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Important: All your answers must be justified. Unless the question explicitly
indicates otherwise, you may use any result from the lectures, provided you
state the result clearly.

Question 1 [25 marks].

(a) Given a subset A C R and a real number a € R, define what it means for a to be
the supremum of A.

(b) Consider the following set of real numbers:

2
A:{@éﬂﬁéﬁmN}gR
ne+n

(i) Prove that A is bounded.
(ii) Prove that inf(A) = 0. Can you replace inf by min? Justify your answer.

(iii) Find sup(A) and max(A), justifying your answer in each case.
(b) Let B C R be nonempty and bounded.

(i) Prove that inf(B) < sup(B).
(ii) Does there exist a B such that inf(B) = sup(B)?
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Question 2 [25 marks].
(a) Define what it means for a sequence (z,) to converge to a value z € R.

(b) Let (z,,) and (y,) be sequences, and suppose that x, — oo and y,, — oo. Prove
that x, + y, — oc.

(c¢) Give an example of a sequence that contains both a bounded subsequence and an
unbounded subsequence.

(d) For each of the following sequences, decide whether or not it converges, and
justify your answer.
(You may use any result from the lectures, but you must state the result clearly.)

) 1
(i) @ = 72023

1
n+n?

(iii) x, = n(2 + sin(nv/2023)).

(i) =, =
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Question 3 [25 marks].
(a) Define what it means for a series to be conditionally convergent.

(b) For each of the following series, decide whether or not it converges. You do not
need to calculate its value.
a2k 4 3k

o0

.. 1
W 2 i

k=1

(c) Suppose we are given two conditionally convergent series Y .-, @y and >~ Y.

Does it follow that the series .

> (e + )

k=1

is conditionally convergent? Prove or give a counterexample.
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Question 4 [25 marks].

(a) Consider the function f: R — R given by:

f(z) =3z + 4.

Prove, directly from the definition, that f(x) is continuous at all points a € R.

(b) Consider the function g: R — R given by:

g(az):{ﬁ ifx>0

—1 ifx <0

Find a point a € R such that g(x) is not continuous at a. Justify your answer.
(You may use any result from the lectures, but you must state the result clearly.)

(c¢) Consider now two arbitrary functions f : R — R and g : R — R. Suppose that
f(z) and g(z) are both continuous at the point a € R. Prove directly from the
definition that the function

h(z) = f(z) + g(z)
is also continuous at a.

(d) Prove that there exists an « € R such that z + cos(z) = 1.

End of Paper.
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