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Ø For two variables, the joint (cumulative) distribution function (CDF) is:

Ø This can be extended from the bivariate case to the multivariate case in d dimensions: 

Ø In the context of joint distribution functions, the individual distribution of each of the variables 
in isolation is known as its marginal distribution.

Marginal and joint distributions
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Ø Variables are said to be associated if there is some form 
of statistical relationship between them, whether causal 
or not. 

Ø Note that a positive association between two variables 
does not necessarily imply that one is dependent on the 
other. Example: Both might be dependent on a third 
(perhaps unobserved) variable, with neither being 
directly dependent on the other. So, correlation does not 
imply causation!

Ø Concordance is a particular form of association. Broadly 
speaking, two random variables are concordant if small 
values of one are likely to be associated with small 
values of the other, and vice versa.

Association, concordance, correlation and tail 
dependence 
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According to an ancient legend, the stork is 
responsible for bringing babies to new parents. 
So if you observe a fall in the population of storks 
and a fall in birth rates, does it imply causation?



Ø Pearson’s linear correlation coefficient (also known as Pearson’s ρ ) measures the degree to 
which there is a linear relationship between two variables:  

Ø Two commonly used measures of correlation that are more robust than Pearson’s ρ are 
Spearman’s ρ (often called the rank correlation) and Kendall’s τ.

Association, concordance, correlation and tail 
dependence 
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Ø It is often the case in insurance and investment applications that large losses tend to 
occur together. For example, a hurricane could result in large losses on several 
different property insurance policies sold by the same company, or a stock market 
crash could lead to large losses on a number of investments in the same investment 
portfolio.

Ø So, the relationships between the variables at the extremes of the distributions, i.e., in 
the upper and lower tails, are of particular importance. These can be measured using 
the coefficients of upper and lower tail dependence.

Association, concordance, correlation and tail 
dependence 
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Ø Coefficient of upper tail dependence:

Ø This coefficient is a probability, so it takes a value between 0 and 1.
Ø The coefficient of upper tail dependence indicates whether high values of one random 

variable, X , tend to be linked with high values of another random variable Y .
Ø It considers the probability of the random variable X taking a value in the upper tail of its 

distribution (e.g., a tail with a probability mass of 5% implies u = 0.95), given that the random 
variable Y takes a value in the same sized upper tail of its distribution.

Ø Specifically, the coefficient of upper tail dependence is the limiting value of this probability as 
u → 1-, i.e., as we move further into the upper tail (from below). 

Association, concordance, correlation and tail 
dependence 
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Ø Coefficient of lower tail dependence:

Ø Again, this coefficient is a probability, so it takes a value between 0 and 1.
Ø The coefficient of lower tail dependence indicates whether low values of one random 

variable, X , tend to be linked with low values of another random variable Y .
Ø It considers the probability of the random variable X taking a value in the lower tail of its 

distribution (e.g., a tail with a probability mass of 5% implies u = 0.05), given that the random 
variable Y takes a value in the same sized lower tail of its distribution.

Ø Specifically, the coefficient of lower tail dependence is the limiting value of this probability as 
u → 0+, i.e., as we move further into the lower tail (from above). 

Association, concordance, correlation and tail 
dependence 
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Definition: A copula is a function that expresses a multivariate cumulative distribution 
function in terms of the individual marginal cumulative distributions.

Ø It is useful to remember that a copula is a function. It takes marginal cumulative 
distributions of random variables as inputs, and outputs a corresponding joint 
cumulative distribution function.

Copulas 
Definition
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Definition of a copula:

Ø Note that the arguments u1, u2, …, ud and the output value of the copula function are restricted 
to the range [0,1], as they correspond to probabilities.

Copulas 
Definition
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Question:
Explain in words, the meaning of the following copula expression: C[u, v, w]

Answer:
This gives the probability that random variable 1 is in the bottom u percentile, and
random variable 2 is in the bottom v percentile, and
random variable 3 is in the bottom w percentile.

Copulas 
Definition: Example
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Sklar’s theorem:
Let F be a joint (cumulative) distribution function with marginal cumulative distribution 
functions F1, …, Fd.. Then there exists a copula, C, such that for all x1, …, xd ∈ [−∞, ∞]:

F(x1, x2, …, xd) = C [F1(x1), …, Fd(xd)]

Ø In the case where the variables have a continuous distribution, the copula is unique.
Ø The converse also holds.

Converse of Sklar’s theorem:
If C is a copula and F1, …, Fd are univariate cumulative distribution functions, then the 
function F defined above is a joint cdf with marginal cdf F1, …, Fd.

Copulas 
Sklar’s theorem
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Coefficient of lower tail dependence in terms of the copula function:

Ø i.e., the coefficient of lower tail dependence can be calculated directly from the copula 
function.

Ø The coefficient of lower tail dependence can take values between 0 (no dependence) and 1 
(full dependence).

Copulas 
Expressions of tail dependence and survival copula
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Survival copula:
To define the upper tail dependence, we need to look at the opposite end of the marginal 
distributions. Associated with each copula function is a survival copula function (denoted with a 
bar), which is defined by:

By the principle of inclusion/exclusion, we have:

So, the survival copula is related to the original copula function by:

Copulas 
Expressions of tail dependence and survival copula
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Coefficient of upper tail dependence in terms of survival copula function:

Copulas 
Expressions of tail dependence and survival copula
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=	 𝐥𝐢𝐦
𝒖→𝟏-

𝟏 − 𝟐𝒖 + 𝑪[𝒖, 𝒖]
𝟏 − 𝒖



3 main families of copula in this module:
§ Fundamental copulas
§ Explicit copulas
§ Implicit copulas

Copulas 
Types of copula function
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The 3 copulas below are referred to as the fundamental copulas.
3 fundamental dependencies that a set of variables can display:

• Independence: represented by the independence (or product) copula
• Perfect positive interdependence: represented by co-monotonic (or 

minimum) copula
• Perfect negative interdependence: represented by counter-monotonic 

(or maximum) copula

Fundamental Copulas 
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The product copula is defined in the bivariate case as: 
C[u, v] = uv

Expressing the above in terms of x and y:

Ø This captures the property of the independence of the 2 variables X and Y. Hence, this copula 
is also called the independence copula.

Ø The independence copula can be extended to the multivariate case, e.g.:

Fundamental Copulas 
Independence (or product) copula
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The co-monotonic copula is defined in the bivariate case as: 
C[u, v] = min(u, v)

Expressing the above in terms of x and y:

Ø The co-monotonic copula captures the relationship between two variables whose values are 
perfectly positively interdependent on each other.

Ø The co-monotonic copula can be extended to the multivariate case, e.g.:

Fundamental Copulas 
Co-monotonic (or minimum) copula
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The counter-monotonic copula is defined in the bivariate case as: 
C[u, v] = max(u + v – 1, 0)

Expressing the above in terms of x and y:

Ø The counter-monotonic copula captures the relationship between two variables whose values 
are perfectly negatively interdependent on each other.

Ø The counter-monotonic copula cannot be extended to the multivariate case because it is not 
possible to have 3 or more variables where each pair has a direct inverse relationship.

Fundamental Copulas 
Counter-monotonic (or maximum) copula
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Ø Explicit copulas have simple closed-form expressions. 
Ø Archimedean copulas are a subset of explicit copulas.
Ø Archimedean copulas take the form:

C[u, v] = ψ[-1](ψ (u) + ψ (v))
where ψ(t) is a generator function and ψ[-1] is a pseudo-inverse generator function.

Ø The pseudo-inverse functionψ[-1] of a function ψ(t) is defined as:

where ψ(-1)(x) denotes the ordinary inverse function obtained by inverting the equation x = ψ (y)
to express y in terms of x. 
Ø If ψ(0) = ∞, the pseudo-inverse ψ[-1] is always equal to the ‘ordinary’ inverse ψ(-1) and the 

generator function is called a strict generator function.

Explicit Copulas 
Archimedean copulas

21



3 examples of Archimedean copulas:
1. The Gumbel copula
2. The Clayton copula
3. The Frank copula

Ø In these examples, α is a parameter whose value can be specified to adjust the strength of 
dependence between variables.

Explicit Copulas 
Archimedean copulas
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The Gumbel copula is defined in the bivariate case as:

C[u, v] = exp{ - ( (-ln u)α + (-ln v)α)1/α } for α	≥ 1

Ø The generator function is:
ψ(t) = (-ln t )α where 1 ≤ α < ∞

Ø The Gumbel copula describes an interdependence structure in which there is upper tail 
dependence (the level of which is determined by the parameter α), but there is no lower 
tail dependence.

Ø The Gumbel copula describes positive upper tail dependence for α	> 1.
Ø The Gumbel copula is often referred to as the Gumbel-Hougaard copula.

Explicit Copulas 
Gumbel copula
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Question:
Derive an expression for the Gumbel copula for the case where there are 3 variables. The 
Gumbel copula has a generator function:

ψ(t) = (-ln t )α where 1 ≤ α < ∞

Answer:
§ The Gumbel copula is an example of Archimedean copulas.
§ For the case where there are 3 variables, Archimedean copulas take the form:

C[u, v, w] = ψ[-1](ψ (u) + ψ (v) + ψ (w))
§ So, we need to find ψ[-1], the pseudo-inverse generator function. 

§ Check ψ(0) = lim
9	→	:	

(− ln 𝑡)? = ∞
§ So, the pseudo-inverse ψ[-1] is equal to the ‘ordinary’ inverse ψ(-1).

Explicit Copulas 
Gumbel copula: Example
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Answer (continued)
Let y = ψ(-1)(x), then ψ(y) = x. So (-ln y )α = x, or -ln y = x1/α. We can write                                                                                                               

ln y = - x1/α

y = exp(- x1/α )
ψ(-1)(x) = exp(- x1/α )

So, C[u, v, w] = ψ[-1](ψ (u) + ψ (v) + ψ (w))
= ψ[-1]( [-ln u ]α		+ [-ln v ]α + [-ln w ]α)
= ψ(-1)( [-ln u ]α + [-ln v ]α	+ [-ln w ]α), (since ψ(0) = lim

9	→	:	
(− ln 𝑡)? = ∞)

= exp(- { [-ln u ]α	+ [-ln v ]α	+ [-ln w ]α} 1/α)

Explicit Copulas 
Gumbel copula: Example
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The Clayton copula is defined in the bivariate case as:

C[u, v] = (u-α + v-α - 1)-1/α for α	> 0

Ø The generator function is:

Ø The Clayton copula describes an interdependence structure in which there is lower tail 
dependence (the level of which is determined by the parameter α), but there is no upper tail 
dependence.

Explicit Copulas 
Clayton copula
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The Frank copula is defined in the bivariate case as:

Ø The generator function is:

Ø The Frank copula describes an interdependence structure in which there is no upper or lower 
tail dependence.

Explicit Copulas 
Frank copula
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Ø Implicit copulas do not have simple closed-form expressions.
Ø They are based on or implied by well-known multivariate distributions. 
Ø 2 examples of implicit copulas:

1. The Gaussian copula – based on multivariate normal distribution
2. The Student’s t copula – based on multivariate Student’s t distribution

Implicit Copulas 
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The Gaussian copula is defined in the bivariate case as:
C[u, v] = Φρ [Φ-1(u), Φ-1(v)]

sometimes written as
CGauss[u, v] = Φρ [Φ-1(u), Φ-1(v)]  

where 
• Φ is the distribution function of the standard normal distribution and 
• Φρ is the distribution function of a bivariate normal distribution with correlation ρ.

Ø Applying this Gaussian copula to normal marginal distributions will result in a bivariate 
normal distribution with correlation ρ.

Ø The independence, co-monotonic and counter-monotonic copulas are special cases of the 
Gaussian copula where ρ = 0, ρ = +1 and ρ = -1 respectively.

Implicit Copulas 
Gaussian copula
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Question:
Consider a two-dimensional Gaussian copula function, CGauss[u, v], with parameter ρ = 0:
i. Give the solution to the copula function CGauss[1, 1]. 
ii. Give the solution to the copula function CGauss[1, 0.2]. 
iii. Give the solution to the copula function CGauss[0.2, 0.2]. 
iv. Outline how your answers to parts (i), (ii) and (iii) would change if ρ = 1. 

Implicit Copulas 
Gaussian copula: Example
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Answer:
The independence copula is a special case of the Gaussian copula when ρ = 0.
When ρ = 0, CGauss[u, v] = uv
i. CGauss[1, 1] = 1*1 = 1
ii. CGauss[1, 0.2] = 1 * 0.2 = 0.2
iii. CGauss[0.2, 0.2] = 0.2 * 0.2 = 0.04
iv. The co-monotonic copula is a special case of the Gaussian copula when ρ = 1.
When ρ = 1, CGauss[u, v] = min(u, v)
CGauss[1, 1] = min(1,1) = 1
CGauss[1, 0.2] = min(1, 0.2) = 0.2
CGauss[0.2, 0.2] = min(0.2, 0.2) = 0.2
Ø So, if ρ = 1, answers to (i) and (ii) will remain the same but answer to (iii) will change to 0.2.

Implicit Copulas 
Gaussian copula: Example
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The Student’s t copula is defined by:
C[u, v] = tγ,	ρ [tγ	-1(u), tγ	-1(v)]  

where 
§ tγ	 is the distribution function of a random variable with Student’s t distribution with γ degrees 

of freedom and 
§ tγ,	ρ is the distribution function of a bivariate Student’s t distribution with correlation ρ.

Ø The Student’s t copula allows the dependencies between the variables to be adjusted more 
finely than the corresponding Gaussian copula.

Ø This is because the Student’s t copula has an additional parameter γ.
Ø In the same way that the standard normal distribution is a limiting case of the Student’s t 

distribution (as the number of degrees of freedom tends to infinity), the Gaussian copula is 
the limiting case of the Student’s t copula.

Implicit Copulas 
Student’s t copula
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The Gaussian copula is defined in the bivariate case as:
C[u, v] = Φρ [Φ-1(u), Φ-1(v)]

sometimes written as
CGauss[u, v] = Φρ [Φ-1(u), Φ-1(v)]  

where 
• Φ is the distribution function of the standard normal distribution and 
• Φρ is the distribution function of a bivariate normal distribution with correlation ρ.

Ø Applying this Gaussian copula to normal marginal distributions will result in a bivariate 
normal distribution with correlation ρ.

Ø The independence, co-monotonic and counter-monotonic copulas are special cases of the 
Gaussian copula where ρ = 0, ρ = +1 and ρ = -1 respectively.

Implicit Copulas 
Gaussian copula
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Ø If we want to create a mathematical model to represent real-world phenomena, then we might 
look at past data and: 
1) select and parameterise marginal distributions for each of the relevant variables, and 
2) describe and quantify the form and extent of the associations between the variables.

Ø Examination of the form and levels of association between the variables of interest allows us 
to select a suitable candidate copula from the list of established copulas or to develop a new 
bespoke copula.

Ø Different copulas result in different levels of tail dependence. Example: 
• the Gumbel copula has zero lower tail dependence but upper tail dependence of 2 – 21/α

• the Clayton copula, on the other hand, has zero upper tail dependence but lower tail dependence of 
2-1/α

• the Frank copula has zero dependence in both tails. 
• the Gaussian copula has zero dependence in both tails (unless ρ =1 in which case the Gaussian 

copula is a co-monotonic copula and thus has positive upper and lower tail dependence) 
• the Student’s t copula has equal positive dependence in both tails.

Choosing a suitable copula function 
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Ø As we would expect, variables related by the independence (product) copula have a 
concordance of 0, whereas variables related by the co-monotonic (minimum) or counter-
monotonic (maximum) copulas have a concordance of +1 and –1 respectively.

Ø So, the Gumbel copula, with an appropriate value for the parameter α , might be a 
suitable copula to use when modelling large general insurance claims resulting from a 
common underlying cause.

Choosing a suitable copula function 
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For bivariate cases, we can summarise
the coefficients of lower and upper tail 
dependence:

Choosing a suitable copula function 
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