean, variance and MGF of the compound Poisson process
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Ø So far, we have used c to denote the rate of premium income per unit time, independent of 
the claims outgo.

Ø In some cases, it is more useful to think of the rate of premium income being related to that 
of claims outgo.

Ø For the insurer to survive, the rate at which premium income comes in needs to be greater 
than the rate at which claims are paid out.

If this is not true, then the insurer is certain to be ruined at some point. So we will sometimes 
write c as:

c = (1 + θ)λm1

where θ (> 0) is the premium loading factor.

Premium security loadings
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Lundberg’s inequality states that:
ψ(U) ≤ e−RU

where U is the insurer’s initial surplus and ψ(U) is the probability of ultimate ruin.

Ø R is a parameter associated with a surplus process known as the adjustment coefficient.
Ø Its value depends on the distribution of aggregate claims and on the rate of premium income.
Ø Before defining R, we will look at the importance of this result and some features of the 

adjustment coefficient.

Lundberg’s inequality
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Lundberg’s inequality
Pictorial view

Blue = e−RU

Red = Ψ(U)

This graph is for when claim amounts are exponentially 
distributed with mean 1 and the premium loading factor 
is 10%. The solution for R and the formula for Ψ(U) will 

be given later.
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Ø We can use e−RU as an approximation to ψ(U). 

Ø R can be interpreted as measuring risk (an inverse measure of risk).

Ø The larger the value of R, the smaller the upper bound for ψ(U) will be. Hence ψ(U) would 

be expected to decrease as R increases.
Ø R is a function of the parameters that affect the probability of ruin and R’s behaviour as a 

function of these parameters can be observed.

Lundberg’s inequality
Interpretation
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Ø We will now take a look at a graph of R as a function of the loading factor, θ, when the 
claim amount distribution is exponential with mean 10. [see graph on next slide]

Ø We can see that R is an increasing function of θ.
Ø This is not surprising since ψ(U) would be expected to be a decreasing function 

of θ.
Ø Also, since:

ψ(U) ≈ e−RU

any factor causing a decrease in ψ(U) would cause R to increase.

Lundberg’s inequality
R as a function of the loading factor, θ
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Lundberg’s inequality
R as a function of the loading factor, θ

This graph is for when claim amounts are exponentially 
distributed with mean 10.
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Ø The surplus process depends on: the initial surplus, the aggregate claims process and on 
the rate of premium income.

Ø The adjustment coefficient, R, is a parameter associated with a surplus process which takes 
account of two of these factors: aggregate claims and premium income.

Ø R gives a measure of risk for a surplus process.
Ø When aggregate claims are a compound Poisson process, R is defined in terms of the

Poisson parameter, the moment generating function of individual claim amounts and the 
premium income per unit time.

The adjustment coefficient
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The adjustment coefficient, denoted R is defined to be the unique positive root of:

λMX (R) − λ − cR = 0
So, R is given by:

λMX (R) = λ + cR

Ø Note that this equation implies that the value of R depends on the Poisson parameter, the 
individual claim amount distribution and the rate of premium income.

However, writing c = (1 + θ)λm1 gives:
MX (R) = 1 + (1 + θ)m1R

so that R is independent of the Poisson parameter and simply depends on the loading factor θ and 
the individual claim amount distribution.

The adjustment coefficient
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An insurer knows from past experience that the number of claims received per month has a 
Poisson distribution with mean 15 and that claim amounts have an exponential distribution 
with mean 500. The insurer uses a security loading of 30%.
Calculate the insurer’s adjustment coefficient and give an upper bound for the insurer’s 
probability of ruin, if the insurer sets aside an initial surplus of £1,000.

Answer:
The equation for the adjustment coefficient is: MX (R) = 1 + (1 + θ)m1R

The adjustment coefficient
Example 1
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Answer (continued):
Rearranging this we get:

1 = (1− 500R)(1 + 650R)
1 = 1− 500R + 650R − 325, 000R2

0 = 150− 325, 000R
⇒ R = 0.000462

From Lundberg’s inequality, ψ(U) ≤ e−RU , we get:

ψ(U) ≤ e−0.000462×1,000 = 0.630

It is worth noting that the Poisson parameter was not used in the solution.

The adjustment coefficient
Example 1
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Now consider the exponential distribution: We have F (x ) = 1− e−αx

(Note that here we are using α as the parameter for the exponential distribution to avoid confusion 
with the Poisson parameter, λ.)

The adjustment coefficient
When individual claims are exponentially distributed
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The adjustment coefficient
When individual claims are exponentially distributed
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Write down the equation for the adjustment coefficient for personal accident claims if 90% of
claims are for £10,000 and 10% of claims are for £25,000, assuming a proportional security 
loading of 20%.
Show that this equation has a solution in the range:

0.00002599 < R < 0.00002601

Answer:
The adjustment coefficient satisfies:

1 + (1 + θ)m1R = MX (R)
The distribution of the individual claim sizes X is:

The adjustment coefficient
Example 2
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Answer (continued):

The security loading is θ = 0.2.

The adjustment coefficient
Example 2
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Answer (continued):
So, the adjustment coefficient equation is:

1 + 1.2× 11,500R = 0.9e10,000R + 0.1e25,000R

⇒ 1 + 13,800R = 0.9e10,000R + 0.1e25,000R

We can show that there is a solution in the range stated by looking at the values of LHS - RHS:
R = 0.00002599 ⇒

1 + 13,800R − (0.9e10,000R + 0.1e25,000R ) = 0.000035
R = 0.00002601 ⇒

1 + 13,800R − (0.9e10,000R + 0.1e25,000R ) = −0.000018

Since we have a reversal of signs and we are dealing with a continuous function, the difference 
must be zero at some point between these two values.
This means that there is a solution of the equation in the range 0.00002599 < R < 0.00002601

The adjustment coefficient
Example 2



40

If the equation for R has to be solved numerically, it is useful to have a rough idea of R’s value.
We can find a simple upper bound for R as follows:

The adjustment coefficient
An upper bound for R
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Notice that if the value of R is small, then it should be very close to this upper bound since 
the approximation to eRx should be good.

The adjustment coefficient
An upper bound for R
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Ø A lower bound for R can be derived when there is an upper limit, say M, to the amount of an 
individual claim. E.g.: If individual claim amounts are uniformly distributed on (0,100), then 
M = 100.

Ø The result is proved in a similar way. The lower bound is found by applying the inequality:

which is proved through the series expansion for eRM :

The adjustment coefficient
A lower bound for R
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The adjustment coefficient
A lower bound for R
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Taking logs and rearranging:

as required.

We can find other approximation for R, especially when R is small, by truncating the series 
expansion of eRx.

The adjustment coefficient
A lower bound for R
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The adjustment coefficient
Summary of upper and lower bounds for R


