Main Examination period 2023 - January - Semester A

MTH5104: Convergence and Continuity

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: Claudia Garetto, Navid Nabijou

Question 1 [25 marks].

(a) Prove that the equation

$$
x^{4}=x+1
$$

does not have any rational solution.
(b) Let

$$
A=\left\{\frac{n^{2}-1}{n^{3}-1}: n \in \mathbb{N}, n \neq 1\right\}
$$

(i) Prove that $A \subseteq \mathbb{R}$ is bounded.
(ii) Prove that inf $A=0$. Can you replace inf with min? Justify your answer.
(iii) Let B be a bounded from above subset of \mathbb{R}. Prove that $-B+A$ is bounded from below.

Solution: (Similar seen in class)

(a) We begin by showing that this equation does not have any integer solutions. Assume that $x=2 k, k \in \mathbb{Z}$ is a solution. Then

$$
(2 k)^{4}=2 k+1
$$

This is not possible because the left-hand side is even and the right-hand side is odd. We reach the same conclusion if $x=2 k+1$, with $k \in \mathbb{Z}$, is a solution. Indeed,

$$
(2 k+1)^{4}=\left(4 k^{2}+4 k+1\right)^{2}
$$

is odd while

$$
(2 k+1)+1=2 k+2
$$

is even. We can now consider the case that $x=\frac{a}{b}$, where $a \in \mathbb{Z}, b \in \mathbb{N}$ with $b \neq 1$ is a solution. We also assume that the highest common factor between a and b is 1. If $x=\frac{a}{b}$ is a rational non integer solution then

$$
\frac{a^{4}}{b^{4}}=\frac{a}{b}+1 .
$$

Multiplying both sides by b we get

$$
\frac{a^{4}}{b^{3}}=a+b .
$$

This leads to a contradiction because the right-hand side is integer and the left-hand side is not integer. So, our equation cannot have a rational solution.
(b) Let

$$
A=\left\{\frac{n^{2}-1}{n^{3}-1}: n \in \mathbb{N}, n \neq 1\right\}
$$

(i) Prove that $A \subseteq \mathbb{R}$ is bounded.

Solution (Similar seen in class)
We begin by observing that

$$
\frac{n^{2}-1}{n^{3}-1}=\frac{(n-1)(n+1)}{(n-1)\left(n^{2}+n+1\right)}=\frac{n+1}{n^{2}+n+1}
$$

Since $n+1 \leq n^{2}+n+1$ we conclude that

$$
0 \leq \frac{n^{2}-1}{n^{3}-1} \leq 1
$$

This shows that the set A is bounded.
(ii) Prove that $\inf A=0$. Can you replace inf with min? Justify your answer.

Solution (Similar seen in class)

It is clear from the previous inequality that 0 is a bound from below for the set A. We need to prove that for all $\varepsilon>0$ there exists $n \in \mathbb{N}(n \neq 1)$ such that

$$
\frac{n+1}{n^{2}+n+1}<\varepsilon .
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{n+1}{n^{2}+n+1}=\lim _{n \rightarrow \infty} \frac{n}{n^{2}} \frac{1+\frac{1}{n}}{1+\frac{1}{n}+\frac{1}{n^{2}}}=0
$$

then for n large enough we have that

$$
\frac{n+1}{n^{2}+n+1}<\varepsilon
$$

as desired. All the elements of the set A are strictly greater than 0 so we cannot replace inf with min.
(iii) Let B be a bounded from above subset of \mathbb{R}. Prove that $-B+A$ is bounded from below.

Solution (Unseen)

Since B is bounded from above there exists $c \in \mathbb{R}$ such that $x \leq c$ for all $x \in B$. This means that $-x \geq-c$ for all $x \in B$ and proves that $-B$ is bounded from below. Since A is bounded from below as well we have that

$$
-x+y \geq-c+0
$$

for all $x \in B$ and $y \in A$. This shows that $-B+A$ is bounded from below.

Question 2 [25 marks].

(a) Let $\left(a_{n}\right)$ be an increasing sequence of real numbers bounded from above and $\left(b_{n}\right)$ be a decreasing sequence.
(i) Is $\left(a_{n} b_{n}\right)$ necessarily convergent? Justify your answer.
(ii) Prove that if in addition $b_{n} \geq 1$ for all $n \in \mathbb{N}$ then the sequence $\left(a_{n} b_{n}^{-1}\right)$ is convergent.
(b) Let $\left(a_{n}\right)$ be the sequence defined recursively by

$$
\begin{align*}
a_{1} & =\sqrt{3}, \\
a_{n} & =\sqrt{2 a_{n-1}+3}, \quad n \geq 2 . \tag{5}
\end{align*}
$$

(i) Prove that $\left(a_{n}\right)$ is bounded.
(ii) Prove that $\left(a_{n}\right)$ is increasing.
(iii) Making use of (i) and (ii) prove that the sequence $\left(a_{n}\right)$ is convergent and compute its limit.
(a) (i) Solution: (Unseen). This is in general not true. Indeed, the sequence

$$
a_{n}=1-\frac{1}{n}
$$

is increasing and bounded above and the sequence

$$
b_{n}=-n
$$

is decreasing. However,

$$
a_{n} b_{n}=\left(1-\frac{1}{n}\right)(-n)=-n+1
$$

is not convergent because it diverges to $-\infty$.
(ii) Solution: (Unseen) By assumptions the sequence (b_{n}) is decreasing and bounded from below. Therefore $\left(b_{n}^{-1}\right)$ is increasing and bounded above. Both the sequences $\left(a_{n}\right)$ and $\left(b_{n}^{-1}\right)$ are increasing and bounded above so by a result seen in class they are both convergent. Since the limit of a product is the product of the limits we conclude that the sequence $\left(a_{n} b_{n}^{-1}\right)$ is convergent too.
(b) Solution: (Similar seen in class) Let us consider the following sequence defined recursively by

$$
\begin{aligned}
& a_{1}=\sqrt{3} \\
& a_{n}=\sqrt{2 a_{n-1}+3}, \quad n \geq 2 .
\end{aligned}
$$

We will prove that this sequence is convergent by showing that it is bounded and increasing.
(i) We prove by induction that

$$
0<a_{n} \leq 3,
$$

for all $n \in \mathbb{N}$. This is true for $n=1$. Assume that for $n=k$,

$$
0<a_{k}=\sqrt{2 a_{k-1}+3} \leq 3 .
$$

Hence,

$$
0<a_{k+1}=\sqrt{2 a_{k}+3} \leq \sqrt{6+3}=3
$$

So, our sequence is bounded.
(ii) We now prove that it is increasing, i.e., $a_{n+1} \geq a_{n}$, for all $n \in \mathbb{N}$. This is equivalent to prove that
$\sqrt{2 a_{n}+3} \geq a_{n} \quad \Leftrightarrow 2 a_{n}+3 \geq a_{n}^{2} \quad \Leftrightarrow \quad a_{n}^{2}-2 a_{n}-3=\left(a_{n}-3\right)\left(a_{n}+1\right) \leq 0$.
The last inequality holds because $0<a_{n} \leq 3$.
(iii) By a theorem seen in class on monotone sequences, we know the sequence $\left(a_{n}\right)$ is convergent because it is bounded and increasing and

$$
\lim _{n \rightarrow \infty} a_{n}=\sup _{n} a_{n}=x
$$

By the shift rule,

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n-1}=x .
$$

So, taking the limit at both sides of the equality

$$
a_{n}^{2}=2 a_{n-1}+3,
$$

we get

$$
x^{2}-2 x-3=0 .
$$

This gives $x=3$ or $x=-1$. Since x must be positive we have that $x=3$. Concluding, $a_{n} \rightarrow 3$ as $n \rightarrow \infty$.

Question 3 [25 marks].

(a) Decide whether the following series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, conditionally convergent or divergent. Carefully justify your answer.
(i)

$$
a_{n}=\frac{\sin n}{(n+2)(n+3)}+\frac{2^{n}+5^{n}}{2^{n}+9^{n}}
$$

(ii)

$$
a_{n}=(-1)^{n} \frac{1}{\sqrt{\sqrt{n}+4}} .
$$

(b) (i) Find the radius of convergence R of the series

$$
\sum_{n=0}^{\infty}(-2)^{n} n^{4}(x-1)^{n}
$$

(ii) What can you say for the series (i) when $x=1 \pm R$? Justify your answer.

Question 3

(a) Decide whether the following series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, conditionally convergent or divergent. Carefully justify your answer.

$$
\begin{equation*}
a_{n}=\frac{\sin n}{(n+2)(n+3)}+\frac{2^{n}+5^{n}}{2^{n}+9^{n}} \tag{i}
\end{equation*}
$$

Solution: (Similar seen in class) Since

$$
a_{n}=\frac{\sin n}{(n+2)(n+3)}+\frac{2^{n}+5^{n}}{2^{n}+9^{n}}
$$

is the sum of two terms we will argue on them separately. So we write

$$
a_{n}=b_{n}+c_{n}, \quad b_{n}=\frac{\sin n}{(n+2)(n+3)}, \quad c_{n}=\frac{2^{n}+5^{n}}{2^{n}+9^{n}}
$$

It follows that

$$
0 \leq\left|a_{n}\right| \leq\left|b_{n}\right|+\left|c_{n}\right|=\left|b_{n}\right|+c_{n} .
$$

So, if we prove that the series given by $\left|b_{n}\right|$ and c_{n} are both convergent we will have that the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent. To prove that $\sum_{n=1}^{\infty}\left|b_{n}\right|$ is convergent we use the comparison test. We have

$$
0 \leq\left|\frac{\sin n}{(n+2)(n+3)}\right| \leq \frac{1}{(n+2)(n+3)}
$$

The telescopic series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent so by the shift rule $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$. is convergent too. By the comparison test $\sum_{n=1}^{\infty}\left|b_{n}\right|$ is convergent as well.
For the series $\sum_{n=1}^{\infty} c_{n}$ we use the ratio test. We have to compute

$$
\lim _{n \rightarrow \infty} \frac{2^{n+1}+5^{n+1}}{2^{n+1}+9^{n+1}} \frac{2^{n}+9^{n}}{2^{n}+5^{n}}
$$

Since

$$
\frac{2^{n+1}+5^{n+1}}{2^{n}+5^{n}}=\frac{2^{n+1}}{2^{n}+5^{n}}+\frac{5^{n+1}}{2^{n}+5^{n}}=\frac{2}{1+\frac{5}{2}^{n}}+\frac{5}{1+\frac{2}{5}^{n}} \rightarrow 5
$$

and

$$
\frac{2^{n}+9^{n}}{2^{n+1}+9^{n+1}}=\frac{2^{n}}{2^{n+1}+9^{n+1}}+\frac{9^{n}}{2^{n+1}+9^{n+1}}=\frac{\frac{1}{2}}{1+\frac{9}{2}}{ }^{n+1}+\frac{\frac{1}{9}}{1+\frac{2}{9}^{n+1}} \rightarrow \frac{1}{9}
$$

we have that

$$
\lim _{n \rightarrow \infty} \frac{2^{n+1}+5^{n+1}}{2^{n+1}+9^{n+1}} \frac{2^{n}+9^{n}}{2^{n}+5^{n}}=\frac{5}{9}<1
$$

so, by the ratio test the series defined by c_{n} is convergent as well. This yields that the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
(ii)

$$
\begin{equation*}
a_{n}=(-1)^{n} \frac{1}{\sqrt{\sqrt{n}+4}} . \tag{7}
\end{equation*}
$$

Solution (Similar seen in class) Let us consider the series defined by

$$
a_{n}=(-1)^{n} \frac{1}{\sqrt{\sqrt{n}+4}} .
$$

Since the sequence $\frac{1}{\sqrt{\sqrt{n}+4}}$ is positive, decreasing and convergent to 0 we can apply the alternating series test and conclude that

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{\sqrt{n}+4}}
$$

is convergent.
Let us now study the series of the absolute values, i.e.,

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{\sqrt{n}+4}}
$$

The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{\sqrt{n}+4}}$ behaves like the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{\sqrt{n}}}$ which is divergent. So, by the comparison test the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{\sqrt{n}+4}}
$$

is divergent. This proves that the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{\sqrt{n}+4}}
$$

is conditionally convergent.
(b) (i) Find the radius of convergence R of the series

$$
\sum_{n=0}^{\infty}(-2)^{n} n^{4}(x-1)^{n}
$$

Solution (Similar seen in class)

To determine the radius of convergence of the power series

$$
\sum_{n=0}^{\infty}(-2)^{n} n^{4}(x-1)^{n}
$$

we can use the root test. This means that we want to compute the limit

$$
\lim _{n \rightarrow \infty}\left|(-2)^{n} n^{4}\right|^{\frac{1}{n}}=\lim _{n \rightarrow \infty} 2 n^{\frac{4}{n}}
$$

We have

$$
\lim _{n \rightarrow \infty} n^{\frac{4}{n}}=\lim _{n \rightarrow \infty} \mathrm{e}^{\ln \left(n^{\frac{4}{n}}\right)}=\lim _{n \rightarrow \infty} \mathrm{e}^{\frac{4 \ln n}{n}}=1
$$

So

$$
\lim _{n \rightarrow \infty}\left|(-2)^{n} n^{4}\right|^{\frac{1}{n}}=2
$$

and the radius of convergence is $R=\frac{1}{2}$.
(ii) What can you say for the series (i) when $x=1 \pm R$? Justify your answer.

Solution (Similar seen in class)

In our case we have $x=1 \pm \frac{1}{2}$, i.e., $x=\frac{1}{2}$ and $x=\frac{3}{2}$.
With $x=\frac{1}{2}$ we get the series

$$
\sum_{n=0}^{\infty}(-2)^{n} n^{4} \frac{1}{(-2)^{n}}=\sum_{n=0}^{\infty} n^{4}
$$

is divergent because $n^{4} \rightarrow \infty$.
For $x=\frac{3}{2}$ the series

$$
\sum_{n=0}^{\infty}(-2)^{n} n^{4} \frac{1}{2^{n}}=\sum_{n=0}^{\infty}(-1)^{n} n^{4}
$$

is divergent because $(-1)^{n} n^{4} \nrightarrow 0$.

Question 4 [25 marks].
(a) Prove that the equation

$$
x+\ln (\sin (x)+2)=1
$$

has a solution $x \in \mathbb{R}$.
(b) Can you find a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that for all $c>0$ there exists $x \in[0,1]$ such that

$$
|f(x)|>c ?
$$

Justify your answer.

Question 4

(a) Prove that the equation

$$
x+\ln (\sin (x)+2)=1
$$

has a solution $x \in \mathbb{R}$.

Solution (Similar seen in class)

We want to apply the Intermediate Value Theorem to the function

$$
g(x)=x+\ln (\sin (x)+2)-1
$$

This is a continuous function on \mathbb{R} by composition and sum of continuous functions. I want to find an interval $[a, b]$ such that $g(a)<0$ and $g(b)>0$. Then, by applying the theorem we will have a point $c \in(a, b)$ such that $g(c)=0$. This will be the solution to our equation. For instance, we can choose $a=-\frac{\pi}{2}$ and $b=\frac{\pi}{2}$. Hence,

$$
g\left(-\frac{\pi}{2}\right)=-\frac{\pi}{2}-1<0
$$

and

$$
g\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\ln (3)-1>0 .
$$

(b) Can you find a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that for all $c>0$ there exists $x \in[0,1]$ such that

$$
|f(x)|>c ?
$$

Justify your answer.

Solution (Unseen)

The answer is no. Since the function f is continuous on $[0,1]$ it is also bounded.
So, there exists $c>0$ such that

$$
|f(x)| \leq c
$$

for all $x \in[0,1]$.

